

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Betails	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	18
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	128 x 8
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 12x10b; D/A 2x5b, 2x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-VFQFN Exposed Pad
Supplier Device Package	20-QFN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f1768t-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Name	Function	Input Type	Output Type	Description
RA5/T1CKI/T2IN/CLCIN3/	RA5	TTL/ST	CMOS	General purpose I/O.
MD1MOD/SOSCI/OSC1/CLKIN	T1CKI ⁽¹⁾	TTL/ST		Timer1 clock input.
	T2IN ⁽¹⁾	TTL/ST	_	Timer2 clock input.
	CLCIN3 ⁽¹⁾	LCIN3 ⁽¹⁾ TTL/ST — CLC Input 3.		CLC Input 3.
	MD1MOD ⁽¹⁾	ID1MOD ⁽¹⁾ TTL/ST — Data Signal Modulator modulation input.		
	SOSCI	_	XTAL	Secondary Oscillator connection.
	OSC1	XTAL		Crystal/Resonator (LP, XT, HS modes).
	CLKIN	ST		External Clock input (EC mode).
RC0/AN4/OPA1IN+/C2IN0+/	RC0	TTL/ST	CMOS	General purpose I/O.
T5CKI/SCL/SCK	AN4	AN		ADC Channel 4 input.
	OPA1IN+	AN	_	Operational Amplifier 1 non-inverting input.
	C2IN0+	AN	_	Comparator 2 positive input.
	T5CKI ⁽¹⁾	TTL/ST	_	Timer5 clock input.
	SCL ^(1,3)	I ² C	—	I ² C clock output.
	SCK ⁽¹⁾	TTL/ST	—	SPI clock input.
RC1/AN5/OPA1IN-/C1IN1-/	RC1	TTL/ST	CMOS	General purpose I/O.
C2IN1-/T4IN/CLCIN2/SDI/SDA	AN5	AN	XTAL	ADC Channel 5 input.
	OPA1IN-	AN	_	Operational Amplifier 1 inverting input.
	C1IN1-	AN	_	Comparator 1 negative input.
	C2IN1-	AN	_	Comparator 2 negative input.
	T4IN ⁽¹⁾	TTL/ST	_	Timer4 clock input.
	CLCIN2 ⁽¹⁾	TTL/ST	_	CLC Input 2.
	SDI ⁽¹⁾	TTL/ST	_	SPI data input.
	SDA ⁽¹⁾	l ² C	_	I ² C data output.
RC2/AN6/OPA1OUT/C1IN2-/	RC2	TTL/ST	CMOS	General purpose I/O.
C2IN2-/PRG1IN0	AN6	AN	_	ADC Channel 6 input.
	OPA10UT	_	AN	Operational Amplifier 1 output.
	C1IN2-	AN	_	Comparator 1 negative input.
	C2IN2-	AN	_	Comparator 2 negative input.
	PRG1IN0	AN	_	Ramp Generator 1 reference voltage input.
RC3/AN7/C1IN3-/C2IN3-/T5G/	RC3	TTL/ST	CMOS	General purpose I/O.
CLCIN0/SS	AN7	AN	_	ADC Channel 7 input.
	C1IN3-	AN	_	Comparator 1 negative input.
	C2IN3-	AN		Comparator 2 negative input.
	T5G ⁽¹⁾	TTL/ST		Timer5 gate input.
	CLCIN0 ⁽¹⁾	TTL/ST	_	CLC Input 0.
	<u>SS</u> ⁽¹⁾	TTL/ST		SPI Slave Select input.
Legend: AN = Analog input or o TTL = TTL compatible	utput CMOS	= CMOS		ble input or output OD = Open-Drain input with CMOS levels I^2C = Schmitt Trigger input with

TABLE 1-2. PIC16(L)F1764/5 PINOUT DESCRIPTION (CONTINUED)

HV = High Voltage XTAL = Crystal levels

Note 1: Default peripheral input. Alternate pins can be selected as the peripheral input with the PPS Input Selection registers.

2: All pin digital outputs default to PORT latch data. Alternate outputs can be selected as peripheral digital outputs with the PPS Output Selection registers.

3: These peripheral functions are bidirectional. The output pin selections must be the same as the input pin selections.

EXAMPLE 3-2: ACCESSING PROGRAM MEMORY VIA FSRn

constants	
DW DATAO	;First constant
DW DATA1	;Second constant
DW DATA2	
DW DATA3	
my_function	
; LOTS OF CODE	
MOVLW DATA_INDEX	
ADDLW LOW constants	
MOVWF FSR1L	
MOVLW HIGH constants	;MSb sets
	automatically
MOVWF FSR1H	
BTFSC STATUS, C	;carry from ADDLW?
INCF FSR1H, f	;yes
MOVIW 0[FSR1]	
;THE PROGRAM MEMORY IS	IN W

3.3 Data Memory Organization

The data memory is partitioned in 32 memory banks with 128 bytes in a bank. Each bank consists of (Figure 3-2):

- 12 core registers
- 20 Special Function Registers (SFRs)
- Up to 80 bytes of General Purpose RAM (GPR)
- · 16 bytes of common RAM

The active bank is selected by writing the bank number into the Bank Select Register (BSR). Unimplemented memory will read as '0'. All data memory can be accessed either directly (via instructions that use the file registers) or indirectly via the two File Select Registers (FSRs). See **Section 3.6** "Indirect Addressing" for more information.

Data memory uses a 12-bit address. The upper five bits of the address define the Bank address and the lower seven bits select the registers/RAM in that bank.

3.3.1 CORE REGISTERS

The core registers contain the registers that directly affect the basic operation. The core registers occupy the first 12 addresses of every data memory bank (addresses, x00h/x08h through x0Bh/x8Bh). These registers are listed below in Table 3-2. For detailed information, see Table 3-15.

Addresses	BANKx
x00h or x80h	INDF0
x01h or x81h	INDF1
x02h or x82h	PCL
x03h or x83h	STATUS
x04h or x84h	FSR0L
x05h or x85h	FSR0H
x06h or x86h	FSR1L
x07h or x87h	FSR1H
x08h or x88h	BSR
x09h or x89h	WREG
x0Ah or x8Ah	PCLATH
x0Bh or x8Bh	INTCON

3.3.1.1 STATUS Register

The STATUS register, shown in Register 3-1, contains:

- The arithmetic status of the ALU
- The Reset status

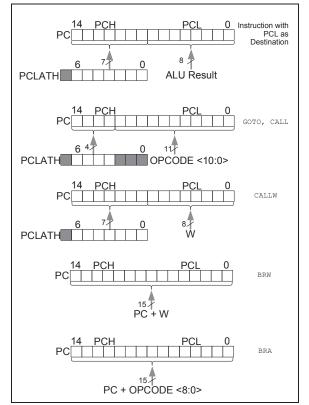
The STATUS register can be the destination for any instruction, like any other register. If the STATUS register is the destination for an instruction that affects the Z, DC or C bits, then the write to these three bits is disabled. These bits are set or cleared according to the device logic. Furthermore, the TO and PD bits are not writable. Therefore, the result of an instruction with the STATUS register as destination may be different than intended.

For example, CLRF STATUS will clear the upper three bits and set the Z bit. This leaves the STATUS register as '000u u1uu' (where u = unchanged).

It is recommended, therefore, that only BCF, BSF, SWAPF and MOVWF instructions are used to alter the STATUS register, because these instructions do not affect any Status bits. For other instructions not affecting any Status bits, refer to Section 35.0 "Instruction Set Summary".

Note: The C and DC bits operate as Borrow and Digit Borrow out bits, respectively, in subtraction.

TABLE 3-7: PIC16(L)F1764 MEMORY MAP (BANKS 8-23)


	BANK 8		BANK 9		BANK 10		BANK 11		BANK 12		BANK 13		BANK 14		BANK 15
400h	Core Registers (Table 3-2)	480h	Core Registers (Table 3-2)	500h	Core Registers (Table 3-2)	580h	Core Registers (Table 3-2)	600h	Core Registers (Table 3-2)	680h	Core Registers (Table 3-2)	700h	Core Registers (Table 3-2)	780h	Core Registers (Table 3-2)
40Bh	(10010 0 2)	48Bh	(10010 0 2)	50Bh	(10010 0 2)	58Bh	(10010 0 2)	60Bh	(10010 0 2)	68Bh	(10010 0 2)	70Bh	(10010 0 2)	78Bh	(10010 0 2)
40Ch	—	48Ch	—	50Ch	—	58Ch	_	60Ch	—	68Ch	—	70Ch	—	78Ch	_
40Dh	—	48Dh	—	50Dh	—	58Dh	—	60Dh	—	68Dh	COG1PHR	70Dh	COG2PHR	78Dh	—
40Eh	HIDRVC	48Eh	_	50Eh	_	58Eh	—	60Eh	—	68Eh	COG1PHF	70Eh	COG2PHF	78Eh	—
40Fh	—	48Fh		50Fh	OPA1NCHS	58Fh		60Fh	_	68Fh	COG1BLKR	70Fh	COG2BLKR	78Fh	
410h	—	490h	—	510h	OPA1PCHS	590h	DACLD	610h		690h	COG1BLKF	710h	COG2BLKF	790h	—
411h		491h		511h	OPA1CON	591h	DAC1CON0	611h		691h	COG1DBR	711h	COG2DBR	791h	—
412h		492h	—	512h	OPA10RS	592h	DAC1REFL	612h	_	692h	COG1DBF	712h	COG2DBF	792h	
413h	T4TMR	493h	TMR3L	513h		593h	DAC1REFH	613h		693h	COG1CON0	713h	COG2CON0	793h	-
414h	T4PR	494h	TMR3H	514h		594h		614h		694h	COG1CON1	714h	COG2CON1	794h	PRG1RTSS
415h	T4CON T4HLT	495h	T3CON T3GCON	515h		595h		615h		695h	COG1RIS0	715h 716h	COG2RIS0	795h 796h	PRG1FTSS PRG1INS
416h 417h	T4HL1 T4CLKCON	496h 497h		516h 517h	_	596h 597h	DAC3CON0	616h 617h	PWM3DCL	696h 697h	COG1RIS1 COG1RSIM0	716n 717h	COG2RIS1 COG2RSIM0	796n 797h	PRG1INS PRG1CON0
417h 418h	T4RST	4971 498h		517h		597n 598h	DAC3CON0 DAC3REF	618h	PWM3DCL PWM3DCH	698h	COG1RSIM0 COG1RSIM1	717h	COG2RSIM0 COG2RSIM1	797n 798h	PRG1CON0 PRG1CON1
419h		499h		519h		599h	DACSKLI	619h	PWM3CON	699h	COG1FIS0	719h	COG2FIS0	799h	PRG1CON2
4190 41Ah	 T6TMR	49Ah	TMR5L	51Ah		59Ah		61Ah		69Ah	COG1FIS1	71Ah	COG2FIS1	79Ah	
41An 41Bh	T6PR	49Bh	TMR5E	51Bh		59Bh		61Bh		69Bh	COG1FSIM0	71Bh	COG2FSIM0	79Bh	
41Ch	T6CON	49Ch	T5CON	51Ch		59Ch		61Ch		69Ch	COG1FSIM1	71Ch	COG2FSIM1	79Ch	
41Dh	T6HLT	49Dh	T5GCON	51Dh		59Dh		61Dh		69Dh	COG1ASD0	71Dh	COG2ASD0	79Dh	
41Eh	TECLKCON	49Eh	_	51Eh		59Eh		61Eh		69Eh	COG1ASD1	71Eh	COG2ASD1	79Eh	
41Fh	T6RST	49Fh		51Fh		59Fh		61Fh		69Fh	COG1STR	71Fh	COG2STR	79Fh	_
420h	101101	4A0h		520h		5A0h		620h		6A0h		720h	00010111	7A0h	
	Unimplemented Read as '0'		Unimplemented Read as '0'		Unimplemented Read as '0'		Unimplemented Read as '0'		Unimplemented Read as '0'		Unimplemented Read as '0'		Unimplemented Read as '0'		Unimplemented Read as '0'
46Fh		4EFh		56Fh		5EFh		66Fh		6EFh		76Fh		7EFh	
470h		4F0h		570h		5F0h		670h		6F0h		770h		7F0h	
	Accesses 70h-7Fh		Accesses 70h-7Fh		Accesses 70h-7Fh		Accesses 70h-7Fh		Accesses 70h-7Fh		Accesses 70h-7Fh		Accesses 70h-7Fh		Accesses 70h-7Fh
47Fh		4FFh		57Fh		5FFh		67Fh		6FFh		77Fh		7FFh	
											<u></u>	1	<u></u>		
	BANK 16		BANK 17		BANK 18		BANK 19		BANK 20		BANK 21		BANK 22		BANK 23
800h		880h		900h		980h		A00h		A80h		B00h		B80h	
	Core Registers		Core Registers		Core Registers		Core Registers		Core Registers		Core Registers		Core Registers		Core Registers
80Bh	(Table 3-2)	88Bh	(Table 3-2)	90Bh	(Table 3-2)	98Bh	(Table 3-2)	A0Bh	(Table 3-2)	A8Bh	(Table 3-2)	B0Bh	(Table 3-2)	B8Bh	(Table 3-2)
80Ch		88Ch		90Bn 90Ch		98Ch		A0Bh		A8Ch		BOCh		B8Ch	
60CN	Linimalamented	00011	Unimplemented	9000	Unimplemented	9001	Linimalonantad	AUCH	Linimalomented	AoCh	Linimalomented	BUCH	Linimalomented	BOCII	Unimplemented
	Unimplemented Read as '0'		Read as '0'		Unimplemented Read as '0'		Unimplemented Read as '0'		Unimplemented Read as '0'		Unimplemented Read as '0'		Unimplemented Read as '0'		Unimplemented Read as '0'
86Fh		8EFh		96Fh		9EFh	ricua do 0	A6Fh		AEFh		B6Fh		BEFh	
870h		8F0h		970h		9EFII 9F0h		A70h		AEFII AF0h		B70h		BF0h	
07.011	Accesses	51 011	Accesses	5701	Accesses	51 011	Accesses	, ., ., .,	Accesses	7 1 0/1	Accesses	5,01	Accesses	51 011	Accesses
	70h-7Fh		70h-7Fh		70h-7Fh		70h-7Fh		70h-7Fh		70h-7Fh		70h-7Fh		70h-7Fh
87Fh		8FFh		97Fh		9FFh		A7Fh		AFFh		B7Fh		BFFh	

Legend: 🔲 = Unimplemented data memory locations, read as '0'.

3.4 PCL and PCLATH

The Program Counter (PC) is 15 bits wide. The low byte comes from the PCL register, which is a readable and writable register. The high byte (PC<14:8>) is not directly readable or writable and comes from PCLATH. On any Reset, the PC is cleared. Figure 3-3 shows the five situations for the loading of the PC.

FIGURE 3-3: LOADING OF PC IN DIFFERENT SITUATIONS

3.4.1 MODIFYING PCL

Executing any instruction with the PCL register as the destination simultaneously causes the Program Counter PC<14:8> bits (PCH) to be replaced by the contents of the PCLATH register. This allows the entire contents of the Program Counter to be changed by writing the desired upper seven bits to the PCLATH register. When the lower eight bits are written to the PCL register, all 15 bits of the Program Counter will change to the values contained in the PCLATH register.

3.4.2 COMPUTED GOTO

A computed GOTO is accomplished by adding an offset to the Program Counter (ADDWF PCL). When performing a table read using a computed GOTO method, care should be exercised if the table location crosses a PCL memory boundary (each 256-byte block). Refer to Application Note AN556, *"Implementing a Table Read"* (DS00556).

3.4.3 COMPUTED FUNCTION CALLS

A computed function CALL allows programs to maintain tables of functions and provide another way to execute state machines or look-up tables. When performing a table read using a computed function CALL, care should be exercised if the table location crosses a PCL memory boundary (each 256-byte block).

If using the CALL instruction, the PCH<2:0> and PCL registers are loaded with the operand of the CALL instruction. PCH<6:3> is loaded with PCLATH<6:3>.

The CALLW instruction enables computed calls by combining PCLATH and W to form the destination address. A computed CALLW is accomplished by loading the W register with the desired address and executing CALLW. The PCL register is loaded with the value of W and PCH is loaded with PCLATH.

3.4.4 BRANCHING

The branching instructions add an offset to the PC. This allows relocatable code and code that crosses page boundaries. There are two forms of branching, BRW and BRA. The PC will have incremented to fetch the next instruction in both cases. When using either branching instruction, a PCL memory boundary may be crossed.

If using BRW, load the W register with the desired unsigned address and execute BRW. The entire PC will be loaded with the address PC + 1 + W.

If using BRA, the entire PC will be loaded with PC + 1 +, the signed value of the operand of the BRA instruction.

5.4 Two-Speed Clock Start-up Mode

Two-Speed Clock Start-up mode provides additional power savings by minimizing the latency between external oscillator start-up and code execution. In applications that make heavy use of the Sleep mode, Two-Speed Start-up will remove the external oscillator start-up time from the time spent awake and can reduce the overall power consumption of the device. This mode allows the application to wake-up from Sleep, perform a few instructions using the Internal Oscillator Block, INTOSC, as the clock source and go back to Sleep without waiting for the external oscillator to become stable.

Two-Speed Start-up provides benefits when the oscillator module is configured for LP, XT or HS modes. The Oscillator Start-up Timer (OST) is enabled for these modes and must count 1024 oscillations before the oscillator can be used as the system clock source.

If the oscillator module is configured for any mode other than LP, XT or HS mode, then Two-Speed Start-up is disabled. This is because the external clock oscillator does not require any stabilization time after POR or an exit from Sleep. If the OST count reaches 1024 before the device enters Sleep mode, the OSTS bit of the OSCSTAT register is set and program execution switches to the external oscillator. However, the system may never operate from the external oscillator if the time spent awake is very short.

Note:	Executing a SLEEP instruction will abort
	the oscillator start-up time and will cause
	the OSTS bit of the OSCSTAT register to
	remain clear.

5.4.1 TWO-SPEED START-UP MODE CONFIGURATION

Two-Speed Start-up mode is configured by the following settings:

- IESO (of the Configuration Words) = 1; Internal/External Switchover bit (Two-Speed Start-up mode enabled).
- SCS<1:0> (of the OSCCON register) = 00.
- FOSC<2:0> bits in the Configuration Words configured for LP, XT or HS mode.

Two-Speed Start-up mode is entered after:

- Power-on Reset (POR) and, if enabled, after Power-up Timer (PWRT) has expired, or
- · Wake-up from Sleep.

Switch From	Switch To	Frequency	Oscillator Delay
Sleep	LFINTOSC MFINTOSC HFINTOSC ⁽¹⁾	31 kHz 31.25 kHz-500 kHz 31.25 kHz-16 MHz	Oscillator Warm-up Delay (Twarm) ⁽²⁾
Sleep	EC, RC ⁽¹⁾	DC- 32 MHz	2 cycles
LFINTOSC	EC, RC ⁽¹⁾	DC-32 MHz	1 Cycle of Each
Sleep	Secondary Oscillator LP, XT, HS ⁽¹⁾	32 kHz-20 MHz	1024 Clock Cycles (OST)
Any Clock Source	MFINTOSC HFINTOSC ⁽¹⁾	31.25 kHz-500 kHz 31.25 kHz-16 MHz	2 μs (approx.)
Any Clock Source	LFINTOSC	31 kHz	1 Cycle of Each
Any Clock Source	Secondary Oscillator	32 kHz	1024 Clock Cycles (OST)
PLL Inactive	PLL Active	16-32 MHz	2 ms (approx.)

TABLE 5-1: OSCILLATOR SWITCHING DELAYS

Note 1: PLL is inactive.

2: See Table 36-8.

R-1/q	R-0/q	R-q/q	R-0/q	R-0/q	R-q/q	R-0/0	R-0/q	
SOSCR	PLLR	OSTS	HFIOFR	HFIOFL	MFIOFR	LFIOFR	HFIOFS	
bit 7							bit 0	
Legend:								
R = Readable	bit	W = Writable	bit	q = Condition	al			
u = Bit is unch	anged	x = Bit is unkr	nown		mented bit, read			
'1' = Bit is set		'0' = Bit is cle	ared	-n/n = Value	at POR and BO	R/Value at all o	other Resets	
hit 7	COCCD: Coo	andon (Oppillo	ar Doody bit					
bit 7	If T10SCEN	ondary Oscillat – 1 ·	tor Ready bit					
		$\underline{-}$ $\underline{-}$ ry oscillator is	readv					
		ry oscillator is						
	If T1OSCEN							
		ry clock source	e is always rea	dy				
bit 6	PLLR 4x PLL	2						
	1 = 4x PLL is 0 = 4x PLL is							
bit 5		ator Start-up Ti	mer Status bit					
				FOSC<2:0> b	oits of the Config	guration Words		
		from an interna				5		
bit 4	HFIOFR: Hig	h-Frequency Ir	nternal Oscillat	or Ready bit				
	1 = HFINTOS							
1.1.0		SC is not ready						
bit 3	•	n-Frequency In SC is at least 2		or Locked bit				
		SC is at least 2 SC is not 2% a						
bit 2		dium Frequenc		illator Ready b	it			
	1 = MFINTO	SC is ready	-	-				
	0 = MFINTO	SC is not ready	/					
bit 1	LFIOFR: Low-Frequency Internal Oscillator Ready bit							
	1 = LFINTOS							
hit 0		SC is not ready		or Stable 54				
bit 0	•	h-Frequency Ir SC is at least 0						
		SC is at least 0 SC is not 0.5%						

REGISTER 5-2: OSCSTAT: OSCILLATOR STATUS REGISTER

7.3 Interrupts During Sleep

Some interrupts can be used to wake from Sleep. To wake from Sleep, the peripheral must be able to operate without the system clock. The interrupt source must have the appropriate interrupt enable bit(s) set prior to entering Sleep.

On waking from Sleep, if the GIE bit is also set, the processor will branch to the interrupt vector. Otherwise, the processor will continue executing instructions after the SLEEP instruction. The instruction directly after the SLEEP instruction will always be executed before branching to the ISR. Refer to **Section 8.0** "**Power-Down Mode (Sleep)**" for more details.

7.4 INT Pin

The INT pin can be used to generate an asynchronous edge-triggered interrupt. This interrupt is enabled by setting the INTE bit of the INTCON register. The INTEDG bit of the OPTION_REG register determines on which edge the interrupt will occur. When the INTEDG bit is set, the rising edge will cause the interrupt. When the INTEDG bit is clear, the falling edge will cause the interrupt. The INTF bit of the INTCON register will be set when a valid edge appears on the INT pin. If the GIE and INTE bits are also set, the processor will redirect program execution to the interrupt vector.

7.5 Automatic Context Saving

Upon entering an interrupt, the return PC address is saved on the stack. Additionally, the following registers are automatically saved in the shadow registers:

- W register
- STATUS register (except for TO and PD)
- BSR register
- · FSR registers
- PCLATH register

Upon exiting the Interrupt Service Routine, these registers are automatically restored. Any modifications to these registers during the ISR will be lost. If modifications to any of these registers are desired, the corresponding shadow register should be modified and the value will be restored when exiting the ISR. The shadow registers are available in Bank 31 and are readable and writable. Depending on the user's application, other registers may also need to be saved.

REGISTER 12-3: PPSLOCK: PPS LOCK REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0/0			
—	—	—	—	—	—	—	PPSLOCKED			
bit 7 bit 0										
Legend:										
R = Readable	e bit	W = Writable	bit							
u = Bit is unch	u = Bit is unchanged x = Bit is unknown U = Unimplemented bit, read as '0'									
'1' = Bit is set	= Bit is set '0' = Bit is cleared			-n/n = Value at POR and BOR/Value at all other Resets						

bit 7-1 Unimplemented: Read as '0'

bit 0 PPSLOCKED: PPS Locked bit

1 = PPS is locked; PPS selections cannot be changed

0 = PPS is not locked; PPS selections can be changed

24.2 Compare Mode

The Compare mode function described in this section is available and identical for all CCP modules.

Compare mode makes use of the 16-bit Timer1 resource. The 16-bit value of the CCPRxH:CCPRxL register pair is constantly compared against the 16-bit value of the TMR1H:TMR1L register pair. When a match occurs, one of the following events can occur:

- · Toggle the CCPx output
- · Set the CCPx output
- · Clear the CCPx output
- · Pulse the CCPx output
- · Generate a software interrupt
- Auto-conversion trigger

The action on the pin is based on the value of the MODE<3:0> control bits of the CCPxCON register. At the same time, the interrupt flag CCPxIF bit is set.

All Compare modes can generate an interrupt.

Figure 24-2 shows a simplified diagram of the compare operation.

24.2.1 AUTO-CONVERSION TRIGGER

When Auto-Conversion Trigger mode is chosen (CCPxM<3:0> = 1011), the CCPx module does the following:

- Resets Timer1
- Starts an ADC conversion if ADC is enabled

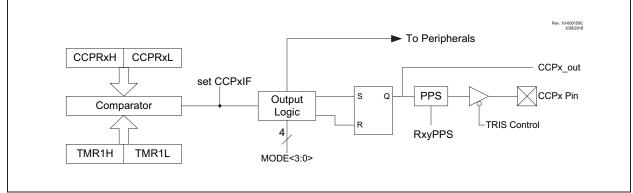
The CCPx module does not assert control of the CCPx pin in this mode.

The auto-conversion trigger output of the CCP occurs immediately upon a match between the TMR1H, TMR1L register pair and the CCPRxH, CCPRxL

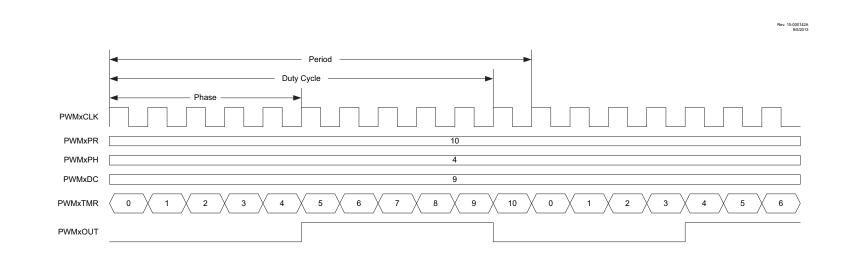
register pair. The TMR1H, TMR1L register pair is not reset until the next rising edge of the Timer1 clock. The auto-conversion trigger output starts an ADC conversion (if the ADC module is enabled). This allows the CCPRxH, CCPRxL register pair to effectively provide a 16-bit programmable period register for Timer1.

Refer to Section 16.2.5 "Auto-Conversion Trigger" for more information.

- Note 1: The auto-conversion trigger from the CCP module does not set interrupt flag bit, TMR1IF of the PIR1 register.
 - 2: Removing the match condition by changing the contents of the CCPRxH and CCPRxL register pair, between the clock edge that generates the auto-conversion trigger and the clock edge that generates the Timer1 Reset, will preclude the Reset from occurring.


24.2.2 CCPx PIN CONFIGURATION

The user must configure the CCPx pin as an output by clearing the associated TRISx bit.


The CCPx pin function can be moved to alternate pins using the PPS controls. See Section 12.0 "Peripheral Pin Select (PPS) Module" for more detail.

Note: Clearing the CCPxCON register will force the CCPx compare output latch to the default low level. This is not the PORT I/O data latch.

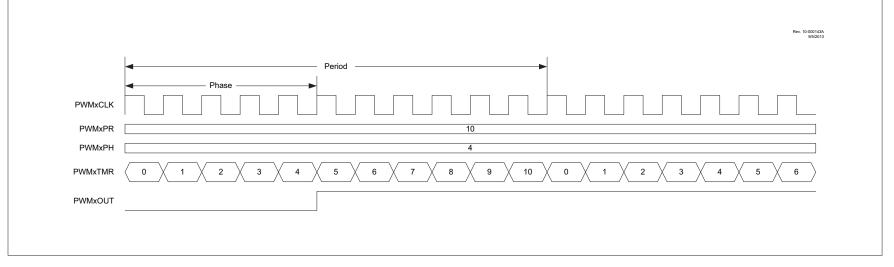

FIGURE 24-2: COMPARE MODE OPERATION BLOCK DIAGRAM

FIGURE 26-5: SET ON MATCH PWMx MODE TIMING DIAGRAM

PIC16(L)F1764/5/8/9

REGISTER 26-11: PWMxPRH: PWMx PERIOD COUNT HIGH REGISTER

					R/W-x/u	R/W-x/u		
		PR<	15:8>					
						bit 0		
	W = Writable I	oit						
ł	x = Bit is unkn	own	U = Unimpler	nented bit, read	l as '0'			
	'0' = Bit is clea	ared	-n/n = Value at POR and BOR/Value at all other Rese					
	1	x = Bit is unkn	W = Writable bit x = Bit is unknown '0' = Bit is cleared	x = Bit is unknown U = Unimplen	x = Bit is unknown U = Unimplemented bit, read	x = Bit is unknown U = Unimplemented bit, read as '0'		

bit 7-0 **PR<15:8>**: PWMx Period High bits Upper eight bits of PWMx period count.

REGISTER 26-12: PWMxPRL: PWMx PERIOD COUNT LOW REGISTER

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
			PR<	:7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit				
u = Bit is unch	anged	x = Bit is unkn	nown	U = Unimpler	nented bit, read	d as '0'	
'1' = Bit is set		'0' = Bit is clea	ared	-n/n = Value a	at POR and BC	R/Value at all o	other Resets

bit 7-0 **PR<7:0>**: PWMx Period Low bits Lower eight bits of PWMx period count.

REGISTER 27-6: COGxRSIM1: COGx RISING EVENT SOURCE INPUT MODE REGISTER 1 (CONTINUED)

- bit 1
 RSIM9: COGx Rising Event Input Source 9 Mode bit

 RIS9 = 1:
 1 = PWM5 output low-to-high transition will cause a rising event after rising event phase delay

 0 = PWM5 output high level will cause an immediate rising event

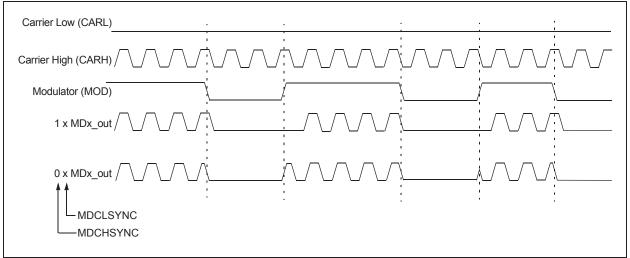
 RIS9 = 0:

 PWM5 output has no effect on rising event.

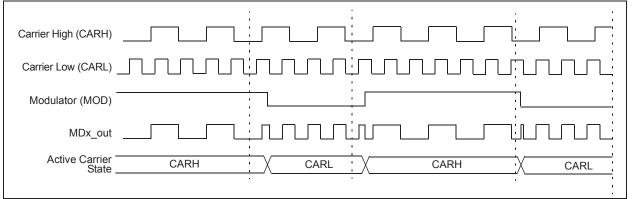
 bit 0
 RSIM8: COGx Rising Event Input Source 8 Mode bit

 RIS8 = 1:
 1 = PWM4 output low-to-high transition will cause a rising event after rising event phase delay

 0 = PWM4 output low-to-high transition will cause a rising event after rising event phase delay


 0 = PWM4 output high level will cause an immediate rising event

 RIS8 = 0:


 PWM4 output has no effect on rising event.
- Note 1: PIC16(L)F1768/9 only. Otherwise unimplemented, read as '0'.

PIC16(L)F1764/5/8/9

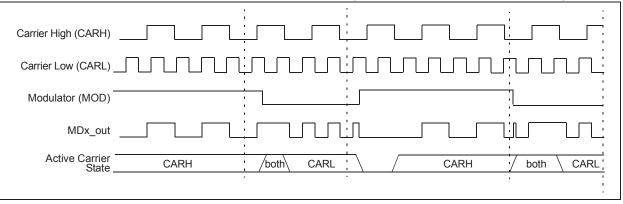


FIGURE 31-4: CARRIER HIGH SYNCHRONIZATION (MDCHSYNC = 1, MDCLSYNC = 0)

32.2 SPI Mode Overview

The Serial Peripheral Interface (SPI) bus is a synchronous serial data communication bus that operates in Full-Duplex mode. Devices communicate in a master/slave environment where the master device initiates the communication. A slave device is controlled through a chip select known as Slave Select.

The SPI bus specifies four signal connections:

- · Serial Clock (SCK)
- Serial Data Out (SDO)
- Serial Data In (SDI)
- Slave Select (SS)

Figure 32-1 shows the block diagram of the MSSP module when operating in SPI mode.

The SPI bus operates with a single master device and one or more slave devices. When multiple slave devices are used, an independent Slave Select connection is required from the master device to each slave device.

Figure 32-4 shows a typical connection between a master device and multiple slave devices.

The master selects only one slave at a time. Most slave devices have tri-state outputs so their output signal appears disconnected from the bus when they are not selected.

Transmissions involve two shift registers, eight bits in size, one in the master and one in the slave. With either the master or the slave device, data is always shifted out one bit at a time, with the Most Significant bit (MSb) shifted out first. At the same time, a new Least Significant bit (LSb) is shifted into the same register.

Figure 32-5 shows a typical connection between two processors configured as master and slave devices.

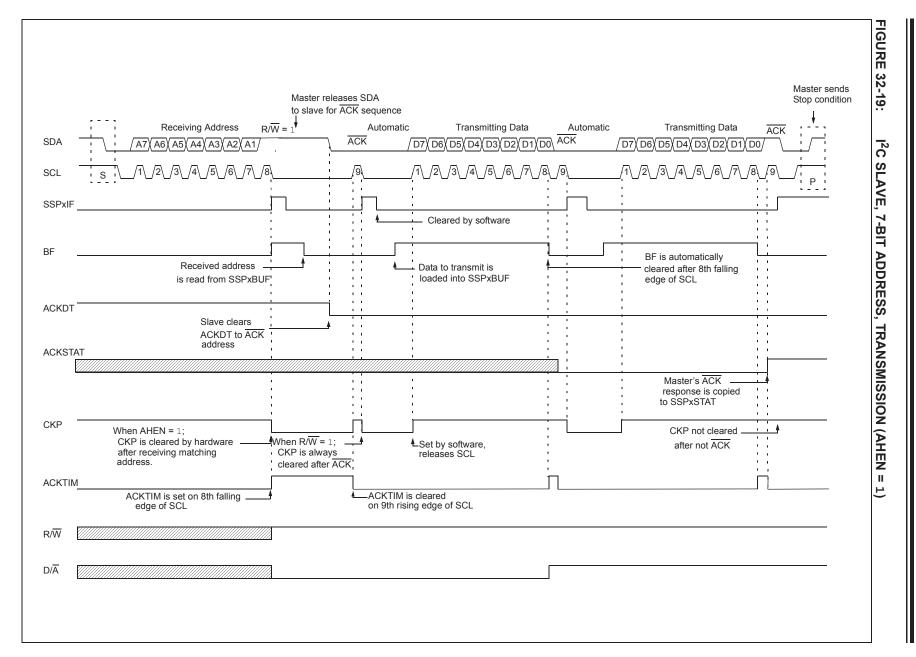
Data is shifted out of both shift registers on the programmed clock edge and latched on the opposite edge of the clock.

The master device transmits information out on its SDO output pin, which is connected to, and received by, the slave's SDI input pin. The slave device transmits information out on its SDO output pin, which is connected to, and received by, the master's SDI input pin. To begin communication, the master device first sends out the clock signal. Both the master and the slave devices should be configured for the same clock polarity.

The master device starts a transmission by sending out the MSb from its shift register. The slave device reads this bit from that same line and saves it into the LSb position of its shift register.

During each SPI clock cycle, a full-duplex data transmission occurs. This means that while the master device is sending out the MSb from its shift register (on its SDO pin), and the slave device is reading this bit and saving it as the LSb of its shift register, that the slave device is also sending out the MSb from its shift register (on its SDO pin) and the master device is reading this bit and saving it as the LSb of its shift register.

After eight bits have been shifted out, the master and slave have exchanged register values.


If there is more data to exchange, the shift registers are loaded with new data and the process repeats itself.

Whether the data is meaningful or not (dummy data), depends on the application software. This leads to three scenarios for data transmission:

- Master sends useful data and slave sends dummy data.
- Master sends useful data and slave sends useful data.
- Master sends dummy data and slave sends useful data.

Transmissions may involve any number of clock cycles. When there is no more data to be transmitted, the master stops sending the clock signal and it deselects the slave.

Every slave device connected to the bus that has not been selected through its Slave Select line must disregard the clock and transmission signals and must not transmit out any data of its own.

16(L)F1764/5/8/9

32.7 BAUD RATE GENERATOR

The MSSP module has a Baud Rate Generator available for clock generation in both I²C and SPI Master modes. The Baud Rate Generator (BRG) reload value is placed in the SSPxADD register (Register 32-6). When a write occurs to SSPxBUF, the Baud Rate Generator will automatically begin counting down.

Once the given operation is complete, the internal clock will automatically stop counting and the clock pin will remain in its last state.

An internal signal "Reload" in Figure 32-40 triggers the value from SSPxADD to be loaded into the BRG counter. This occurs twice for each oscillation of the

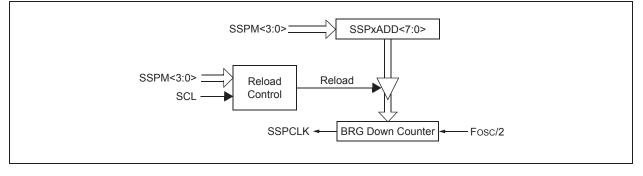

module clock line. The logic dictating when the reload signal is asserted depends on the mode the MSSP is being operated in.

Table 32-4demonstratesclockratesbasedoninstructioncyclesandtheBRGvalueloadedintoSSPxADD.

EQUATION 32-1:

$$FCLOCK = \frac{FOSC}{(SSPxADD + 1)(4)}$$

FIGURE 32-40: BAUD RATE GENERATOR BLOCK DIAGRAM

Note: Values of 0x00, 0x01 and 0x02 are not valid for SSPxADD when used as a Baud Rate Generator for I²C; this is an implementation limitation.

TABLE 32-4: MSSP CLOCK RATE w/BRG

Fosc	Fcy	BRG Value	FCLOCK (2 Rollovers of BRG)
32 MHz	8 MHz	13h	400 kHz
32 MHz	8 MHz	19h	308 kHz
32 MHz	8 MHz	4Fh	100 kHz
16 MHz	4 MHz	09h	400 kHz
16 MHz	4 MHz	0Ch	308 kHz
16 MHz	4 MHz	27h	100 kHz
4 MHz	1 MHz	09h	100 kHz

Note: Refer to the I/O port electrical specifications in Table 36-10 and Figure 36-7 to ensure the system is designed to support I/O timing requirements.

R-0/0	R-1/1	U-0	R/W-0/0	R/W-0/0	U-0	R/W-0/0	R/W-0/0
ABDOVF	RCIDL		SCKP	BRG16		WUE	ABDEN
bit 7		•	•				bit 0
Legend:							
R = Readable	e bit	W = Writable	bit				
u = Bit is unch	nanged	x = Bit is unk	nown	U = Unimpler	mented bit, rea	d as '0'	
'1' = Bit is set	-		at POR and BC	R/Value at all c	other Resets		
bit 7	ABDOVF: A	uto-Baud Dete	ct Overflow bit				
	Asynchronou						
		ud timer overflo ud timer did not					
	Synchronous		overnow				
	Don't care.	<u>- mode.</u>					
bit 6	RCIDL: Rece	eive Idle Flag b	it				
	<u>Asynchronou</u>	us mode:					
	1 = Receiver				•		
		has been recei	ved and the re	ceiver is receiv	ring		
	Synchronous Don't care.	s mode:					
bit 5	Unimpleme	nted: Read as	"O'				
bit 4	SCKP: Sync	hronous Clock	Polarity Select	t bit			
	<u>Asynchronou</u>						
	 1 = Transmit inverted data to the TX/CK pin 0 = Transmit non-inverted data to the TX/CK pin 						
	Synchronous			on pin			
		locked on risin	g edge of the c	clock			
	0 = Data is clocked on falling edge of the clock						
bit 3	BRG16: 16-1	bit Baud Rate 0	Generator bit				
	1 = 16-bit Baud Rate Generator is used						
1.1.0	0 = 8-bit Baud Rate Generator is used						
bit 2	•	nted: Read as	.0.				
bit 1	WUE: Wake-up Enable bit						
	Asynchronou		a falling edge	no character	will be received	l, byte RCIF wil	I be set: WUE
		matically clear				, sylo rion m	
	0 = Receive	r is operating r	ormally				
	Synchronous mode:						
h:+ 0	Don't care.		Enclose 1.1				
bit 0		o-Baud Detect	Enable bit				
	Asynchronou		e is enabled (c	lears when au	to-baud is com	plete)	
	 1 = Auto-Baud Detect mode is enabled (clears when auto-baud is complete) 0 = Auto-Baud Detect mode is disabled 						
	Synchronous mode:						
	Don't care.						

PIC16(L)F1764/5/8/9

BCF	Bit Clear f
Syntax:	[<i>label</i>]BCF f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$
Operation:	0 → (f)
Status Affected:	None
Description:	Bit 'b' in register 'f' is cleared.

BTFSC	Bit Test f, Skip if Clear
Syntax:	[label] BTFSC f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$
Operation:	skip if (f) = 0
Status Affected:	None
Description:	If bit 'b' in register 'f' is '1', the next instruction is executed. If bit 'b', in register 'f', is '0', the next instruction is discarded, and a NOP is executed instead, making this a 2-cycle instruction.

Bit Test f, Skip if Set

 $\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b < 7 \end{array}$

BRA	Relative Branch	BTFSS
Syntax:	[<i>label</i>]BRA label [<i>label</i>]BRA \$+k	Syntax:
Operands:	-256 ≤ label - PC + 1 ≤ 255	Operands:
Operation:	$-256 \le k \le 255$ (PC) + 1 + k \rightarrow PC	Operation: Status Affect
Status Affected:	None	Description:
Description:	Add the signed 9-bit literal 'k' to the PC. Since the PC will have incremented to fetch the next instruction, the new address will be PC + 1 + k. This instruction is a 2-cycle instruction. This branch has a limited range.	

	Operation:	skip if (f) = 1
	Status Affected:	None
ral 'k' to the ave e next ress will be tion is a branch has a	Description:	If bit 'b' in register 'f' is '0', the next instruction is executed. If bit 'b' is '1', then the next instruction is discarded and a NOP is executed instead, making this a 2-cycle instruction.

BRW Relative Branch with W Syntax: [label] BRW Operands: None

Operands:	None
Operation:	$(PC) + (W) \to PC$
Status Affected:	None
Description:	Add the contents of W (unsigned) to the PC. Since the PC will have incremented to fetch the next instruction, the new address will be PC + 1 + (W). This instruction is a 2-cycle instruction.

BSF	Bit Set f
Syntax:	[label]BSF f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$
Operation:	$1 \rightarrow (f \le b >)$
Status Affected:	None
Description:	Bit 'b' in register 'f' is set.

38.11 Demonstration/Development Boards, Evaluation Kits, and Starter Kits

A wide variety of demonstration, development and evaluation boards for various PIC MCUs and dsPIC DSCs allows quick application development on fully functional systems. Most boards include prototyping areas for adding custom circuitry and provide application firmware and source code for examination and modification.

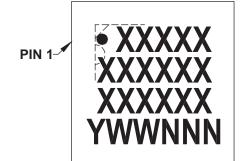
The boards support a variety of features, including LEDs, temperature sensors, switches, speakers, RS-232 interfaces, LCD displays, potentiometers and additional EEPROM memory.

The demonstration and development boards can be used in teaching environments, for prototyping custom circuits and for learning about various microcontroller applications.

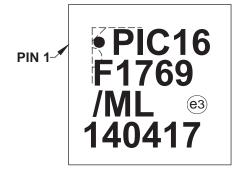
In addition to the PICDEM[™] and dsPICDEM[™] demonstration/development board series of circuits, Microchip has a line of evaluation kits and demonstration software for analog filter design, KEELOQ[®] security ICs, CAN, IrDA[®], PowerSmart battery management, SEEVAL[®] evaluation system, Sigma-Delta ADC, flow rate sensing, plus many more.

Also available are starter kits that contain everything needed to experience the specified device. This usually includes a single application and debug capability, all on one board.

Check the Microchip web page (www.microchip.com) for the complete list of demonstration, development and evaluation kits.


38.12 Third-Party Development Tools

Microchip also offers a great collection of tools from third-party vendors. These tools are carefully selected to offer good value and unique functionality.


- Device Programmers and Gang Programmers from companies, such as SoftLog and CCS
- Software Tools from companies, such as Gimpel and Trace Systems
- Protocol Analyzers from companies, such as Saleae and Total Phase
- Demonstration Boards from companies, such as MikroElektronika, Digilent[®] and Olimex
- Embedded Ethernet Solutions from companies, such as EZ Web Lynx, WIZnet and IPLogika[®]

Package Marking Information (Continued)

20-Lead QFN (4x4x0.9 mm)

Example

