

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	18
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	128 x 8
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 12x10b; D/A 2x5b, 2x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SOIC (0.295", 7.50mm Width)
Supplier Device Package	20-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f1768t-i-so

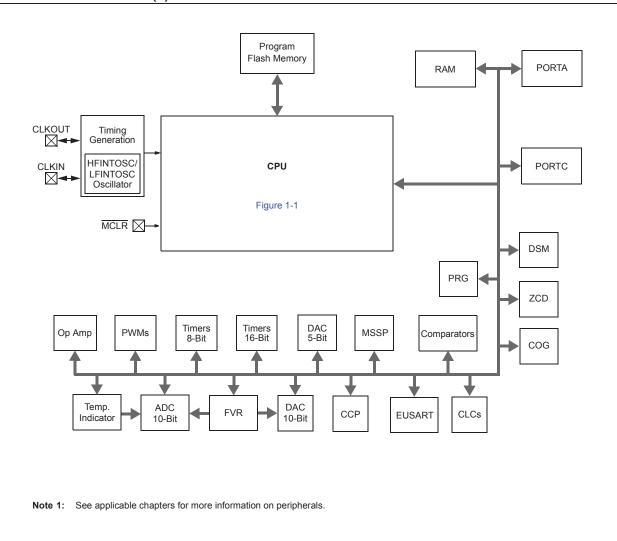
Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 4: 20-PIN ALLOCATION TABLE (PIC16(L)F1768/9) (CONTINUED)

IADL									1100101	(00111											
0/1	20-Pin PDIP/SOIC/SSOP	20-Pin QFN	ADC	Reference	DAC	Op Amp	Comparator	Zero Cross	Programmable Ramp Generator	Timers	MWG	ссь	900	CLC	Modulator	EUSART	MSSP	Interrupts	sdn-IInd	Hi Current	Basic
RC3	7	4	AN7	—	_	OPA2OUT OPA1IN1- OPA1IN1+	C1IN3- C2IN3- C3IN3- C4IN3-	_	PRG2IN0 PRG1IN1	T5G ⁽¹⁾	_	CCP2 ⁽¹⁾	_	CLCIN0 ⁽¹⁾	_	_	_	IOC	Y	—	_
RC4	6	3	—	—	—	—	—	—	PRG1R ⁽¹⁾ PRG2R ⁽¹⁾	T3G ⁽¹⁾	_	—	_	CLCIN1 ⁽¹⁾	—	—	_	IOC	Y	Y	_
RC5	5	2	—	-	_	_	—	_	PRG1F ⁽¹⁾ PRG2F ⁽¹⁾	T3CKI ⁽¹⁾	_	CCP1 ⁽¹⁾	_	—	_	—	-	IOC	Y	Y	_
RC6	8	5	AN8	—	_	OPA2IN0-	—		_	—	_	—	_	—	—	_	SS ⁽¹⁾	IOC	Y	_	_
RC7	9	6	AN9	—	_	OPA2IN0+	—	_	—	—	_	—	_	—	_	—	_	IOC	Υ	—	—
Vdd	1	18	—	—	—	_	—	—	—	—	—	—	—	—		—	—	—			
Vss	20	17	—	—	—	—	—	_	—	—	—	—	—	—	_	—	—	—	_		
OUT ⁽²⁾	—	—	—	—	_	_	C10UT	_	_	—	PWM3	CCP1	COG1A	CLC1OUT	MD10UT	DT ⁽³⁾	SDO	—	—	—	—
	-	—	-	_			C2OUT	_		—	PWM4	CCP2	COG1B	CLC2OUT	MD2OUT	ТХ	SDA ⁽³⁾	_	_	—	_
	—	—	—	—		—	C3OUT	—	—	—	PWM5	—	COG1C	CLC3OUT	_	СК	SCK	—	—	—	—
	-	—	-	_			C4OUT	_	_	—	PWM6		COG1D	_			SCL ⁽³⁾	_	_	—	
	—	—	—	—	—	—	—	—	—	—	—	—	COG2A	—	—	—	_	—	—	—	_
	-	—	-	_	-	_	_	-	_	_	-	_	COG2B	_	_		_	_	_	—	_
	—	—	_	—		_	—	_	—	—	_	—	COG2C	—	—	—		—	—	—	—
	—	—	—	—	—	—	—	—	—	—	—	—	COG2D	—	—	—	—	—	—	—	—

Note 1: Default peripheral input. Input can be moved to any other pin with the PPS Input Selection register. See Table 12-1.


2: All pin outputs default to PORT latch data. Any input capable pin can be selected as a digital peripheral output with the PPS Output Selection registers. See Table 12-2.

3: These peripheral functions are bidirectional. The output pin selections must be the same as the input pin selections.

4: Input only.

PIC16(L)F1764/5/8/9

PIC16(L)F1764/5/8/9

TABLE 3-16: SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)

						-		- /			_	
Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on All Other Resets	
Banl	c 31											
F8Ch to FE3h	_	Unimpleme	Unimplemented									
FE4h	STATUS_ SHAD	-	—	—	—	—	Z	DC	С	xxx	uuu	
FE5h	WREG_ SHAD	Working Re	gister Shadow	1						XXXX XXXX	uuuu uuuu	
FE6h	BSR_SHAD	—	—	_	Bank Select Re	egister Shadow				x xxxx	u uuuu	
FE7h	PCLATH_ SHAD	Program Counter Latch High Register Shadow								-xxx xxxx	-uuu uuuu	
FE8h	FSR0L_ SHAD	Indirect Data	a Memory Add	dress 0 Low Point	er Shadow					XXXX XXXX	uuuu uuuu	
FE9h	FSR0H_ SHAD	Indirect Data	a Memory Ado	dress 0 High Poin	ter Shadow					XXXX XXXX	uuuu uuuu	
FEAh	FSR1L_ SHAD	Indirect Data	a Memory Ado	dress 1 Low Point	er Shadow					XXXX XXXX	uuuu uuuu	
FEBh	FSR1H_ SHAD	Indirect Data	Indirect Data Memory Address 1 High Pointer Shadow								սսսս սսսս	
FECh	_	Unimplemented								—	—	
FEDh	STKPTR	_	_	_	Current Stack I	Pointer				1 1111	1 1111	
FEEh	TOSL	Top of Stack Low byte									uuuu uuuu	
FEFh	TOSH	—	Top of Stack	High Byte						-xxx xxxx	-uuu uuuu	

Legend: x = unknown; u = unchanged; q = value depends on condition; - = unimplemented, read as '0'; r = reserved. Shaded locations are unimplemented, read as '0'.

Note 1: Unimplemented, read as '1'.

2: PIC16(L)F1768/9 only.

3: PIC16(L)F1764/5 only.

4: Unimplemented on PIC16LF1764/5/8/9.

R/W-0/0	R/W-0/0	R-0/0	R-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0					
TMR1GIF	ADIF	RCIF	TXIF	SSP1IF	CCP1IF	TMR2IF	TMR1IF					
bit 7		·	•				bit (
Legend:												
R = Readable		W = Writable										
u = Bit is uncha	anged	x = Bit is unkr		•	nented bit, read							
'1' = Bit is set		'0' = Bit is cle	ared	-n/n = Value a	at POR and BO	R/Value at all o	ther Resets					
bit 7	TMR1GIF: Ti	imer1 Gate Inte	rrunt Elag hit									
	TMR1GIF: Timer1 Gate Interrupt Flag bit 1 = Interrupt is pending											
		is not pending										
bit 6	ADIF: Analog	g-to-Digital Con	verter (ADC)	Interrupt Flag b	oit							
	1 = Interrupt is pending											
		is not pending										
bit 5	RCIF: EUSART Receive Interrupt Flag bit											
		 1 = Interrupt is pending 0 = Interrupt is not pending 										
bit 4			errunt Flag hi	t								
	TXIF: EUSART Transmit Interrupt Flag bit 1 = Interrupt is pending											
		0 = Interrupt is not pending										
bit 3	SSP1IF: Master Synchronous Serial Port (MSSP) Interrupt Flag bit											
	1 = Interrupt is pending											
	0 = Interrupt is not pending											
bit 2		P1 Interrupt Fla	g bit									
	1 = Interrupt is pending 0 = Interrupt is not pending											
bit 1		er2 to T2PR In	terrunt Elaa h	i+								
DIC I			terrupt riag b	it.								
	1 = Interrupt is pending 0 = Interrupt is not pending											
bit 0		er1 Overflow Ir	iterrupt Flag I	pit								
	1 = Interrupt											
	0 = Interrupt	is not pending										

REGISTER 7-5: PIR1: PERIPHERAL INTERRUPT REQUEST REGISTER 1

Note: Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the Global Enable bit, GIE, of the INTCON register. User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt.

REGISTER 10-6: PMCON2	: PROGRAM MEMORY	CONTROL 2 REGISTER
-----------------------	------------------	--------------------

W-0/0	W-0/0	W-0/0	W-0/0	W-0/0	W-0/0	W-0/0	W-0/0
		Prog	gram Memory	Control Regist	er 2		
bit 7							bit 0
Legend:							
R = Readable b	it	W = Writable I	bit				
S = Bit can only	be set	x = Bit is unkn	iown	U = Unimpler	nented bit, read	l as '0'	
'1' = Bit is set		'0' = Bit is clea	ared	-n/n = Value a	at POR and BO	R/Value at all o	ther Resets

bit 7-0 Program Memory Control 2: Flash Memory Unlock Pattern bits

To unlock writes, 55h must be written first, followed by AAh, before setting the WR bit of the PMCON1 register. The value written to this register is used to unlock the writes. There are specific timing requirements on these writes.

TABLE 10-3: SUMMARY OF REGISTERS ASSOCIATED WITH FLASH PROGRAM MEMORY

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page	
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	101	
PMCON1	(1)	CFGS	LWLO	FREE	WRERR	WREN	WR	RD	132	
PMCON2		Program Memory Control Register 2								
PMADRL				PMAD	RL<7:0>				131	
PMADRH	(1)	(1) PMADRH<6:0>								
PMDATL		PMDATL<7:0>								
PMDATH	_	– PMDATH<5:0>								

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by Flash program memory. Note 1: Unimplemented, read as '1'.

TABLE 10-4: SUMMARY OF CONFIGURATION WORD WITH FLASH PROGRAM MEMORY

Name	Bits	Bit -/7	Bit -/6	Bit 13/5	Bit 12/4	Bit 11/3	Bit 10/2	Bit 9/1	Bit 8/0	Register on Page	
CONFIG1	13:8			FCMEN	IESO	CLKOUTEN	BOREN	V<1:0>	_	62	
CONFIGI	7:0	CP	MCLRE	PWRTE	WDT	E<1:0>	F	OSC<2:0>		- 63	
	13:8	_	—	LVP	DEBUG	LPBOR	BORV	STVREN	PLLEN	65	
CONFIG2	7:0	ZCD				_	PPS1WAY	WRT	<1:0>		

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by Flash program memory.

11.1.3 OPEN-DRAIN CONTROL

The ODCONA register (Register 11-6) controls the open-drain feature of the port. Open-drain operation is independently selected for each pin. When an ODCONA bit is set, the corresponding port output becomes an open-drain driver, capable of sinking current only. When an ODCONA bit is cleared, the corresponding port output pin is the standard push-pull drive capable of sourcing and sinking current.

11.1.4 SLEW RATE CONTROL

The SLRCONA register (Register 11-7) controls the slew rate option for each port pin. Slew rate control is independently selectable for each port pin. When an SLRCONA bit is set, the corresponding port pin drive is slew rate limited. When an SLRCONA bit is cleared, the corresponding port pin drive slews at the maximum rate possible.

11.1.5 INPUT THRESHOLD CONTROL

The INLVLA register (Register 11-8) controls the input voltage threshold for each of the available PORTA input pins. A selection between the Schmitt Trigger CMOS or the TTL compatible thresholds is available. The input threshold is important in determining the value of a read of the PORTA register and also the level at which an Interrupt-On-Change occurs, if that feature is enabled. See Table 36-4 for more information on threshold levels.

Note:	Changing the input threshold selection
	should be performed while all peripheral
	modules are disabled. Changing the thresh-
	old level during the time a module is active
	may inadvertently generate a transition
	associated with an input pin, regardless of
	the actual voltage level on that pin.

11.1.6 ANALOG CONTROL

The ANSELA register (Register 11-4) is used to configure the Input mode of an I/O pin to analog. Setting the appropriate ANSELA bit high will cause all digital reads on the pin to be read as '0' and allow analog functions on the pin to operate correctly.

The state of the ANSELA bits has no effect on digital output functions. A pin with TRISx clear and ANSELx set will still operate as a digital output, but the Input mode will be analog. This can cause unexpected behavior when executing Read-Modify-Write instructions on the affected port.

Note:	The ANSELA bits default to the Analog
	mode after Reset. To use any pins as
	digital general purpose or peripheral
	inputs, the corresponding ANSELA bits
	must be initialized to '0' by user software.

EXAMPLE 11-1: INITIALIZING PORTA

; initia	ports are in	illustrates ORTA register. The itialized in the same
BANKSEL	PORTA	;
CLRF	PORTA	;Init PORTA
BANKSEL	LATA	;Data Latch
CLRF	LATA	;
BANKSEL	ANSELA	;
CLRF	ANSELA	;digital I/O
BANKSEL	TRISA	;
MOVLW	B'00111000'	;Set RA<5:3> as inputs
MOVWF	TRISA	;and set RA<2:0> as
		;outputs

11.1.7 PORTA FUNCTIONS AND OUTPUT PRIORITIES

Each PORTA pin is multiplexed with other functions.

Each pin defaults to the PORT latch data after Reset. Other functions are selected with the Peripheral Pin Select (PPS) logic. See **Section 12.0 "Peripheral Pin Select (PPS) Module"** for more information.

Analog input functions, such as the ADC and comparator inputs, are not shown in the Peripheral Pin Select lists. These inputs are active when the I/O pin is set for Analog mode using the ANSELA register. Digital output functions may continue to control the pin when it is in Analog mode.

REGISTER 11-5:	WPUA: WEAK PULL-UP PORTA REGISTER	

U-0	U-0	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1			
_	_		WPUA<5:0> ^(1,2)							
bit 7	·						bit 0			
Legend:										
R = Readable bit		W = Writable	bit							
u = Bit is unchanged		x = Bit is unki	x = Bit is unknown		U = Unimplemented bit, read as '0'					
'1' = Bit is se	t	'0' = Bit is cle	'0' = Bit is cleared -n/n = Value at POR and BOR/Value at all other				other Resets			
h:+ 7 0		unte de De estere (01							
bit 7-6	Unimpieme	ented: Read as '	0							
bit 5-0	WPUA<5:0	>: Weak Pull-up	PORTA Regis	ster bits ^(1,2)						
	1 = Pull-up	is enabled								
	0 = Pull-up									

<sup>Note 1: The global WPUEN bit of the OPTION_REG register must be cleared for individual pull-ups to be enabled.
2: The weak pull-up device is automatically disabled if the pin is configured as an output.</sup>

REGISTER 11-6: ODCONA: PORTA OPEN-DRAIN CONTROL REGISTER

U-0	U-0	R/W-0/0	R/W-0/0	U-0	R/W-0/0	R/W-0/0	R/W-0/0
—	—	ODA<5:4>		—	ODA<2:0>		
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	
u = Bit is unchanged	x = Bit is unknown	U = Unimplemented bit, read as '0'
'1' = Bit is set	'0' = Bit is cleared	-n/n = Value at POR and BOR/Value at all other Resets

bit 7-6 Unimplemented: Read as '0'

bit 5-4	ODA<5:4>: PORTA Open-Drain Enable bits
	For RA<5:4> Pins:
	1 = Port pins operate as open-drain drive (sink current only)
	0 = Port pins operate as standard push-pull drive (source and sink current)
bit 3	Unimplemented: Read as '0'
bit 2-0	ODA<2:0>: PORTA Open-Drain Enable bits
	For RA<2:0> Pins:
	1 = Port pipe operate as open-drain drive (sink current only)

1 = Port pins operate as open-drain drive (sink current only)

0 = Port pins operate as standard push-pull drive (source and sink current)

	xxxPPS	Default Pir	n Selection	Reset Value (xxxPPS<4:0>)			
Peripheral	Register (Register 12-1)	PIC16(L)F1768/9 PIC16(L)F1764/		PIC16(L)F1768/9	PIC16(L)F1764/5		
Interrupt-On-Change	INTPPS	RA2	RA2	00010	00010		
Timer0 Clock	TOCKIPPS	RA2	RA2	00010	00010		
Timer1 Clock	T1CKIPPS	RA5	RA5	00101	00101		
Timer1 Gate	T1GPPS	RA4	RA4	00100	00100		
Timer2 Clock	T2INPPS	RA5	RA5	0101	0101		
Timer3 Clock	T3CKIPPS	RC5	RC5	10101	10101		
Timer3 Gate	T3GPPS	RC4	RC4	10100	10100		
Timer4 Clock	T4INPPS	RC1	RC1	10001	10001		
Timer5 Clock	T5CKIPPS	RC0	RC0	10000	10000		
Timer5 Gate	T5GPPS	RC3	RC3	10011	10011		
Timer6 Clock	T6INPPS	RA3	RA3	00011	00011		
CCP1	CCP1PPS	RC5	RC5	10101	10101		
CCP2	CCP2PPS ⁽¹⁾	RC3	_	10011	_		
COG1	COG1INPPS	RA2	RA2	00010	00010		
COG2	COG2INPPS ⁽¹⁾	RA2	_	00010	_		
SPI and I ² C Clock	SSPCLKPPS	RB6	RC0	01110	10000		
SPI and I ² C Data	SSPDATPPS	RB4	RC1	01100	10001		
SPI Slave Select	SSPSSPPS	RC6	RC3	10110	10011		
EUSART RX	RXPPS	RB5	RC5	01101	10101		
EUSART CK	CKPPS	RB7	RC4	01111	10100		
All CLCs	CLCIN0PPS	RC3	RC3	10011	10011		
All CLCs	CLCIN1PPS	RC4	RC4	10100	10100		
All CLCs	CLCIN2PPS	RC1	RC1	10001	10001		
All CLCs	CLCIN3PPS	RA5	RA5	00101	00101		
PRG1 Set Rising	PRG1RPPS	RC4	RC4	10100	10100		
PRG1 Set Falling	PRG1FPPS	RC5	RC5	10101	10101		
PRG2 Set Rising	PRG2RPPS ⁽¹⁾	RC4	_	10100	_		
PRG2 Set Falling	PRG2FPPS ⁽¹⁾	RC5	_	10101	_		
DSM1 High Carrier	MD1CHPPS	RA3	RA3	00011	00011		
DSM1 Low Carrier	MD1CLPPS	RA4	RA4	00100	00100		
DSM1 Modulation	MD1MODPPS	RA5	RA5	00101	00101		
DSM2 High Carrier	MD2CHPPS ⁽¹⁾	RA3	_	00011	_		
DSM2 Low Carrier	MD2CLPPS ⁽¹⁾	RA4	_	00100	_		
DSM2 Modulation	MD2MODPPS ⁽¹⁾	RA5	_	00101	_		

TABLE 12-1: PPS INPUT REGISTER RESET VALUES

Example: CCP1PPS = 0x13 selects RC3 as the CCP1 input.

Note 1: PIC16(L)F1768/9 only.

18.7 Register Definitions: DAC Control

Long bit name prefixes for the 10-bit DAC peripherals are shown in Table 18-2. Refer to **Section 1.1 "Register and Bit Naming Conventions**" for more information.

TABLE 18-2: BIT NAME PREFIXES

Peripheral	Bit Name Prefix
DAC1	DAC1
DAC2 ⁽¹⁾	DAC2

Note 1: PIC16(L)F1768/9 devices only.

REGISTER 18-1: DACxCON0: DACx CONTROL REGISTER 0

R/W-0/0	R/W-0/0	R/W-0/0	U-0	R/W-0/0	R/W-0/0	U-0	R/W-0/0
EN	FM	OE1	—	PSS<1:0>		—	NSS
bit 7							bit 0

Legend:							
R = Readable	bit	W = Writable bit					
u = Bit is unch	anged	x = Bit is unknown	U = Unimplemented bit, read as '0'				
'1' = Bit is set		'0' = Bit is cleared	-n/n = Value at POR and BOR/Value at all other Resets				
bit 7	EN: DACx Er	hable bit					
	1 = DACx is						
	0 = DACx is						
bit 6	FM: DACx Re	eference Format bit					
		ference selection is left justified ference selection is right justified					
bit 5	OE1: DACx \	/oltage Output Enable bit					
		Itage level is also an outpu Itage level is disconnected					
bit 4	Unimplemen	ted: Read as '0'					
bit 3-2	PSS<1:0>: D	ACx Positive Source Selec	t bits				
	11 = Reserv 10 = FVR_b	ed; do not use. uffer2					
	01 = VREF+ 00 = VDD	pin					
bit 1		ted: Read as '0'					
bit 0	NSS: DACx N	Negative Source Select bit					
	1 = VREF- pir	1					
	0 = Vss						

24.4 CCP/PWM Clock Selection

The PIC16(L)F1764/5/8/9 allows each individual CCP and PWM module to select the timer source that controls the module. Each module has an independent selection.

As there are up to three 8-bit timers with auto-reload (Timer2/4/6), the PWM mode on the CCP and PWM modules can use any of these timers.

The CCPTMRS register is used to select which timer is used.

24.4.1 USING THE TMR2/4/6 WITH THE CCP MODULE

This device has a new version of the TMR2 module that has many new modes, which allow for greater customization and control of the PWM signals than older parts. Refer to **Section 23.6 "Operation Examples"** for examples of PWM signal generation using the different modes of Timer2. The CCP operation requires that the timer used as the PWM time base has the Fosc/4 clock source selected.

24.4.2 PWM PERIOD

The PWM period is specified by the T2PR/T4PR/T6PR register of Timer2/4/6. The PWM period can be calculated using the formula of Equation 24-1.

EQUATION 24-1: PWM PERIOD

 $PWM Period = [(PR2) + 1] \bullet 4 \bullet Tosc \bullet$ (TMR2 Prescale Value)

Note 1: Tosc = 1/Fosc.

When TMR2/4/6 is equal to its respective T2PR/T4PR/T6PR register, the following three events occur on the next increment cycle:

- TMR2/4/6 is cleared
- The CCPx pin is set. (Exception: If the PWM duty cycle = 0%, the pin will not be set.)
- The PWM duty cycle is latched from the CCPRxH:CCPRxL pair into the internal 10-bit latch.

Note: The Timer postscaler (see Figure 24-1) is not used in the determination of the PWM frequency.

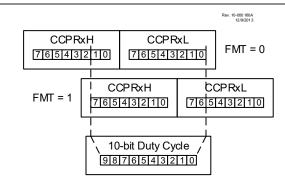
24.4.3 PWM DUTY CYCLE

The PWM duty cycle is specified by writing a 10-bit value to two registers: the CCPRxH:CCPRxL register pair. Where the particular bits go is determined by the FMT bit of the CCPxCON register. If FMT = 0, the two Most Significant bits of the duty cycle value should be written to bits<1:0> of the CCPRxH register and the remaining eight bits to the CCPRxL register. If FMT = 1, the Least Significant two bits of the duty cycle should be written to bits<7:6> of the CCPRxL register and the Most Significant eight bits to the CCPRxL register and the Most Significant eight bits to the CCPRxL register. This is illustrated in Figure 24-4. These bits can be written at any time. The duty cycle value is not latched into the internal latch until after the period completes (i.e., a match between T2PR/T4PR/T6PR and TMR2/4/6 registers occurs).

Equation 24-2 is used to calculate the PWM pulse width. Equation 24-3 is used to calculate the PWM duty cycle ratio.

EQUATION 24-2: PULSE WIDTH

EQUATION 24-3: DUTY CYCLE RATIO


 $Duty Cycle Ratio = \frac{(CCPRxH:CCPRxL)}{4(PRx+1)}$

The PWM Duty Cycle registers are double-buffered for glitchless PWM operation.

The 8-bit timer TMR2/4/6 register is concatenated with either the 2-bit internal system clock (Fosc), or two bits of the prescaler, to create the 10-bit time base. The system clock is used if the Timer2/4/6 prescaler is set to 1:1.

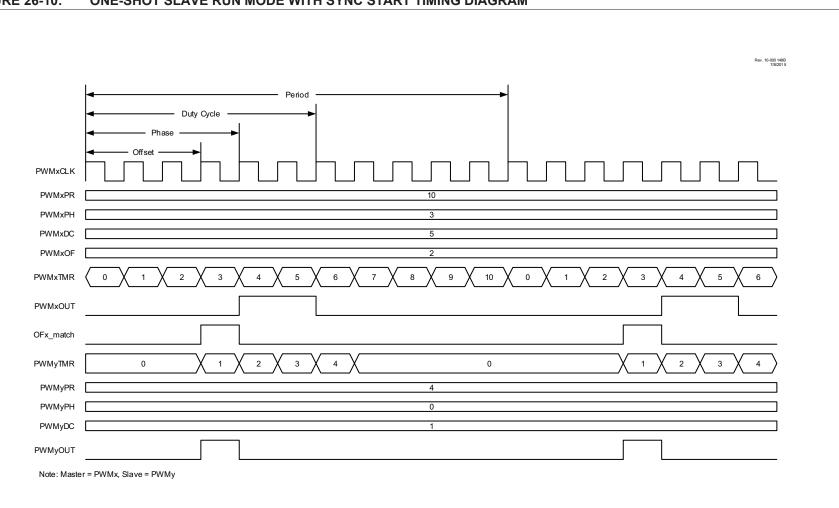

When the 10-bit time base matches the internal buffer register, then the CCPx pin is cleared (see Figure 24-3).

FIGURE 24-4: CCPx DUTY CYCLE ALIGNMENT

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
P4TSEL	_<1:0> ⁽¹⁾	P3TSEL<1:0>		C2TSE	EL<1:0>	C1TSEL<1:0>	
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit				
u = Bit is unch	anged	x = Bit is unkr	nown	U = Unimpler	nented bit, read	d as '0'	
'1' = Bit is set		'0' = Bit is clea	ared	-n/n = Value a	at POR and BO	R/Value at all	other Resets
bit 7-6 bit 5-4	11 = Reserve 10 = PWM4 i 01 = PWM4 i 00 = PWM4 i P3TSEL<1:0 11 = Reserve 10 = PWM3 i 01 = PWM3 i	s based off Tim s based off Tim s based off Tim >: PWM3 Time	ner6 in PWM r ner4 in PWM r ner2 in PWM r er Selection bit ner6 in PWM r ner4 in PWM r	node node node s node node			
bit 3-2	11 = Reserve 10 = CCP2 is 01 = CCP2 is	>: CCP2 (PWN ed s based off Tim s based off Tim s based off Tim	er6 in PWM m er4 in PWM m	ode			
bit 1-0	11 = Reserve 10 = CCP1 is 01 = CCP1 is	>: CCP1 (PWN ed s based off Tim s based off Tim s based off Tim	er6 in PWM m er4 in PWM m	ode			

REGISTER 24-2: CCPTMRS: PWM TIMER SELECTION CONTROL REGISTER

FIGURE 26-10: ONE-SHOT SLAVE RUN MODE WITH SYNC START TIMING DIAGRAM

PIC16(L)F1764/5/8/9

U-0	U-0	U-0	U-0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0
_	_	_	_	OFIF ⁽¹⁾	PHIF ⁽¹⁾	DCIF ⁽¹⁾	PRIF ⁽¹⁾
bit 7						•	bit 0
Legend:							
R = Reada	ble bit	W = Writable	bit	HS = Hardwa	re Settable bit		
u = Bit is unchanged x = Bit is unknown U = Unimplemen				nented bit, read	l as '0'		
'1' = Bit is s	set	'0' = Bit is clea	ared	-n/n = Value a	t POR and BO	R/Value at all c	other Resets
bit 7-4	Unimplemen	ited: Read as ')'				
bit 3	OFIF: Offset	Interrupt Flag b	it ⁽¹⁾				
		atch event occu					
		atch event did r					
bit 2	PHIF: Phase	Interrupt Flag b	oit ⁽¹⁾				
	±	1 = Phase match event occurred					
	0 = Phase m	atch event did	not occur				
bit 1	DCIF: Duty C	ycle Interrupt F	lag bit ⁽¹⁾				
		le match event					
		le match event					
bit 0	PRIF: Period	Interrupt Flag b	oit ⁽¹⁾				
	1 = Period m	atch event occ	urred				
	0 = Period m	natch event did	not occur				

REGISTER 26-3: PWMxINTF: PWMx INTERRUPT REQUEST REGISTER

Note 1: Bit is forced clear by hardware while module is disabled (EN = 0).

PIC16(L)F1764/5/8/9

FIGURE 27-12:	FULL-BRIDGE FORWARD MODE COG OPERATION WITH CCP1
CCP1	
COGxA	
COGxB	
COGxC	
COGxD	

FIGURE 27-13: FULL-BRIDGE MODE COG OPERATION WITH CCP1 AND DIRECTION CHANGE

CCP1					
COGxA					
COGxB		→ ← Fa	alling Event Dead	I-Band	
COGxC					
COGxD					
MD0					

27.5.2 RISING EVENT

The rising event starts the PWM output active duty cycle period. The rising event is the low-to-high transition of the rising_event output. When the rising event phase delay and dead-band time values are zero, the primary output starts immediately. Otherwise, the primary output is delayed. The rising event source causes all the following actions:

- Start rising event phase delay counter (if enabled)
- Clear complementary output after phase delay
- Start falling event input blanking (if enabled)
- Start dead-band delay (if enabled)
- · Set primary output after dead-band delay expires

27.5.3 FALLING EVENT

The falling event terminates the PWM output active duty cycle period. The falling event is the high-to-low transition of the falling_event output. When the falling event phase delay and dead-band time values are zero, the complementary output starts immediately. Otherwise, the complementary output is delayed. The falling event source causes all the following actions:

- Start falling event phase delay counter (if enabled)
- Clear primary output
- Start rising event input blanking (if enabled)
- Start falling event dead-band delay (if enabled)
- Set complementary output after dead-band delay expires

27.6 Output Control

Upon disabling, or immediately after enabling the COG module, the primary COG outputs are inactive and complementary COG outputs are active.

27.6.1 OUTPUT ENABLES

There are no output enable controls in the COG module. Instead, each device pin has an individual output selection control called the PPS register. All four COG outputs are available for selection in the PPS register of every pin.

When a COG output is enabled by PPS selection, the output on the pin has several possibilities which depend on the mode, steering control, EN bit and shutdown state, as shown in Table 27-1 and Table 27-2.

TABLE 27-1: PIN OUTPUT STATES MD<2:0> = 00x

EN Bit	STR Bit	Shutdown	Output
Х	0	Inactive	Static Steering Data
х	1	Active	Shutdown Override
0	1	Inactive	Inactive State
1	1	Inactive	Active PWM Signal

TABLE 27-2: PIN OUTPUT STATES MD<2:0>> 001

EN Bit	STR Bit	Shutdown	Output
x	x	Inactive	Inactive State
x	Х	Active	Shutdown Override
1	Х	Inactive	Active PWM Signal

27.6.2 POLARITY CONTROL

The polarity of each COG output can be selected independently. When the output polarity bit is set, the corresponding output is active-low. Clearing the output polarity bit configures the corresponding output as active-high. However, polarity affects the outputs in only one of the four Shutdown Override modes. See **Section 27.10 "Auto-Shutdown Control**" for more details.

Output polarity is selected with the POLA through POLD bits of the COGxCON1 register (Register 27-2).

27.7 Dead-Band Control

The dead-band control provides for non-overlapping PWM output signals to prevent shoot-through current in the external power switches. Dead-band time affects the output only in the Half-Bridge mode and when changing direction in the Full-Bridge mode.

The COG contains two dead-band timers. One dead-band timer is used for rising event dead-band control. The other is used for falling event dead-band control. Timer modes are selectable as either:

- · Asynchronous delay chain
- Synchronous counter

The Dead-Band Timer mode is selected for the rising event and falling event dead-band times, with the respective RDBS and FDBS bits of the COGxCON1 register (Register 27-2).

In Half-Bridge mode, the rising event dead-band time delays all selected primary outputs from going active for the selected dead-band time after the rising event. COGxA and COGxC are the primary outputs in Half-Bridge mode.

In Half-Bridge mode, the falling event dead-band time delays all selected complementary outputs from going active for the selected dead-band time after the falling event. COGxB and COGxD are the complementary outputs in Half-Bridge mode.

In Full-Bridge mode, the dead-band delay occurs only during direction changes. The modulated output is delayed for the falling event dead-band time after a direction change from forward to reverse. The modulated output is delayed for the rising event dead-band time after a direction change from reverse to forward.

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
EN	_	FEDG	REDG	MODE	MODE<1:0> OS			360
_	_	_	_	_	RDY	FPOL	RPOL	361
	_	—			ISET<4:0>			363
_	_	_	_		INS<	<3:0>		361
_	_	_		PF	RG1RPPS<4:	0>		364
	_	—		PF	RG1FPPS<4:	0>		364
_	_	_	_	— RTSS<3:0>				
_	_	_	_	— FTSS<3:0>				
EN	_	FEDG	REDG	MODE	<1:0>	OS	GO	360
_	_	_	_	_	RDY	FPOL	RPOL	361
_	_	_			ISET<4:0>			363
_	_	_	_		INS<	<3:0>		361
_	_	_		PF	RG2RPPS<4:	0>		364
_	_	_		PF	RG2FPPS<4:	0>		364
_	_	_	— RTSS<3:0>					154, 156
_	_	_	— FTSS<3:0>					154, 156
RC<7	:6> ⁽¹⁾		RC<5:0>					
TRISC	<7:6>(1)	TRISC	C<5:4> TRISC<3:2> TRISC<1:0>					147
ANSC<	<7:6> ⁽¹⁾	_	— ANSC<3:2> ANSC<1:0>					148
WPUC.	<7:6> ⁽¹⁾	WPUC	C<5:4>	WPUC	2<3:2>	WPUC	C<1:0>	149
	EN 	EN	EN — FEDG — — — P — —	EN — FEDG REDG — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — EN — FEDG REDG — — — — — — — — — — — — — — — — — — — — — — — — — — — — — —	EN — FEDG REDG MODE — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — PF — — — — — PF — — — — — EN — FEDG REDG MODE — — — — — — — — — — — — — — — — — PF — — — — — PF — — — <t< td=""><td>EN — FEDG REDG MODE<1:0> — — — — RDY — — — — ISET<4:0> — — — — PRG1RPPS<4:</td> — — — PRG1RPPS<4:</t<>	EN — FEDG REDG MODE<1:0> — — — — RDY — — — — ISET<4:0> — — — — PRG1RPPS<4:	EN — FEDG REDG MODE<1:0> OS — — — — RDY FPOL — — — — ISET<4:0>	EN FEDG REDG MODE<1:0> OS GO RDY FPOL RPOL RDY FPOL RPOL RDY FPOL RPOL NSS3:0> Sister Sister PRG1RPPS<4:0> Sister PRG1RPPS<4:0> Sister PRG1RPPS<4:0> Sister PRG1RPPS<4:0> Sister PRG1RPPS<4:0> Sister PRG1RPPS Sister PRG1RPPS Sister Sister PROL RDO RO RDY FPOL RD

TABLE 30-5: SUMMARY OF REGISTERS ASSOCIATED WITH THE PRG MODULE

Legend: — = unimplemented, read as '0'. Shaded cells are unused by the PRG module.

Note 1: PIC16(L)F1768/9 only.

R/W-0/	/0 R-0/0	R/W-0/0	R/S/HS-0/0	R/S/HS-0/0	R/S/HS-0/0	R/S/HS-0/0	R/W/HS-0/0			
GCEN	ACKSTAT	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN			
bit 7	·	÷	•				bit 0			
Legend:										
R = Read	able bit	W = Writable	bit	HS = Hardwa	re Settable bit	S = Settable I	oit			
u = Bit is	unchanged	x = Bit is unk	nown	U = Unimpler	mented bit, read	1 as '0'				
'1' = Bit is	set	'0' = Bit is cle	eared	-n/n = Value a	at POR and BO	R/Value at all o	other Resets			
bit 7	GCEN: Gene	eral Call Enable	e bit (in I ² C Sla	ve mode only)						
		interrupt when call address di	•	address (0x00	or 00h) is recei	ved in the SSF	PSR			
bit 6	ACKSTAT: A	Acknowledge S	tatus bit (in I ² C	mode only)						
		edge was not r								
		edge was rece	_							
bit 5		nowledge Data	a bit (in I ² C mo	de only)						
	In Receive m		upor initiatoo a		a acqueres et	the and of a re-				
	1 = Not Ackr		user initiates a	an Acknowledg	e sequence at	the end of a re-	ceive.			
	0 = Acknowl									
bit 4	ACKEN: Act	knowledge Seq	uence Enable	bit (in I ² C Mas	ter mode only)					
	In Master Re	eceive mode:	eive mode:							
			cknowledge sequence on SDA and SCL pins, and transmit ACKDT data bit;							
		tically cleared b ledge sequenc								
bit 3		eive Enable bit		mode only)						
bit 0		Receive mode	•	mode only)						
	0 = Receive									
bit 2	PEN: Stop C	condition Enabl	e bit (in I ² C Ma	ster mode only	y)					
		Release Contro								
			on SDA and So	CL pins; autom	natically cleared	by hardware				
	0 = Stop con									
bit 1		eated Start Con		-	• •					
		Repeated Star		SDA and SCL	pins; automatic	ally cleared by	nardware			
bit 0	•	Condition Enabl		le hit						
bit 0	In Master mo									
1 = Initiates Start condition on SDA and SCL pins; automatically cleared by hardware										
	0 = Start con	dition is Idle								
	In Slave mod									
		etching is enab etching is disa		ave transmit ar	nd slave receive	e (stretch enabl	ed)			
Note 1:	For bits ACKEN,	RCEN, PEN, R	SEN, SEN: If t	he l ² C module	is not in Idle m	ode, this bit ma	ay not be set			

REGISTER 32-3: SSP1CON2: MSSP CONTROL REGISTER 2⁽¹⁾

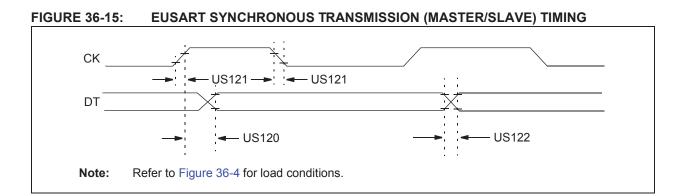
Note 1: For bits ACKEN, RCEN, PEN, RSEN, SEN: If the I²C module is not in Idle mode, this bit may not be set (no spooling) and the SSPxBUF may not be written (or writes to the SSPxBUF are disabled).

36.2 Standard Operating Conditions

The standard operating conditions for any device are defined as:	
Operating Voltage: $VDDMIN \le VDD \le VDDMAX$	
Operating Temperature: $TA_MIN \le TA \le TA_MAX$	
VDD – Operating Supply Voltage ⁽¹⁾	
PIC16LF1764/5/8/9	
VDDMIN (FOSC \leq 16 MHz)	+1.8V
VDDMIN (FOSC > 16 MHz)	+2.5V
VDDMAX	+3.6V
PIC16F1764/5/8/9	
VDDMIN (FOSC \leq 16 MHz)	+2.3V
VDDMIN (FOSC > 16 MHz)	+2.5V
VDDMAX	+5.5V
TA – Operating Ambient Temperature Range	
Industrial Temperature	
Та_міл	40°C
Та_мах	
Extended Temperature	
Та_міл	40°C
 Та_мах	
Note 1: See Parameter D001, DS Characteristics: Supply Voltage.	

TABLE 36-3: POWER-DOWN CURRENTS (IPD)^(1,2)

PIC16LF1	764/5/8/9	Operating Conditions: (unless otherwise stated) Low-Power Sleep Mode							
PIC16F17	Low-Power Sleep Mode, VREGPM = 1								
Param	Param		Tunt	, Max.	Max.	Units		Conditions	
No.	Device Characteristics	Min.	Тур†	+85°C	+125°C	Units	Vdd	Note	
D023	Base IPD	_	0.05	1.0	8.0	μΑ	1.8	WDT, BOR, FVR and SOSC	
			0.08	2.0	9.0	μA	3.0	disabled, all peripherals inactive	
D023	Base IPD		0.3	3	11	μA	2.3	WDT, BOR, FVR and SOSC	
			0.4	4	12	μA	3.0	disabled, all peripherals inactive, Low-Power Sleep mode	
		—	0.5	6	15	μA	5.0	Low-Fower Sleep mode	
D023A	Base IPD	—	9.8	16	18	μA	2.3	WDT, BOR, FVR and SOSC	
		—	10.3	18	20	μA	3.0	disabled, all peripherals inactive,	
		—	11.5	21	26	μΑ	5.0	Normal Power Sleep mode, VREGPM = 0	
D024		_	0.5	6	14	μA	1.8	WDT current	
		—	0.8	7	17	μA	3.0		
D024		—	0.8	6	15	μA	2.3	WDT current	
		—	0.9	7	20	μΑ	3.0]	
		—	1.0	8	22	μΑ	5.0]	
D025		_	15	28	30	μA	1.8	FVR current	
		—	24	35	38	μA	3.0		
D025		_	18	33	35	μA	2.3	FVR current	
		—	24	35	37	μA	3.0		
		—	26	37	39	μA	5.0		
D026		—	7.5	25	28	μA	3.0	BOR current	
D026		_	10	25	28	μA	3.0	BOR current	
		—	12	28	31	μA	5.0		
D027		—	0.5	4	10	μA	3.0	LPBOR current	
D027		—	0.8	6	14	μA	3.0	LPBOR current	
		—	1	8	17	μA	5.0		
D028		_	0.5	5	9	μA	1.8	SOSC current	
		—	0.8	8.5	12	μA	3.0		
D028		—	1.1	6	10	μA	2.3	SOSC current	
			1.3	8.5	20	μA	3.0		
		_	1.4	10	25	μA	5.0		
D029		_	0.05	2	9	μA	1.8	ADC current, no conversion in	
		_	0.08	3	10	μA	3.0	progress (Note 3)	
D029		—	0.3	4	12	μA	2.3	ADC current, no conversion in	
		_	0.4	5	13	μA	3.0	progress (Note 3)	
		_	0.5	7	16	μA	5.0		


These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, +25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: The peripheral current is the sum of the base IPD and the additional current consumed when this peripheral is enabled. The peripheral △ current can be determined by subtracting the base IDD or IPD current from this limit. Max values should be used when calculating total current consumption.

2: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to Vss.

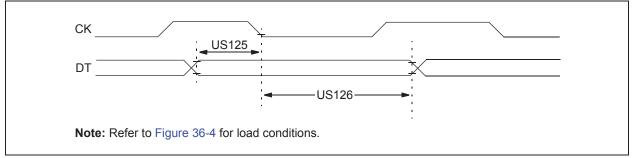

3: ADC clock source is FRC.

TABLE 36-23: EUSART SYNCHRONOUS TRANSMISSION REQUIREMENTS

Standard Operating Conditions (unless otherwise stated)								
Param. No.	Symbol	Characteristic	Min.	Max.	Units	Conditions		
US120	TCKH2DTV	SYNC XMIT (Master and Slave)		80	ns	$3.0V \le V\text{DD} \le 5.5V$		
		Clock High to Data-out Valid	—	100	ns	$1.8V \leq V\text{DD} \leq 5.5V$		
US121	TCKRF	Clock Out Rise Time and Fall Time		45	ns	$3.0V \le V\text{DD} \le 5.5V$		
(Mast		(Master mode)		50	ns	$1.8V \le V\text{DD} \le 5.5V$		
US122	TDTRF Data-out Rise Time and Fall Time			45	ns	$3.0V \le V\text{DD} \le 5.5V$		
			_	50	ns	$1.8V \leq V\text{DD} \leq 5.5V$		

FIGURE 36-16: EUSART SYNCHRONOUS RECEIVE (MASTER/SLAVE) TIMING

TABLE 36-24: EUSART SYNCHRONOUS RECEIVE REQUIREMENTS

Standar	Standard Operating Conditions (unless otherwise stated)								
Param. No.	Symbol	Characteristic	Min.	Max.	Units	Conditions			
US125	TDTV2CKL	SYNC RCV (Master and Slave)							
		Data-Setup before CK \downarrow (DT hold time)	10	—	ns				
US126	TCKL2DTL	Data-hold after CK \downarrow (DT hold time)	15	_	ns				