Microchip Technology - PIC16F1768-I/SO Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	18
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	128 x 8
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 12x10b; D/A 2x5b, 2x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SOIC (0.295", 7.50mm Width)
Supplier Device Package	20-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f1768-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.0 DEVICE OVERVIEW

The PIC16(L)F1764/5/8/9 are described within this data sheet. See Table 2 for available package configurations.

Figure 1-1 shows a block diagram of the PIC16(L)F1764/5 devices. Figure 1-2 shows a block diagram of the PIC16(L)F1768/9 devices. Table 1-2 and Table 1-3 show the pinout descriptions.

Refer to Table 1-1 for peripherals available per device.

TABLE 1-1:DEVICE PERIPHERAL
SUMMARY

Peripheral	PIC16(L)F1764	PIC16(L)F1765	PIC16(L)F1768	PIC16(L)F1769	
Analog-to-Digital Conve	erter (ADC)	٠	٠	٠	٠
Fixed Voltage Referenc	e (FVR)	٠	٠	٠	•
Zero-Cross Detection (2	ZCD)	٠	٠	٠	•
Temperature Indicator		٠	•	•	•
Complementary Output	Generator (C	OG)			
	COG1	٠	٠	٠	•
	COG2			•	•
Programmable Ramp G	enerator (Pl	RG)			
	PRG1	٠	٠	٠	•
	PRG2			٠	•
10-Bit Digital-to-Analog	Converter (I	DAC)		
	DAC1	٠	٠	٠	•
	DAC2			٠	•
5-Bit Digital-to-Analog C	Converter (D	AC)			
	DAC3	٠	٠	٠	•
	DAC4			٠	•
Capture/Compare/PWN	I (CCP/ECC	P) M	odul	es	
	CCP1	٠	٠	٠	•
	CCP2			٠	•
Comparators					
	C1	٠	٠	٠	•
	C2	٠	•	•	•
	C3			٠	٠
	C4			٠	•
Configurable Logic Cell	(CLC)				
	CLC1	٠	٠	٠	•
	CLC2	٠	•	•	•
	CLC3	٠	٠	٠	٠
Data Signal Modulator	(DSM)				
	DSM1	٠	•	•	•
	DSM2			•	•

TABLE 1-1:DEVICE PERIPHERAL
SUMMARY (CONTINUED)

Peripheral	PIC16(L)F1764	PIC16(L)F1765	PIC16(L)F1768	PIC16(L)F1769				
Enhanced Universal Syr Receiver/Transmitter (E	nchronous/As USART)	sync	hron	ous				
	EUSART	٠	٠	٠	٠			
Master Synchronous Se	erial Ports							
	MSSP	٠	٠	٠	•			
Op Amp								
	Op Amp 1	٠	٠	٠	•			
	Op Amp 2			٠	•			
10-Bit Pulse-Width Modulator (PWM)								
	PWM3	٠	٠	٠	•			
	PWM4			٠	•			
16-Bit Pulse-Width Mod	lulator (PWN	1)						
	PWM5	٠	٠	٠	•			
	PWM6			٠	•			
8-Bit Timers								
	Timer0	٠	٠	٠	•			
	Timer2	٠	٠	٠	•			
	Timer4	٠	٠	٠	•			
	Timer6	٠	٠	٠	٠			
16-Bit Timers		-	-	-				
	Timer1	٠	٠	٠	•			
	Timer3	٠	٠	٠	•			
	Timer5	•	•	•	•			

TABLE 1-2: PIC16(L)F1764/5 PINOUT DESCRIPTION (CONTINUED)

Name	Function	Input Type	Output Type	Description
RC4/T3G/PRG1R/CLCIN1/CK	RC4	TTL/ST	CMOS	General purpose I/O.
	T3G ⁽¹⁾	TTL/ST		Timer3 gate input.
	PRG1R ⁽¹⁾	TTL/ST		Ramp generator set_rising input.
	CLCIN1 ⁽¹⁾	TTL/ST	—	CLC Input 1.
	CK ⁽¹⁾	TTL/ST	—	EUSART clock input.
RC5/T3CKI/PRG1F/CCP1/RX	RC5	TTL/ST	CMOS	General purpose I/O.
	T3CKI ⁽¹⁾	TTL/ST	—	Timer3 clock input.
	PRG1F ⁽¹⁾	TTL/ST	—	Ramp generator set_falling input.
	CCP1 ⁽¹⁾	TTL/ST	—	CCP1 capture input.
	RX ^(1,3)	TTL/ST	—	EUSART receive input.
VDD	Vdd	Power	—	Positive supply.
Vss	Vss	Power	—	Ground reference.
OUT ⁽²⁾	C1OUT		CMOS	Comparator 1 output.
	C2OUT		CMOS	Comparator 2 output.
	CCP1		CMOS	Compare/PWM1 output.
	MD10UT		CMOS	Data Signal Modulator 1 output.
	PWM3		CMOS	PWM3 output.
	PWM5		CMOS	PWM5 output.
	COG1A		CMOS	Complementary Output Generator Output A.
	COG1B		CMOS	Complementary Output Generator Output B.
	COG1C		CMOS	Complementary Output Generator Output C.
	COG1D		CMOS	Complementary Output Generator Output D.
	SDA ⁽³⁾		OD	I ² C data output.
	SCK		CMOS	SPI clock output.
	SCL ⁽³⁾		OD	I ² C clock output.
	SDO		CMOS	SPI data output.
	ΤX		CMOS	EUSART asynchronous TX data out.
	СК		CMOS	EUSART synchronous clock out.
	DT ⁽³⁾		CMOS	EUSART synchronous data output.
	CLC10UT		CMOS	Configurable Logic Cell 1 output.
	CLC2OUT		CMOS	Configurable Logic Cell 2 output.
	CLC3OUT		CMOS	Configurable Logic Cell 3 output.
Legend: AN = Analog input or ou TTL = TTL compatible i	utput CMOS	= CMOS = Schmit	compatil tt Trigger	ole input or output OD = Open-Drain input with CMOS levels I^2C = Schmitt Triager input with I^2C

XTAL = Crystal levels

Note 1: Default peripheral input. Alternate pins can be selected as the peripheral input with the PPS Input Selection registers. 2: All pin digital outputs default to PORT latch data. Alternate outputs can be selected as peripheral digital outputs with the PPS Output Selection registers.

3: These peripheral functions are bidirectional. The output pin selections must be the same as the input pin selections.

HV = High Voltage

REGISTER 3-1: STATUS: STATUS REGISTER

U-0	U-0	U-0	R-1/q	R-1/q	R/W-0/u	R/W-0/u	R/W-0/u			
—	—	—	TO	PD	Z	DC ⁽¹⁾	C ⁽¹⁾			
bit 7	•	•					bit 0			
		•								
Legend:										
R = Readable I	bit	W = Writable	bit	U = Unimpler	nented bit, read	as '0'				
u = Bit is unchanged x = Bit is unknown				-n/n = Value a	at POR and BO	R/Value at all o	ther Resets			
'1' = Bit is set		'0' = Bit is clea	ared	q = Value dep	pends on conditi	on				
bit 7-5	Unimplemen	ted: Read as ') '							
bit 4	TO: Time-out	bit								
	1 = After power	er-up, CLRWDT	instruction or	SLEEP instruc	tion					
	0 = A WDT tir	ne-out occurre	d							
bit 3	PD: Power-Do	own bit								
	1 = After power-up or by the CLRWDT instruction									
h:+ 0	0 = By execut	ION OF THE STEP	SP Instruction							
DIL Z		- f								
	1 = The result 0 = The result	t of an arithmet	ic or logic ope ic or logic ope	eration is zero	ero					
bit 1	DC: Digit Car	rv/Digit Borrow	bit (ADDWF. A	DDIW. SUBIW.	SUBWE instruction	ons)(1)				
	1 = A carry-out	ut from the 4th	low-order bit of	of the result oc	curred					
	0 = No carry-out from the 4th low-order bit of the result									
bit 0	C: Carry/Borr	ow bit ⁽¹⁾ (ADDW	F, ADDLW, SUI	BLW, SUBWF in	structions) ⁽¹⁾					
	1 = A carry-ou	ut from the Mos	st Significant b	oit of the result	occurred					
	0 = No carry-o	out from the Mo	ost Significant	bit of the resu	It occurred					
	<u> </u>									

Note 1: For Borrow, the polarity is reversed. A subtraction is executed by adding the two's complement of the second operand.

TABLE 3-13: PIC16(L)F1768/9 MEMORY MAP (BANKS 27-30)

	Bank 27		Bank 28		Bank 29	T '	Bank 30
D8Ch	—	E0Ch	—	E8Ch		F0Ch	
D8Dh	—	E0Dh	—	E8Dh		F0Dh	_
D8Eh	PWMEN	E0Eh	—	E8Eh		F0Eh	—
D8Fh	PWMLD	E0Fh	PPSLOCK	E8Fh	—	F0Fh	CLCDATA
D90h	PWMOUT	E10h	INTPPS	E90h	RA0PPS	F10h	CLC1CON
D91h	PWM5PHL	E11h	TOCKIPPS	E91h	RA1PPS	F11h	CLC1POL
D92h	PWM5PHH	E12h	T1CKIPPS	E92h	RA2PPS	F12h	CLC1SEL0
D93h	PWM5DCL	E13h	T1GPPS	E93h	—	F13h	CLC1SEL1
D94h	PWM5DCH	E14h	CCP1PPS	E94h	RA4PPS	F14h	CLC1SEL2
D95h	PWM5PRL	E15h	CCP2PPS	E95h	RA5PPS	F15h	CLC1SEL3
D96h	PWM5PRH	E16h	COG1INPPS	E96h	—	F16h	CLC1GLS0
D97h	PWM50FL	E17h	COG2INPPS	E97h		F17h	CLC1GLS1
D98h	PWM50FH	E18h	—	E98h	_	F18h	CLC1GLS2
D99h	PWM5TMRL	E19h	T2INPPS	E99h	_	F19h	CLC1GLS3
D9Ah	PWM5TMRH	E1Ah	T3CKIPPS	E9Ah	_	F1Ah	CLC2CON
D9Bh	PWM5CON	E1Bh	T3GPPS	E9Bh		F1Bh	CLC2POL
D9Ch	PWM5INTE	E1Ch	T4INPPS	E9Ch	RB4PPS	F1Ch	CLC2SEL0
D9Dh	PWM5INTE	F1Dh	T5CKIPPS	F9Dh	RB5PPS	F1Dh	CLC2SEL1
D9Eh	PWM5CLKCON	E1Eh	TSGPPS	FQEh	RB6PPS	F1Eh	CLC2SEL2
DOEh		E1Eh	TEINIPPS	EQEN	RB7PPS	F1Eh	
		E20b			PCOPPS	E20b	
		E21h				F21h	
DATH		EZ III	SSPDATPPS	EAIII	RCIPPS	F2111	CLC2GLS1
DAZII			33733773	EAZII	RC2PPS		CLC2GLS2
DA3h	PWW6DCL	E23h	—	EA3n	RC3PPS	F23h	CLC2GLS3
DA4h	PWM6DCH	E24h	RXPPS	EA4h	RC4PPS	F24h	CLC3CON
DA5h	PWM6PRL	E25h	CKPPS	EA5h	RC5PPS	F25h	CLC3POL
DA6h	PWM6PRH	E26h	—	EA6h	RC6PPS	F26h	CLC3SEL0
DA7h	PWM60FL	E27h		EA7h	RC7PPS	F27h	CLC3SEL1
DA8h	PWM60FH	E28h	CLCIN0PPS	EA8h	—	F28h	CLC3SEL2
DA9h	PWM6TMRL	E29h	CLCIN1PPS	EA9h	—	F29h	CLC3SEL3
DAAh	PWM6TMRH	E2Ah	CLCIN2PPS	EAAh	—	F2Ah	CLC3GLS0
DABh	PWM6CON	E2Bh	CLCIN3PPS	EABh	—	F2Bh	CLC3GLS1
DACh	PWM6INTE	E2Ch	PRG1FPPS	EACh	—	F2Ch	CLC3GLS2
DADh	PWM6INTF	E2Dh	PRG1RPPS	EADh	_	F2Dh	CLC3GLS3
DAEh	PWM6CLKCON	E2Eh	PRG2FPPS	EAEh	_	F2Eh	—
DAFh	PWM6LDCON	E2Fh	PRG2RPPS	EAFh	_	F2Fh	_
DB0h	PWM60FC0N	E30h	MD1CHPPS	EB0h		F30h	_
DB1h	_	E31h	MD1CLPPS	EB1h	_	F31h	_
DB2h	_	E32h	MD1MODPPS	EB2h	_	F32h	
DB3h	_	E33h	MD2CHPPS	EB3h	_	F33h	
DB4h	_	E34h	MD2CLPPS	FR4h	_	F34h	_
DB5b		E35h	MD2MODPPS	EB5h		E35h	
DB6h	_	E36h		FR6h		E36h	
DB7h		E37h		EB01		F37h	
DB8b	_	E38h		EB8h	_	F38b	
	_	ESON	_	EDON		ESOP	
	_	L J 911	_			F34F	
DBAN	_	EJAN	—	EBAN		FJAN	_
DRRU	—	E3Bh	—	FRRU		F3Bh	—
DBCh		E3Ch	—	EBCh		F3Ch	
DBDh	—	E3Dh	—	EBDh		F3Dh	—
DBEh	—	E3Eh	—	EBEh		F3Eh	—
DBFh	—	E3Fh	_	EBFh		F3Fh	
DC0h		E40h		EC0h		F40h	
	—		—		—		—
		,					

REGISTER 11-21: WPUC: WEAK PULL-UP PORTC REGISTER

R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1			
WPUC<7:0> ^(1,2,3)										
bit 7							bit 0			
Legend:										
R = Readable I	bit	W = Writable	bit							
u = Bit is uncha	anged	x = Bit is unkr	nown	U = Unimpler	mented bit, read	l as '0'				
'1' = Bit is set		'0' = Bit is clea	ared	-n/n = Value at POR and BOR/Value at all other Reset			other Resets			

bit 7-0 WPUC<7:0>: Weak Pull-up PORTC Register bits^(1,2,3) 1 = Pull-up is enabled 0 = Pull-up is disabled

Note 1: The global WPUEN bit of the OPTION_REG register must be cleared for individual pull-ups to be enabled.

- 2: The weak pull-up device is automatically disabled if the pin is configured as an output.
 - **3:** WPUC<7:6> are available on PIC16(L)F1768/9 only.

REGISTER 11-22: ODCONC: PORTC OPEN-DRAIN CONTROL REGISTER

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0			
ODC<7:0> ⁽¹⁾										
bit 7 bit C										

Legend:		
R = Readable bit	W = Writable bit	
u = Bit is unchanged	x = Bit is unknown	U = Unimplemented bit, read as '0'
'1' = Bit is set	'0' = Bit is cleared	-n/n = Value at POR and BOR/Value at all other Resets

bit 7-0 **ODC<7:0>:** PORTC Open-Drain Enable bits⁽¹⁾

For RC<7:0> Pins:

1 = Port pin operates as an open-drain drive (sink current only)

0 = Port pin operates as a standard push-pull drive (source and sink current)

Note 1: ODC<7:6> are available on PIC16(L)F1768/9 only.

15.3 Temperature Output

The output of the circuit is measured using the internal Analog-to-Digital Converter. A channel is reserved for the temperature circuit output. Refer to Section 16.0 "Analog-to-Digital Converter (ADC) Module" for detailed information.

15.4 ADC Acquisition Time

To ensure accurate temperature measurements, the user must wait at least 200 μs after the ADC input multiplexer is connected to the temperature indicator output before the conversion is performed. In addition, the user must wait 200 μs between sequential conversions of the temperature indicator output.

TABLE 15-2: SUMMARY OF REGISTERS ASSOCIATED WITH THE TEMPERATURE INDICATOR

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
FVRCON	FVREN	FVRRDY	TSEN	TSRNG	CDFVR<1:0>		ADFV	R<1:0>	169

Legend: Shaded cells are unused by the temperature indicator module.

26.4 Reload Operation

Four of the PWM module control register pairs and one control bit are double-buffered so that all can be updated simultaneously. These include:

- PWMxPHH:PWMxPHL register pair
- PWMxDCH:PWMxDCL register pair
- PWMxPRH:PWMxPRL register pair
- PWMxOFH:PWMxOFL register pair
- ODO control bit

When written to, these registers do not immediately affect the operation of the PWM. By default, writes to these registers will not be loaded into the PWM operating buffer registers until after the arming conditions are met. The arming control has two methods of operation:

- · Immediate
- Triggered

The LDT bit of the PWMxLDCON register controls the arming method. Both methods require the LDA bit to be set. All four buffer pairs will load simultaneously at the loading event.

26.4.1 IMMEDIATE RELOAD

When the LDT bit is clear, then the Immediate mode is selected and the buffers will be loaded at the first period event after the LDA bit is set. Immediate reloading is used when a PWM module is operating stand-alone or when the PWM module is operating as a master to other slave PWM modules.

26.4.2 TRIGGERED RELOAD

When the LDT bit is set, then the Triggered mode is selected and a trigger event is required for the LDA bit to take effect. The trigger source is the buffer load event of one of the other PWM modules in the device. The triggering source is selected by the LDS bit of the PWMxLDCON register. The buffers will be loaded at the first period event following the trigger event. Triggered reloading is used when a PWM module is operating as a slave to another PWM and it is necessary to synchronize the buffer reloads in both modules.

Note 1: The buffer load operation clears the LDA bit.

2: If the LDA bit is set at the same time as PWMxTMR = PWMxPR, the LDA bit is ignored until the next period event. Such is the case when triggered reload is selected and the triggering event occurs simultaneously with the target's period event.

26.5 Operation in Sleep Mode

Each PWM module will continue to operate in Sleep mode when either the HFINTOSC or LFINTOSC is selected as the clock source by PWMxCLKCON<1:0>.

26.6 Interrupts

Each PWM module has four independent interrupts based on the phase, duty cycle, period and offset match events. The interrupt flag is set on the rising edge of each of these signals. Refer to Figures 26-12 and 26-13 for detailed timing diagrams of the match signals.

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
RIS15 ⁽¹⁾	RIS14	RIS13	RIS12	RIS11	RIS10	RIS9	RIS8
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit				
u = Bit is unch	anged	x = Bit is unkr	l as '0'				
'1' = Bit is set		'0' = Bit is cle	ared	-n/n = Value a	at POR and BO	R/Value at all o	ther Resets
bit 7	RIS15: COG	x Rising Event	Input Source ?	15 Enable bit ⁽¹)		
	1 = DSM2 M	D2_out is enab	oled as a rising	g event input			
	0 = DSM2 M	D2_out has no	effect on the	rising event			
bit 6	RIS14: COG	x Rising Event	Input Source	14 Enable bit			
	1 = DSM1 M	D1_out output	is enabled as	a rising event	input		
bit 5		DI_OULIIAS IIO		12 Enchlo hit			
DIL 5	$1 = C C C_{3} $ ou	trut is onabled					
	0 = CLC3 ou	itput has no effe	ect on the risir	ng event			
bit 4	RIS12: COG	x Rising Event	Input Source '	12 Enable bit			
	1 = CLC2 ou	Itput is enabled	as a rising ev	ent input			
	0 = CLC2 ou	itput has no effe	ect on the risir	ng event			
bit 3	RIS11: COG>	Rising Event	nput Source ?	11 Enable bit			
	1 = CLC1 ou	tput is enabled	as a rising ev	ent input			
	0 = CLC1 ou	tput has no effe	ect on the risir	ng event			
bit 2	RIS10: COG	x Rising Event	Input Source	10 Enable bit			
	1 = PWM6 o	utput is enable	d as a rising e	vent input			
bit 1		Dising Evont In		Enable bit			
DICT	1 = PWM5 or	utput is enable	d as a rising o				
	0 = PWM5 0	utput has no ef	fect on the ris	ing event			
bit 0	RIS8: COGx	Rising Event Ir	put Source 8	Enable bit			
	1 = PWM4 o	utput is enable	d as rising eve	ent input			
	0 = PWM4 o	utput has no ef	fect on the ris	ing event			
Note 1: PIC	C16(L)F1768/9	only. Otherwise	unimplement	ed, read as '0'			

REGISTER 27-4: COGxRIS1: COGx RISING EVENT INPUT SELECTION REGISTER 1

PIC16(L)F1764/5/8/9

32.5.3.3 7-Bit Transmission with Address Hold Enabled

Setting the AHEN bit of the SSPxCON3 register enables additional clock stretching and interrupt generation after the eighth falling edge of a received matching address. Once a matching address has been clocked in, CKP is cleared and the SSPxIF interrupt is set.

Figure 32-19 displays a standard waveform of a 7-bit address slave transmission with AHEN enabled.

- 1. Bus starts Idle.
- Master sends Start condition; the S bit of SSPxSTAT is set; SSPxIF is set if interrupt on Start detect is enabled.
- Master sends matching address with R/W bit set. After the eighth falling edge of the SCL line, the CKP bit is cleared and the SSPxIF interrupt is generated.
- 4. Slave software clears SSPxIF.
- 5. Slave software reads the ACKTIM bit of SSPxCON3, and R/W and D/A of the SSPxSTAT register to determine the source of the interrupt.
- 6. Slave reads the address value from the SSPxBUF register, clearing the BF bit.
- Slave software decides from this information if it wishes to ACK or not ACK and sets the ACKDT bit of the SSPxCON2 register accordingly.

- 8. Slave sets the CKP bit, releasing SCL.
- 9. Master clocks in the \overline{ACK} value from the slave.
- 10. Slave hardware automatically clears the CKP bit and sets SSPxIF after the \overline{ACK} if the R/W bit is set.
- 11. Slave software clears SSPxIF.
- 12. Slave loads value to transmit to the master into SSPxBUF, setting the BF bit.

Note: <u>SSPxBUF</u> cannot be loaded until after the ACK.

- 13. Slave sets the CKP bit, releasing the clock.
- 14. Master clocks out the data from the slave and sends an ACK value on the 9th SCL pulse.
- 15. Slave hardware copies the ACK value into the ACKSTAT bit of the SSPxCON2 register.
- 16. Steps 10-15 are repeated for each byte transmitted to the master from the slave.
- 17. If the master sends a not \overline{ACK} , the slave releases the bus allowing the master to send a Stop and end the communication.
 - **Note:** Master must send a not ACK on the last byte to ensure that the slave releases the SCL line to receive a Stop.

32.6.13.2 Bus Collision During a Repeated Start Condition

During a Repeated Start condition, a bus collision occurs if:

- a) A low level is sampled on SDA when SCL goes from low level to high level (Case 1).
- b) SCL goes low before SDA is asserted low, indicating that another master is attempting to transmit a data '1' (Case 2).

When the user releases SDA and the pin is allowed to float high, the BRG is loaded with SSPxADD and counts down to zero. The SCL pin is then deasserted and when sampled high, the SDA pin is sampled. If SDA is low, a bus collision has occurred (i.e., another master is attempting to transmit a data '0', Figure 32-36). If SDA is sampled high, the BRG is reloaded and begins counting. If SDA goes from high-to-low before the BRG times out, no bus collision occurs because no two masters can assert SDA at exactly the same time.

If SCL goes from high-to-low before the BRG times out and SDA has not already been asserted, a bus collision occurs. In this case, another master is attempting to transmit a data '1' during the Repeated Start condition, see Figure 32-37.

If, at the end of the BRG time-out, both SCL and SDA are still high, the SDA pin is driven low and the BRG is reloaded and begins counting. At the end of the count, regardless of the status of the SCL pin, the SCL pin is driven low and the Repeated Start condition is complete.

FIGURE 32-36: BUS COLLISION DURING A REPEATED START CONDITION (CASE 1)

FIGURE 32-37: BUS COLLISION DURING REPEATED START CONDITION (CASE 2)

REGISTER 32-1: SSP1STAT: MSSP STATUS REGISTER (CONTINUED)

BF: Buffer Full Status bit

bit 0

- Receive (SPI and I²C modes):
- 1 = Receive is complete, SSPxBUF is full
- 0 = Receive is not complete, SSPxBUF is empty
- Transmit (I²C mode only):
- 1 = Data transmit is in progress (does not include the \overline{ACK} and Stop bits), SSPxBUF is full
- 0 = Data transmit is complete (does not include the ACK and Stop bits), SSPxBUF is empty

PIC16(L)F1764/5/8/9

The operation of the EUSART module is controlled through three registers:

- Transmit Status and Control (TXxSTA)
- Receive Status and Control (RCxSTA)
- Baud Rate Control (BAUDxCON)

These registers are detailed in Register 33-1, Register 33-2 and Register 33-3, respectively.

The RX and CK input pins are selected with the RXPPS and CKPPS registers, respectively. TX, CK and DT output pins are selected with each pin's RxyPPS register. Since the RX input is coupled with the DT output in Synchronous mode, it is the user's responsibility to select the same pin for both of these functions when operating in Synchronous mode. The EUSART control logic will control the data direction drivers automatically.

33.1 EUSART Asynchronous Mode

The EUSART transmits and receives data using the standard Non-Return-to-Zero (NRZ) format. NRZ is implemented with two levels: a VOH Mark state which represents a '1' data bit, and a VoL Space state which represents a '0' data bit. NRZ refers to the fact that consecutively transmitted data bits of the same value stay at the output level of that bit without returning to a neutral level between each bit transmission. An NRZ transmission port Idles in the Mark state. Each character transmission consists of one Start bit, followed by eight or nine data bits and is always terminated by one or more Stop bits. The Start bit is always a space and the Stop bits are always marks. The most common data format is eight bits. Each transmitted bit persists for a period of 1/(Baud Rate). An on-chip dedicated 8-bit/16-bit Baud Rate Generator is used to derive standard baud rate frequencies from the system oscillator. See Table 33-5 for examples of baud rate configurations.

The EUSART transmits and receives the LSb first. The EUSART's transmitter and receiver are functionally independent, but share the same data format and baud rate. Parity is not supported by the hardware, but can be implemented in software and stored as the ninth data bit.

33.1.1 EUSART ASYNCHRONOUS TRANSMITTER

The EUSART transmitter block diagram is shown in Figure 33-1. The heart of the transmitter is the serial Transmit Shift Register (TSR), which is not directly accessible by software. The TSR obtains its data from the transmit buffer, which is the TXxREG register.

33.1.1.1 Enabling the Transmitter

The EUSART transmitter is enabled for asynchronous operations by configuring the following three control bits:

- TXEN = 1
- SYNC = 0
- SPEN = 1

All other EUSART control bits are assumed to be in their default state.

Setting the TXEN bit of the TXxSTA register enables the transmitter circuitry of the EUSART. Clearing the SYNC bit of the TXxSTA register configures the EUSART for asynchronous operation. Setting the SPEN bit of the RCxSTA register enables the EUSART and automatically configures the TX/CK I/O pin as an output. If the TX/CK pin is shared with an analog peripheral, the analog I/O function must be disabled by clearing the corresponding ANSELx bit.

Note: The TXIF transmitter interrupt flag is set when the TXEN enable bit is set.

33.1.1.2 Transmitting Data

A transmission is initiated by writing a character to the TXxREG register. If this is the first character, or the previous character has been completely flushed from the TSR, the data in the TXxREG is immediately transferred to the TSR register. If the TSR still contains all or part of a previous character, the new character data is held in the TXxREG until the Stop bit of the previous character has been transmitted. The pending character in the TXxREG is then transferred to the TSR in one TcY immediately following the Stop bit sequence commences immediately following the transfer of the data to the TSR from the TXxREG.

33.1.1.3 Transmit Data Polarity

The polarity of the transmit data can be controlled with the SCKP bit of the BAUDxCON register. The default state of this bit is '0' which selects high true transmit ldle and data bits. Setting the SCKP bit to '1' will invert the transmit data resulting in low true ldle and data bits. The SCKP bit controls transmit data polarity in Asynchronous mode only. In Synchronous mode, the SCKP bit has a different function. See Section 33.5.1.2 "Clock Polarity".

33.1.1.4 Transmit Interrupt Flag

The TXIF interrupt flag bit of the PIR1 register is set whenever the EUSART transmitter is enabled and no character is being held for transmission in the TXxREG. In other words, the TXIF bit is only clear when the TSR is busy with a character and a new character has been queued for transmission in the TXxREG. The TXIF flag bit is not cleared immediately upon writing TXxREG. TXIF becomes valid in the second instruction cycle following the write execution. Polling TXIF immediately following the TXxREG write will return invalid results. The TXIF bit is read-only, it cannot be set or cleared by software.

The TXIF interrupt can be enabled by setting the TXIE interrupt enable bit of the PIE1 register. However, the TXIF flag bit will be set whenever the TXxREG is empty, regardless of the state of TXIE enable bit.

To use interrupts when transmitting data, set the TXIE bit only when there is more data to send. Clear the TXIE interrupt enable bit upon writing the last character of the transmission to the TXxREG.

33.5.2 SYNCHRONOUS SLAVE MODE

The following bits are used to configure the EUSART for synchronous slave operation:

- SYNC = 1
- CSRC = 0
- SREN = 0 (for transmit); SREN = 1 (for receive)
- CREN = 0 (for transmit); CREN = 1 (for receive)
- SPEN = 1

Setting the SYNC bit of the TXxSTA register configures the device for synchronous operation. Clearing the CSRC bit of the TXxSTA register configures the device as a slave. Clearing the SREN and CREN bits of the RCxSTA register ensures that the device is in the Transmit mode, otherwise the device will be configured to receive. Setting the SPEN bit of the RCxSTA register enables the EUSART.

33.5.2.1 EUSART Synchronous Slave Transmit

The operation of the Synchronous Master and Slave modes are identical (see Section 33.5.1.3 "Synchronous Master Transmission"), except in the case of Sleep mode.

If two words are written to the TXxREG and then the SLEEP instruction is executed, the following will occur:

- 1. The first character will immediately transfer to the TSR register and transmit.
- 2. The second word will remain in the TXxREG register.
- 3. The TXIF bit will not be set.
- After the first character has been shifted out of TSR, the TXxREG register will transfer the second character to the TSR and the TXIF bit will now be set.
- If the PEIE and TXIE bits are set, the interrupt will wake the device from Sleep and execute the next instruction. If the GIE bit is also set, the program will call the Interrupt Service Routine.

- 33.5.2.2 Synchronous Slave Transmission Setup
- 1. Set the SYNC and SPEN bits, and clear the CSRC bit.
- 2. Clear the ANSEL bit for the CK pin (if applicable).
- 3. Clear the CREN and SREN bits.
- 4. If interrupts are desired, set the TXIE bit of the PIE1 register, and the GIE and PEIE bits of the INTCON register.
- 5. If 9-bit transmission is desired, set the TX9 bit.
- 6. Enable transmission by setting the TXEN bit.
- 7. If 9-bit transmission is selected, insert the Most Significant bit into the TX9D bit.
- 8. Start transmission by writing the Least Significant eight bits to the TXxREG register.

Mnen	nonic,	Description	Cycles		14-Bit	Opcode)	Status	Notoo
Oper	ands	Description	Cycles	MSb			LSb	Affected	Notes
		BYTE-ORIENTED FILE REGIS	TER OPE	RATIO	NS				
ADDWF	f, d	Add W and f	1	00	0111	dfff	ffff	C, DC, Z	2
ADDWFC	f, d	Add with Carry W and f	1	11	1101	dfff	ffff	C, DC, Z	2
ANDWF	f, d	AND W with f	1	00	0101	dfff	ffff	Z	2
ASRF	f, d	Arithmetic Right Shift	1	11	0111	dfff	ffff	C, Z	2
LSLF	f, d	Logical Left Shift	1	11	0101	dfff	ffff	C, Z	2
LSRF	f, d	Logical Right Shift	1	11	0110	dfff	ffff	C, Z	2
CLRF	f	Clear f	1	00	0001	lfff	ffff	Z	2
CLRW	-	Clear W	1	00	0001	0000	00xx	Z	
COMF	f, d	Complement f	1	00	1001	dfff	ffff	Z	2
DECF	f, d	Decrement f	1	00	0011	dfff	ffff	Z	2
INCF	f, d	Increment f	1	00	1010	dfff	ffff	Z	2
IORWF	f, d	Inclusive OR W with f	1	00	0100	dfff	ffff	Z	2
MOVF	f, d	Move f	1	00	1000	dfff	ffff	Z	2
MOVWF	f	Move W to f	1	00	0000	lff	ffff		2
RLF	f, d	Rotate Left f through Carry	1	00	1101	dfff	ffff	С	2
RRF	f, d	Rotate Right f through Carry	1	00	1100	dfff	ffff	С	2
SUBWF	f, d	Subtract W from f	1	00	0010	dfff	ffff	C, DC, Z	2
SUBWFB	f, d	Subtract with Borrow W from f	1	11	1011	dfff	ffff	C, DC, Z	2
SWAPF	f, d	Swap nibbles in f	1	00	1110	dfff	ffff		2
XORWF	f, d	Exclusive OR W with f	1	00	0110	dfff	ffff	Z	2
		BYTE ORIENTED SKIP (PERATIO	ONS					
DECFSZ	f, d	Decrement f, Skip if 0	1(2)	00	1011	dfff	ffff		1, 2
INCFSZ	f, d	Increment f, Skip if 0	1(2)	00	1111	dfff	ffff		1, 2
		BIT-ORIENTED FILE REGIST		RATION	IS				
BCF	f. b	Bit Clear f	1	01	00bb	bfff	ffff		2
BSF	f, b	Bit Set f	1	01	01bb	bfff	ffff		2
		BIT-ORIENTED SKIP O	PERATIO	NS					•
BTFSC	f, b	Bit Test f, Skip if Clear	1 (2)	01	10bb	bfff	ffff		1, 2
BTFSS	f, b	Bit Test f, Skip if Set	1 (2)	01	11bb	bfff	ffff		1, 2
		LITERAL OPERA	TIONS						
ADDLW	k	Add literal and W	1	11	1110	kkkk	kkkk	C, DC, Z	
ANDLW	k	AND literal with W	1	11	1001	kkkk	kkkk	Z	
IORLW	k	Inclusive OR literal with W	1	11	1000	kkkk	kkkk	Z	
MOVLB	k	Move literal to BSR	1	00	0000	001k	kkkk		
MOVLP	k	Move literal to PCLATH	1	11	0001	1kkk	kkkk		
MOVLW	k	Move literal to W	1	11	0000	kkkk	kkkk		
SUBLW	k	Subtract W from literal	1	11	1100	kkkk	kkkk	C, DC, Z	
XORLW	k	Exclusive OR literal with W	1	11	1010	kkkk	kkkk	Z	
L		1		1					1

TABLE 35-3: PIC16(L)F1764/5/8/9 INSTRUCTION SET

Note 1: If the Program Counter (PC) is modified, or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

2: If this instruction addresses an INDFn register and the MSb of the corresponding FSRn is set, this instruction will require one additional instruction cycle.

3: See Table 35-3 for the MOVIW and MOVWI instruction descriptions.

TABLE 36-17: OPERATIONAL AMPLIFIER (OPA)

Operating Conditions (unless otherwise stated) VDD = 3.0V, TA = +25°C, OPAxSP = 1 (High GBWP mode)									
Param No.	Symbol	Parameters	Min.	Тур.	Max.	Units	Conditions		
OPA01*	GBWP	Gain Bandwidth Product	_	3	_	MHz			
OPA02*	TON	Turn-on Time	_	10	_	μS			
OPA03*	Рм	Phase Margin	_	40	_	degrees			
OPA04*	SR	Slew Rate		3		V/μs			
OPA05	Off	Offset		±3	±9	mV			
OPA06	CMRR	Common-Mode Rejection Ratio	52	70		dB			
OPA07*	AOL	Open-Loop Gain		90		dB			
OPA08	VICM	Input Common-Mode Voltage	0	—	Vdd	V	VDD > 2.5V		
OPA09*	PSRR	Power Supply Rejection Ratio	—	80	—	dB			
OPA10*	HZ	High-Impedance On/Off Time	_	50	_	ns			
OPA11*	ISC	Short Circuit Current	_	50	_	mA			

* These parameters are characterized but not tested.

TABLE 36-18: PROGRAMMABLE RAMP GENERATOR (PRG) SPECIFICATIONS

VDD = 3.0V, TA = $+25^{\circ}C$ (unless otherwise stated)

Param No.	Sym.	Characteristics	Min.	Тур.	Max.	Units	Comments
PRG01	RRR	Rising Ramp Rate	_	1	_	V/µs	PRGxCON2 = 10h
PRG02	FRR	Falling Ramp Rate	_	1	—	V/μs	PRGxCON2 = 10h

* These parameters are characterized but not tested.

TABLE 36-19: COMPARATOR SPECIFICATIONS

Operating Conditions (unless otherwise stated)

VDD = 3.0V, TA = +25°C

See Section 37.0 "DC and AC Characteristics Graphs and Charts" for operating characterization.

Param No.	Sym.	Characteristics	Min.	Тур.	Max.	Units	Comments
CM01	VIOFF	Input Offset Voltage	_	±2.5	±5	mV	VICM = VDD/2
CM02	VICM	Input Common-Mode Voltage	0	—	Vdd	V	
CM03	CMRR	Common-Mode Rejection Ratio	35	50	—	dB	
CM04A	TRESP ⁽¹⁾	Response Time Rising Edge	—	60	125	ns	Normal Power mode
CM04B		Response Time Falling Edge	—	60	110	ns	Normal Power mode
CM04C		Response Time Rising Edge	—	85	—	ns	Low-Power mode
CM04D		Response Time Falling Edge	—	85	—	ns	Low-Power mode
CM05*	Тмс2оv	Comparator Mode Change to Output Valid*	_	_	10	μS	
CM06	CHYSTER	Comparator Hysteresis	20	45	75	mV	CxHYS = 1

* These parameters are characterized but not tested.

Note 1: Response time measured with one comparator input at VDD/2, while the other input transitions from Vss to VDD.

TABLE 36-25: SPI MODE REQUIREMENTS

Standard Operating Conditions (unless otherwise stated)

Standard Operating Conditions (unless otherwise stated)								
Param No.	Symbol	Characteristic	Min.	Тур†	Max.	Units	Conditions	
SP70*	TssL2scH, TssL2scL	$\overline{SS}\downarrow$ to SCK \downarrow or SCK \uparrow Input	Тсү		—	ns		
SP71*	TscH	SCK Input High Time (Slave mode)	Tcy + 20	_	—	ns		
SP72*	TscL	SCK Input Low Time (Slave mode)	Tcy + 20	_	—	ns		
SP73*	TDIV2scH, TDIV2scL	Setup Time of SDI Data Input to SCK Edge	100	—	-	ns		
SP74*	TscH2DIL, TscL2DIL	Hold Time of SDI Data Input to SCK Edge	100	—	-	ns		
SP75*	TDOR	SDO Data Output Rise Time	—	10	25	ns	$3.0V \le V\text{DD} \le 5.5V$	
			—	25	50	ns	$1.8V \leq V\text{DD} \leq 5.5V$	
SP76*	TDOF	SDO Data Output Fall Time	—	10	25	ns		
SP77*	TssH2doZ	SS↑ to SDO Output High-Impedance	10	_	50	ns		
SP78*	TscR	SCK Output Rise Time (Master mode)	—	10	25	ns	$3.0V \le V\text{DD} \le 5.5V$	
			—	25	50	ns	$1.8V \leq V\text{DD} \leq 5.5V$	
SP79*	TSCF	SCK Output Fall Time (Master mode)		10	25	ns		
SP80*	TscH2doV, TscL2doV	SDO Data Output Valid after SCK Edge	—	—	50	ns	$3.0V \le V\text{DD} \le 5.5V$	
			—	_	145	ns	$1.8V \leq V\text{DD} \leq 5.5V$	
SP81*	TDOV2scH, TDOV2scL	SDO Data Output Setup to SCK Edge	1 Тсү	_	_	ns		
SP82*	TssL2doV	SDO Data Output Valid after SS↓ Edge	_	—	50	ns		
SP83*	TscH2ssH, TscL2ssH	SS ↑ after SCK Edge	1.5 Tcy + 40	—	—	ns		

* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, +25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

PIC16(L)F1764/5/8/9

Note: Unless otherwise noted, VIN = 5V, Fosc = 300 kHz, CIN = 0.1 μ F, TA = 25°C.

FIGURE 37-85: Temp. Indicator Initial Offset, High Range, Temp. = 20°C, PIC16F1764/5/8/9 Only..

FIGURE 37-86: Temp. Indicator Initial Offset, Low Range, Temp. = 20°C, PIC16F1764/5/8/9 Only.

FIGURE 37-87: Temp. Indicator Initial Offset, Low Range, Temp. = 20°C, PIC16LF1764/5/8/9 Only.

FIGURE 37-88: Temp. Indicator Slope Normalized to 20°C, High Range, VDD = 5.5V, PIC16F1764/5/8/9 Only.

FIGURE 37-89: Temp. Indicator Slope Normalized to 20°C, High Range, VDD = 3.6V, PIC16F1764/5/8/9 Only.

FIGURE 37-90: Temp. Indicator Slope Normalized to 20°C, Low Range, VDD = 3.0V, PIC16F1764/5/8/9 Only.

PIC16(L)F1764/5/8/9

Note: Unless otherwise noted, VIN = 5V, Fosc = 300 kHz, CIN = 0.1 μ F, TA = 25°C.

FIGURE 37-103: Typical Open Loop Gain, Phase Vs. Frequency, PIC16F1764/5/8/9 Only.

FIGURE 37-104: Comparator Hysteresis, NP Mode (CxSP = 1), VDD = 3.0V, Typical Measured Values.

FIGURE 37-105: Comparator Offset, NP Mode (CxSP = 1), VDD = 3.0V, Typical Measured Values at 25°C.

FIGURE 37-106: Comparator Offset, NP Mode (CxSP = 1), VDD = 3.0V, Typical Measured Values From -40°C to 125°C.

FIGURE 37-107: Comparator Hysteresis, NP Mode (CxSP = 1), VDD = 5.5V, Typical Measured Values, PIC16F1764/5/8/9 Only.

FIGURE 37-108: Comparator Offset, NP Mode (CxSP = 1), VDD = 5.0V, Typical Measured Values at 25°C, PIC16F1764/5/8/9 Only.