

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	18
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	128 x 8
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 12x10b; D/A 2x5b, 2x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SSOP (0.209", 5.30mm Width)
Supplier Device Package	20-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f1768-i-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.1 Automatic Interrupt Context Saving

During interrupts, certain registers are automatically saved in shadow registers and restored when returning from the interrupt. This saves stack space and user code. See **Section 7.5 "Automatic Context Saving"** for more information.

2.2 16-Level Stack with Overflow and Underflow

These devices have a hardware stack memory 15 bits wide and 16 words deep. A Stack Overflow or Underflow will set the appropriate bit (STKOVF or STKUNF) in the PCON register, and if enabled, will cause a Software Reset. See **Section 3.5** "**Stack**" for more details.

2.3 File Select Registers

There are two 16-bit File Select Registers (FSRs). FSRs can access all file registers and program memory, which allows one Data Pointer for all memory. When an FSRn points to program memory, there is one additional instruction cycle in instructions using INDFn to allow the data to be fetched. General purpose memory can now also be addressed linearly, providing the ability to access contiguous data larger than 80 bytes. There are also new instructions to support the FSRs. See **Section 3.6 "Indirect Addressing"** for more details.

2.4 Instruction Set

There are 49 instructions for the enhanced mid-range CPU to support the features of the CPU. See **Section 35.0 "Instruction Set Summary**" for more details.

TABLE 3-16: SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)

Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on All Other Resets
Bank 8											
40Ch 40Dh	_	Unimpleme	nted							_	_
40Eh	HIDRVC	_	_	HIDC	<5:4>	_	_	_	_	00	00
40Fh 412h	_	Unimpleme	nted				I	1		_	_
413h	T4TMR	Holding Reg	gister for the 8	-Bit TMR4 Regist	er					0000 0000	0000 0000
413h	T4PR	TMR4 Peric	od Register			-				1111 1111	1111 1111
415h	T4CON	ON		CKPS<2:0>			OUTP	°S<3:0>		0000 0000	0000 0000
416h	T4HLT	PSYNC	CKPOL	CKSYNC			MODE<4:0>			0000 0000	0000 0000
417h	T4CLKCON	—	—	_	—		CS	<3:0>		0000	0000
418h	T4RST	—	—	—	_		RSEI	_<3:0>		0000	0000
419h	—	Unimplemented								—	—
41Ah	T6TMR	Holding Register for the 8-Bit TMR4 Register								0000 0000	0000 0000
41Bh	T6PR	TMR4 Period Register							1111 1111	1111 1111	
41Ch	T6CON	ON		CKPS<2:0>			OUTP	'S<3:0>		0000 0000	0000 0000
41Dh	T6HLT	PSYNC	CKPOL	CKSYNC			MODE<4:0>			0000 0000	0000 0000
41Eh	T6CLKCON	—	—	_	—		CS	<3:0>		0000	0000
41Fh	T6RST	—	—	—	_		RSEI	_<3:0>		0000	0000
Banl	k 9										
48Ch to 492h	_	Unimpleme	nted							_	_
493h	TMR3L	Holding Reg	gister for the L	east Significant B	yte of the 16-Bi	t TMR1 Register	r			XXXX XXXX	uuuu uuuu
494h	TMR3H	Holding Reg	gister for the N	lost Significant By	/te of the 16-Bit	TMR1 Register				XXXX XXXX	uuuu uuuu
495h	T3CON	CS	<1:0>	CKPS	<1:0>	OSCEN	SYNC	_	ON	0000 00-0	uuuu uu-u
496h	T3GCON	GE	GPOL	GTM	GSPM	GGO/DONE	GVAL	GSS	S<1:0>	0000 0x00	uuuu uxuu
497h to 499h	_	Unimplemented							_	_	
49Ah	TMR5L	Holding Reg	gister for the L	east Significant B	yte of the 16-Bi	t TMR1 Register	r			XXXX XXXX	uuuu uuuu
49Bh	TMR5H	Holding Reg	gister for the N	lost Significant By	/te of the 16-Bit	TMR1 Register				XXXX XXXX	uuuu uuuu
49Ch	T5CON	CS	<1:0>	CKPS	<1:0>	OSCEN	SYNC	_	ON	0000 00-0	uuuu uu-u
49Dh	T5GCON	GE	GPOL	GTM	GSPM	GGO/DONE	GVAL	GSS	6<1:0>	00x0 0x00	uuuu uxuu
49Eh to 49Fh	_	Unimpleme	nted							_	_

Legend: x = unknown; u = unchanged; q = value depends on condition; - = unimplemented, read as '0'; x = reserved. Shaded locations are unimplemented, read as '0'.

Note 1: Unimplemented, read as '1'.

2: PIC16(L)F1768/9 only.

3: PIC16(L)F1764/5 only.

4: Unimplemented on PIC16LF1764/5/8/9.

3.5.2 OVERFLOW/UNDERFLOW RESET

If the STVREN bit in Configuration Words is programmed to '1', the device will be reset if the stack is PUSHed beyond the sixteenth level or POPed beyond the first level, setting the appropriate bits (STKOVF or STKUNF, respectively) in the PCON register.

3.6 Indirect Addressing

The INDFn registers are not physical registers. Any instruction that accesses an INDFn register actually accesses the register at the address specified by the File Select Registers (FSRs). If the FSRn address specifies one of the two INDFn registers, the read will return '0' and the write will not occur (though Status bits may be affected). The FSRn register value is created by the pair, FSRnH and FSRnL.

The FSRn registers form a 16-bit address that allows an addressing space with 65536 locations. These locations are divided into three memory regions:

- Traditional Data Memory
- Linear Data Memory
- Program Flash Memory

6.2.1 BOR IS ALWAYS ON

When the BOREN<1:0> bits of the Configuration Words are programmed to '11', the BOR is always on. The device start-up will be delayed until the BOR is ready and VDD is higher than the BOR threshold.

BOR protection is active during Sleep. The BOR does not delay wake-up from Sleep.

6.2.2 BOR IS OFF IN SLEEP

When the BORENx bits of the Configuration Words are programmed to '10', the BOR is on, except in Sleep. The device start-up will be delayed until the BOR is ready and VDD is higher than the BOR threshold.

BOR protection is not active during Sleep. The device wake-up will be delayed until the BOR is ready.

6.2.3 BOR CONTROLLED BY SOFTWARE

When the BORENx bits of the Configuration Words are programmed to '01', the BOR is controlled by the SBOREN bit of the BORCON register. The device start-up is not delayed by the BOR ready condition or the VDD level.

BOR protection begins as soon as the BOR circuit is ready. The status of the BOR circuit is reflected in the BORRDY bit of the BORCON register.

BOR protection is unchanged by Sleep.

FIGURE 6-2: BROWN-OUT SITUATIONS

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
PWM6IF ⁽¹⁾	PWM5IF	COG1IF	ZCDIF	COG2IF ⁽¹⁾	CLC3IF	CLC2IF	CLC1IF
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable	bit				
u = Bit is uncl	hanged	x = Bit is unkr	nown	U = Unimplen	nented bit, read	as '0'	
'1' = Bit is set	:	'0' = Bit is clea	ared	-n/n = Value a	at POR and BOI	R/Value at all o	ther Resets
			(4)				
bit 7	PWM6IF: PW	M6 Interrupt F	lag bit ⁽¹⁾				
	1 = Interrupt i 0 = Interrupt i	s pending s not pending					
bit 6	PWM5IF: PW	M5 Interrupt F	lag bit				
	1 = Interrupt i	s pending	0				
	0 = Interrupt i	s not pending					
bit 5	COG1IF: CO	G1 Auto-Shutd	own Interrupt	Flag bit			
	1 = Interrupt i	s pending					
hit 4		S not penuing Cross Detectio	n Interrunt Els	a hit			
Dit 4	1 = Interrupt i	s pending	in interrupt i id	ag bit			
	0 = Interrupt i	s not pending					
bit 3	COG2IF: CO	G2 Auto-Shutd	own Interrupt	Flag bit ⁽¹⁾			
	1 = Interrupt i	s pending					
	0 = Interrupt i	s not pending					
bit 2	CLC3IF: CLC	3 Interrupt Flag	g bit				
	0 = Interrupt i	s not pendina					
bit 1	CLC2IF: CLC	2 Interrupt Flag	a bit				
	1 = Interrupt i	s pending	5				
	0 = Interrupt i	s not pending					
bit 0	CLC1IF: CLC	1 Interrupt Flag	g bit				
	1 = Interrupt i	s pending					
	0 – mierrupi i	s not penuing					
Note 1: Plo	C16(L)F1768/9 o	only.					

REGISTER 7-7: PIR3: PERIPHERAL INTERRUPT REQUEST REGISTER 3

Note: Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the Global Enable bit, GIE, of the INTCON register. User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt.

11.4				DAA//110/(2)			
(1)	R/W-0/0	R/W-0/0	R/W/HC-0/0	R/W/HC-x/q-	R/W-0/0	R/S/HC-0/0	R/S/HC-0/0
_(')	CFGS	LWLO	FREE	WRERR	WREN	WR	RD
bit 7							bit 0
Legend:							
R = Reada	able bit	W = Writable	bit	U = Unimpleme	ented bit, read a	s '0'	
S = Settab	ole Only bit	x = Bit is unk	nown	-n/n = Value at	POR and BOR/	Value at all oth	er Resets
'1' = Bit is	set	'0' = Bit is cle	ared	HC = Hardware	e Clearable bit		
bit 7	Unimpleme	nted: Read as	'1'				
bit 6	CFGS: Conf	iguration Selec	t bit				
	1 = Accesse	es Configuration	n, User ID and	Device ID regist	ers		
	0 = Accesse	es Flash progra	m memory				
bit 5	LWLO: Load	I Write Latches	Only bit ⁽³⁾				
	1 = Only the	addressed pro	gram memory	write latch is loa	ided/updated or	the next WR	command
	0 = The add	Iressed prograr	n memory write	e latch is loaded	/updated and a	write of all pro	gram memory
L:1 4					J		
DIT 4	FREE: Progr	ram Flash Eras	e Enable bit				anlation)
	1 = Perform	s an erase ope s a write opera	tion on the next	t WR command	id (nardware cie	eared upon con	npietion)
hit 3	WRERR: Pr	ogram/Erase Ei	from Elag bit ⁽²⁾				
bit 5	1 = Conditio	n indicates an	improper proc	aram or erase s	equence attem	nt or terminat	tion (bit is set
	automat	ically on any se	et attempt (write	es '1') of the WR	bit)		
	0 = The prog	gram or erase o	operation comp	leted normally			
bit 2	WREN: Prog	gram/Erase Ena	able bit				
	1 = Allows p	orogram/erase o	cycles				
	0 = Inhibits	programming/e	rasing of progr	am Flash			
bit 1	WR: Write C	ontrol bit					
	1 = Initiates	a Flash progra	m/erase opera	tion			
	The WR	hit can only be	ned and the bit	IS cleared by na ed) in software	ardware once op	peration is com	piete.
	0 = Program	n/erase operation	on to the Flash	is complete and	inactive		
bit 0	RD: Read Co	ontrol bit					
	1 = Initiates	a program Flas	sh read				
	Read tak	kes one cycle. R	D is cleared in	hardware. The R	D bit can only be	e set (not cleare	ed) in software.
	0 = Does not	ot initiate a prog	ram Flash read	b			
Note 1:	Unimplemented	bit. read as '1'.					
2:	The WRERR bit	is automaticall	y set by hardw	are when a prog	ram memory wr	ite or erase op	eration is
	started (WR = 1).	-	-		-	

REGISTER 10-5: PMCON1: PROGRAM MEMORY CONTROL 1 REGISTER

3: The LWLO bit is ignored during a program memory erase operation (FREE = 1).

REGISTER 13-3: IOCAF: INTERRUPT-ON-CHANGE PORTA FLAG REGISTER

U-0	U-0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0
—	_			IOCA	F<5:0>		
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	HS = Hardware Settable bit

bit 7-6	Unimplemented: Read as '0'
bit 5-0	IOCAF<5:0>: Interrupt-On-Change PORTA Flag bits
	1 = An enabled change was detected on the associated nin

L = An enabled change was detected on the associated pin Set when IOCAPx = 1 and a rising edge was detected on RAx, or when IOCANx = 1 and a falling edge was detected on RAx.

0 = No change was detected or the user cleared the detected change

REGISTER 13-4: IOCBP: INTERRUPT-ON-CHANGE PORTB POSITIVE EDGE REGISTER⁽¹⁾

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	U-0	U-0	U-0	U-0
	IOCBP	<7:4>		—	—	—	—
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	
u = Bit is unchanged	x = Bit is unknown	U = Unimplemented bit, read as '0'
'1' = Bit is set	'0' = Bit is cleared	-n/n = Value at POR and BOR/Value at all other Resets

bit 7-4 **IOCBP<7:4>:** Interrupt-On-Change PORTB Positive Edge Enable bits

- 1 = Interrupt-On-Change is enabled on the pin for a positive going edge; IOCBFx bit and IOCIF flag will be set upon edge detection
- 0 = Interrupt-On-Change is disabled for the associated pin

bit 3-0 Unimplemented: Read as '0'

Note 1: PIC16(L)F1768/9 only.

TABLE 14-1: PERIPHERALS REQUIRING THE FIXED VOLTAGE REFERENCE (FVR)

Peripheral	Conditions	Description
HFINTOSC	FOSC<2:0> = 100 and IRCF<3:0> ≠ 000x	INTOSC is active and device is not in Sleep
BOR	BOREN<1:0> = 11	BOR is always enabled
	BOREN<1:0> = 10 and BORFS = 1	BOR is disabled in Sleep mode, BOR fast start is enabled
	BOREN<1:0> = 01 and BORFS = 1	BOR under software control, BOR fast start is enabled
LDO	All PIC16F1764/5/8/9 devices when VREGPM = 1 and not in Sleep	The device runs off of the ULP regulator when in Sleep mode

21.0 TIMER0 MODULE

The Timer0 module is an 8-bit timer/counter with the following features:

- 8-bit timer/counter register (TMR0)
- 8-bit prescaler (independent of Watchdog Timer)
- Programmable internal or external clock source
- · Programmable external clock edge selection
- · Interrupt-on-overflow
- TMR0 can be used to gate Timer1

Figure 21-1 is a block diagram of the Timer0 module.

21.1 Timer0 Operation

The Timer0 module can be used as either an 8-bit timer or an 8-bit counter.

21.1.1 8-BIT TIMER MODE

The Timer0 module will increment every instruction cycle if used without a prescaler. 8-Bit Timer mode is selected by clearing the TMR0CS bit of the OPTION_REG register.

When TMR0 is written, the increment is inhibited for two instruction cycles immediately following the write.

Note: The value written to the TMR0 register can be adjusted, in order to account for the two instruction cycle delay when TMR0 is written.

FIGURE 21-1: BLOCK DIAGRAM OF TIMER0

21.1.2 8-BIT COUNTER MODE

In 8-Bit Counter mode, the Timer0 module will increment on every rising or falling edge of the T0CKI pin.

8-Bit Counter mode using the T0CKI pin is selected by setting the TMR0CS bit in the OPTION_REG register to '1'.

The rising or falling transition of the incrementing edge for either input source is determined by the TMR0SE bit in the OPTION_REG register.

REGISTER 26-11: PWMxPRH: PWMx PERIOD COUNT HIGH REGISTER

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
			PR<	15:8>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit				
u = Bit is unch	anged	x = Bit is unkn	iown	U = Unimpler	nented bit, read	1 as '0'	
'1' = Bit is set '0' = Bit is cleared -n/n = Value at POR and BOR/Value at all other				other Resets			

bit 7-0 **PR<15:8>**: PWMx Period High bits Upper eight bits of PWMx period count.

REGISTER 26-12: PWMxPRL: PWMx PERIOD COUNT LOW REGISTER

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
			PR<	7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable I	bit				
u = Bit is unch	anged	x = Bit is unkn	iown	U = Unimpler	nented bit, read	d as '0'	
'1' = Bit is set		'0' = Bit is clea	ared	-n/n = Value a	at POR and BC	R/Value at all o	other Resets

bit 7-0 **PR<7:0>**: PWMx Period Low bits Lower eight bits of PWMx period count.

FIGURE 27-15: AUTO-SHUTDOWN WAVEFORM - CCP1 AS RISING AND FALLING EVENT INPUT SOURCE

PIC16(L)F1764/5/8/9

© 2014-2017 Microchip Technology Inc.

DS40001775C-page 395

© 2014-2017 Microchip Technology Inc.

DS40001775C-page 403

32.6.13.2 Bus Collision During a Repeated Start Condition

During a Repeated Start condition, a bus collision occurs if:

- a) A low level is sampled on SDA when SCL goes from low level to high level (Case 1).
- b) SCL goes low before SDA is asserted low, indicating that another master is attempting to transmit a data '1' (Case 2).

When the user releases SDA and the pin is allowed to float high, the BRG is loaded with SSPxADD and counts down to zero. The SCL pin is then deasserted and when sampled high, the SDA pin is sampled. If SDA is low, a bus collision has occurred (i.e., another master is attempting to transmit a data '0', Figure 32-36). If SDA is sampled high, the BRG is reloaded and begins counting. If SDA goes from high-to-low before the BRG times out, no bus collision occurs because no two masters can assert SDA at exactly the same time.

If SCL goes from high-to-low before the BRG times out and SDA has not already been asserted, a bus collision occurs. In this case, another master is attempting to transmit a data '1' during the Repeated Start condition, see Figure 32-37.

If, at the end of the BRG time-out, both SCL and SDA are still high, the SDA pin is driven low and the BRG is reloaded and begins counting. At the end of the count, regardless of the status of the SCL pin, the SCL pin is driven low and the Repeated Start condition is complete.

FIGURE 32-36: BUS COLLISION DURING A REPEATED START CONDITION (CASE 1)

FIGURE 32-37: BUS COLLISION DURING REPEATED START CONDITION (CASE 2)

MOVIW	Move INDFn to W
Syntax:	[<i>label</i>] MOVIW ++FSRn [<i>label</i>] MOVIWFSRn [<i>label</i>] MOVIW FSRn++ [<i>label</i>] MOVIW FSRn [<i>label</i>] MOVIW k[FSRn]
Operands:	n ∈ [0,1] mm ∈ [00,01, 10, 11] -32 ≤ k ≤ 31
Operation:	$\begin{split} &\text{INDFn} \rightarrow \text{W} \\ &\text{Effective address is determined by} \\ &\text{FSRn} + 1 \text{ (preincrement)} \\ &\text{FSRn} - 1 \text{ (predecrement)} \\ &\text{FSRn} + \text{k} \text{ (relative offset)} \\ &\text{After the Move, the FSRn value will be} \\ &\text{either:} \\ &\text{FSRn} + 1 \text{ (all increments)} \\ &\text{FSRn} - 1 \text{ (all decrements)} \\ &\text{Unchanged} \end{split}$
Status Affected:	Z

```
Status Affected:
```

Mode	Syntax	mm
Preincrement	++FSRn	00
Predecrement	FSRn	01
Postincrement	FSRn++	10
Postdecrement	FSRn	11

Description:

This instruction is used to move data between W and one of the indirect registers (INDFn). Before/after this move, the pointer (FSRn) is updated by pre/post incrementing/decrementing it.

Note: The INDFn registers are not physical registers. Any instruction that accesses an INDFn register actually accesses the register at the address specified by the FSRn.

FSRn is limited to the range 0000h-FFFFh. Incrementing/decrementing it beyond these bounds will cause it to wrap around.

MOVLB Move literal to BSR

Syntax:	[<i>label</i>] MOVLB k	
Operands:	$0 \leq k \leq 31$	
Operation:	$k \rightarrow BSR$	
Status Affected:	None	
Description:	The 5-bit literal 'k' is loaded into the Bank Select Register (BSR).	

MOVLP	Move literal to PCLATH			
Syntax:	[<i>label</i>] MOVLP k			
Operands:	$0 \leq k \leq 127$			
Operation:	$k \rightarrow PCLATH$			
Status Affected:	None			
Description:	The 7-bit literal 'k' is loaded into the PCLATH register.			
MOVLW	Move literal to W			
Syntax:	[<i>label</i>] MOVLW k			
Operands:	$0 \le k \le 255$			
Operation:	$k \rightarrow (W)$			
Status Affected:	None			
Description:	The 8-bit literal 'k' is loaded into W reg- ister. The "don't cares" will assemble as '0's.			
Words:	1			
Cycles:	1			
Example:	MOVLW 0x5A			
	After Instruction W = 0x5A			

MOVWF	Move W to f
Syntax:	[<i>label</i>] MOVWF f
Operands:	$0 \leq f \leq 127$
Operation:	$(W) \rightarrow (f)$
Status Affected:	None
Description:	Move data from W register to register 'f'.
Words:	1
Cycles:	1
Example:	MOVWF OPTION_REG
	Before Instruction OPTION_REG = 0xFF W = 0x4F After Instruction
	OPTION_REG = 0x4F
	$W = 0 \times 4F$

36.0 ELECTRICAL SPECIFICATIONS

36.1 Absolute Maximum Ratings^(†)

Ambient temperature under bias	40°C to +125°C
Storage temperature	65°C to +150°C
Voltage on pins with respect to Vss	
on VDD pin	
PIC16F1764/5/8/9	0.3V to +6.5V
PIC16LF1764/5/8/9	0.3V to +4.0V
on MCLR pin	0.3V to +9.0V
on all other pins	0.3V to (VDD + 0.3V)
Maximum current	
on Vss pin ⁽¹⁾	
$-40^{\circ}C \leq TA \leq +85^{\circ}C$	250 mA
$+85^{\circ}C \leq TA \leq +125^{\circ}C \$	
on VDD pin ⁽¹⁾	
$-40^{\circ}C \leq TA \leq +85^{\circ}C$	250 mA
$+85^{\circ}C \leq TA \leq +125^{\circ}C \$	
Sunk by any standard I/O pin	50 mA
Sourced by any standard I/O pin	50 mA
Sunk by any high-current I/O pin	100 mA
Sourced by any high-current I/O pin	100 mA
Sourced by any op amp output pin	100 mA
Clamp current, IK (VPIN < 0 or VPIN > VDD)	±20 mA
Total power dissipation ⁽²⁾	
Note 1: Maximum current rating requires even load distribution across I/O pins	Maximum current rating may be

Note 1: Maximum current rating requires even load distribution across I/O pins. Maximum current rating may be limited by the device package power dissipation characterizations, see Table 36-6: Thermal Characteristics to calculate device specifications.

2: Power dissipation is calculated as follows: PDIS = VDD x {IDD $-\sum$ IOH} + \sum {(VDD - VOH) x IOH} + \sum (VOI x IOL).

† NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure above maximum rating conditions for extended periods may affect device reliability.

Note: Unless otherwise noted, VIN = 5V, Fosc = 300 kHz, CIN = 0.1 μ F, TA = 25°C.

FIGURE 37-43: IPD, Comparator, NP Mode (CxSP = 1), PIC16LF1764/5/8/9 Only.

FIGURE 37-44: IPD, Comparator, NP Mode (CxSP = 1), PIC16F1764/5/8/9 Only.

FIGURE 37-45: Standard IO Voн vs. Ioн Over Temperature, VDD = 5.0V, PIC16F1764/5/8/9 Only.

FIGURE 37-46: Standard IO VoL vs. IoL Over Temperature, VDD = 5.0V, PIC16F1764/5/8/9 Only.

FIGURE 37-47: Standard IO VOH vs. IOH Over Temperature, VDD = 3.0V.

FIGURE 37-48: Standard IO VOL vs. IOL Over Temperature, VDD = 3.0V.

Note: Unless otherwise noted, VIN = 5V, Fosc = 300 kHz, CIN = 0.1 μ F, TA = 25°C.

FIGURE 37-69: PWRT Period, PIC16F1764/5/8/9 Only.

FIGURE 37-70: PWRT Period, PIC16LF1764/5/8/9 Only.

FIGURE 37-71: POR Release Voltage.

FIGURE 37-72: POR Rearm Voltage, NP Mode (VREGPM = 0), PIC16F1764/5/8/9 Only.

20-Lead Plastic Quad Flat, No Lead Package (ML) - 4x4 mm Body [QFN] With 0.40 mm Contact Length

	MILLIMETERS			
Dimension Limits		MIN	NOM	MAX
Contact Pitch	E	0.50 BSC		
Optional Center Pad Width	W2			2.50
Optional Center Pad Length	T2			2.50
Contact Pad Spacing	C1		3.93	
Contact Pad Spacing	C2		3.93	
Contact Pad Width	X1			0.30
Contact Pad Length	Y1			0.73
Distance Between Pads	G	0.20		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2126A