

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	18
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	128 x 8
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 12x10b; D/A 2x5b, 2x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SSOP (0.209", 5.30mm Width)
Supplier Device Package	20-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f1768t-i-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Note: See Table 4 for location of all peripheral functions.

FIGURE 4: 20-PIN QFN (4x4)

Note: See Table 4 for location of all peripheral functions.

1.2 Peripheral Connection Matrix

Г

Input selection multiplexers on many of the peripherals enable selecting the output of another peripheral, such that the signal path is contained entirely within the device. Although the peripheral output can also be routed to a pin with the PPS selection feature, it is not necessary to do so. Table 1-4 shows all the possible inter-peripheral signal connections. Please refer to the corresponding peripheral section to obtain the multiplexer selection codes for the desired connection.

٦

r		Peripheral Input																							
Peripheral Output	ADC Trigger	COG Clock	COG Rising/Falling	COG Shutdown	10-Bit DAC	5-Bit DAC	PRG Analog Input	PRG Rising/Falling	Comparator +	Comparator -	CLC	DSM CH	DSM CL	pow wsa	+ dmA qO	- dmA qO	Op Amp Override	10-Bit PWM	16-Bit PWM	CCP Capture	CCP Clock	Timer2/4/6 Clock	Timer2/4/6 Reset	Timer1/3/5 Gate	Timer0 Clock
FVR					٠	•	٠		٠	٠					٠	•									
ZCD											•						•					٠			
PRG									٠						•	٠									
10-Bit DAC							•		٠						•	•									
5-Bit DAC							•		•						•	•									
CCP	٠		٠					٠			•	•	٠	٠			•						•		
Comparator (sync)	٠							٠			•						•			٠			٠	٠	
Comparator (async)			٠	•										٠											
CLC	٠		٠	•							•	•	٠	٠			•			٠		•	•		
DSM																									
COG																	•								
EUSART TX/CK											٠			٠											
EUSART DT											•			٠											
MSSP SCK/SCL											٠			٠											
MSSP SDO/SDA											٠			٠											
Op Amp							•																		
10-Bit PWM	٠		٠					٠			•	•	٠	٠			•						٠		
16-Bit PWM	٠		٠					٠			•	•	•	٠			•						•		
Timer0 Overflow	•										•													٠	
Timer2 = T2PR				٠							•							•			•		٠		
Timer4 = T4PR				٠							•							•			•		•		
Timer6 = T6PR				٠							•							•			•		٠		
Timer2 Postscale	•			•							•							•			•		٠		
Timer4 Postscale	•			٠							•							•			•		•		
Timer6 Postscale	•			•							•							٠			•		٠		
Timer1 Overflow	•										٠							٠			٠				
Timer3 Overflow	٠										•							٠			٠				
Timer5 Overflow	٠										٠							٠			٠				
SOSC																			٠			٠			
Fosc/4		•																				٠			
Fosc		٠									٠	٠	٠						٠			٠			
HFINTOSC		٠									٠	٠	٠						٠			٠			
LFINTOSC											٠								٠			٠			
MFINTOSC																						٠			
IOCIF											٠									٠	٠				
PPS Input Pin			٠	•				•				•	٠	•						٠	٠	٠	٠	•	٠

TABLE 1-4:PERIPHERAL CONNECTION MATRIX

© 2014-2017 Microchip Technology Inc.

5.3 Clock Switching

The system clock source can be switched between external and internal clock sources via software using the System Clock Select (SCS) bits of the OSCCON register. The following clock sources can be selected using the SCS<1:0> bits:

- Default system oscillator determined by the FOSCx bits in the Configuration Words
- Timer1 32 kHz crystal oscillator
- Internal Oscillator Block (INTOSC)

5.3.1 SYSTEM CLOCK SELECT (SCS) BITS

The System Clock Select (SCS<1:0>) bits of the OSCCON register select the system clock source that is used for the CPU and peripherals.

- When SCS<1:0> = 00, the system clock source is determined by the value of the FOSC<2:0> bits in the Configuration Words.
- When SCS<1:0> = 01, the system clock source is the secondary oscillator.
- When SCS<1:0> = 1x, the system clock source is chosen by the internal oscillator frequency selected by the IRCF<3:0> bits of the OSCCON register. After a Reset, the SCSx bits of the OSCCON register are always cleared.
 - Note: Any automatic clock switch, which may occur from Two-Speed Start-up or Fail-Safe Clock Monitor, does not update the SCS bits of the OSCCON register. The user can monitor the OSTS bit of the OSCSTAT register to determine the current system clock source.

When switching between clock sources, a delay is required to allow the new clock to stabilize. These oscillator delays are shown in Table 5-1.

5.3.2 OSCILLATOR START-UP TIMER STATUS (OSTS) BIT

The Oscillator Start-up Timer Status (OSTS) bit of the OSCSTAT register indicates whether the system clock is running from the external clock source, as defined by the FOSC<2:0> bits in the Configuration Words, or from the internal clock source. In particular, OSTS indicates that the Oscillator Start-up Timer (OST) has timed out for LP, XT or HS modes. The OST does not reflect the status of the secondary oscillator.

5.3.3 SECONDARY OSCILLATOR

The secondary oscillator is a separate crystal oscillator associated with the Timer1 peripheral. It is optimized for timekeeping operations with a 32.768 kHz crystal connected between the SOSCO and SOSCI device pins.

The secondary oscillator is enabled using the OSCEN control bit in the T1CON register. See **Section 22.0 "Timer1/3/5 Module with Gate Control"** for more information about the Timer1 peripheral.

5.3.4 SECONDARY OSCILLATOR READY (SOSCR) BIT

The user must ensure that the secondary oscillator is ready to be used before it is selected as a system clock source. The Secondary Oscillator Ready (SOSCR) bit of the OSCSTAT register indicates whether the secondary oscillator is ready to be used. After the SOSCR bit is set, the SCSx bits can be configured to select the secondary oscillator.

5.3.5 CLOCK SWITCH BEFORE SLEEP

When a clock switch from an old clock to a new clock is requested just prior to entering Sleep mode, it is necessary to confirm that the switch is complete before the sleep instruction is executed. Failure to do so may result in an incomplete switch and consequential loss of the system clock altogether. Clock switching is confirmed by monitoring the clock status bits in the OSCSTAT register. Switch confirmation can be accomplished by sensing that the ready bit for the new clock is set or the ready bit for the old clock is cleared. For example, when switching between the internal oscillator with the PLL and the internal oscillator without the PLL, monitor the PLLR bit. When PLLR is set, the switch to 32 MHz operation is complete. Conversely, when PLLR is cleared, the switch from 32 MHz operation to the selected internal clock is complete.

6.3 Register Definitions: BOR Control

REGISTER 6-1: BORCON: BROWN-OUT RESET CONTROL REGISTER

R/W-1/u	R/W-0/u	U-0	U-0	U-0	U-0	U-0	R-q/u		
SBOREN	BORFS ⁽¹⁾	—	—	—	—	_	BORRDY		
bit 7	·						bit 0		
Legend:									
R = Readable bit W = Writable bit				q = Value dep	pends on conditi	on			
u = Bit is unchanged x = Bit is unknown U = Unimple					mented bit, read	as '0'			
'1' = Bit is set '0' = Bit is cleared -n/n = Value at PC						R/Value at all o	other Resets		
bit 7	SBOREN: Software Brown-out Reset Enable bit								
	If BOREN <1:0> in Configuration Words ≠ 01:								
	SBOREN is r	ead/write, but h	as no effect o	on the BOR.					
	If BOREN <1	:0> in Configura	ation Words =	:01:					
	1 = BOR is e	enabled							
		lisabled							
bit 6	BORFS: Brow	wn-out Reset Fa	ast Start bit ⁽¹⁾						
	If BOREN<1:	0> = 11 (always	s on) or BOR	EN<1:0> = 00	(always off):				
	BORFS IS Re	ad/Write, but h	as no effect.						
	If BOREN <1	:0> = 10 (disab	led in Sleep)	or BOREN<1:0)> = 01 (under s	oftware contro	<u>ol):</u>		
	\perp = Band gap	p is forced on a	iways (covers	s Sieep/wake-u	ip/operating cas	es)			
			nally and may						
DIT 5-1	Unimplemen	ited: Read as 1		o					
bit 0	BORRDY: Br	own-out Reset	Circuit Ready	Status bit					
	1 = The Brow	/n-out Reset cir	cuit is active						

- 0 = The Brown-out Reset circuit is inactive
- **Note 1:** The BOREN<1:0> bits are located in the Configuration Words.

TABLE 10-1:FLASH MEMORY
ORGANIZATION BY DEVICE

Device	Row Erase (words)	Write Latches (words)		
PIC16(L)F1764				
PIC16(L)F1765	22	20		
PIC16(L)F1768	32	32		
PIC16(L)F1769				

10.2.1 READING THE FLASH PROGRAM MEMORY

To read a program memory location, the user must:

- 1. Write the desired address to the PMADRH:PMADRL register pair.
- 2. Clear the CFGS bit of the PMCON1 register.
- 3. Then, set control bit, RD, of the PMCON1 register.

Once the read control bit is set, the Program Flash Memory controller will use the second instruction cycle to read the data. This causes the second instruction, immediately following the "BSF PMCON1, RD" instruction, to be ignored. The data is available in the very next cycle, in the PMDATH:PMDATL register pair; therefore, it can be read as two bytes in the following instructions.

The PMDATH:PMDATL register pair will hold this value until another read or until it is written to by the user.

Note: The two instructions following a program memory read are required to be NOPS. This prevents the user from executing a 2-cycle instruction on the next instruction after the RD bit is set.

FIGURE 10-1: FLASH PROGRAM

MEMORY READ

10.3 Modifying Flash Program Memory

When modifying existing data in a program memory row, and data within that row must be preserved, it must first be read and saved in a RAM image. Program memory is modified using the following steps:

- 1. Load the starting address of the row to be modified.
- 2. Read the existing data from the row into a RAM image.
- 3. Modify the RAM image to contain the new data to be written into program memory.
- 4. Load the starting address of the row to be rewritten.
- 5. Erase the program memory row.
- 6. Load the write latches with data from the RAM image.
- 7. Initiate a programming operation.

FIGURE 10-7:

FLASH PROGRAM MEMORY MODIFY FLOWCHART

U-0	U-0	R/W-1/1	R/W-1/1	U-0	R/W-1/1	R/W-1/1	R/W-1/1
		SLRA	<5:4>	—			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit				
u = Bit is uncha	anged	x = Bit is unkr	nown	U = Unimpler	mented bit, read	l as '0'	
'1' = Bit is set		'0' = Bit is clea	ared	-n/n = Value a	at POR and BO	R/Value at all o	ther Resets
bit 7-6	Unimplemen	ted: Read as '	0'				
bit 5-4	SLRA<5:4>:	PORTA Slew F	Rate Enable bi	ts			
	For RA<5:4>	Pins:					
	1 = Port pin s	lew rate is limit	ed				
h:+ 0	0 = Port pin si						
DIT 3	Unimplemen	ted: Read as "	0.				
bit 2-0	SLRA<2:0>:	PORTA Slew F	Rate Enable bi	ts			
	For RA<2:0>	<u>Pins:</u>					
	1 = Port pin s	lew rate is limit	ed				
	0 = Port pin s	lews at maxim	um rate				

REGISTER 11-7: SLRCONA: PORTA SLEW RATE CONTROL REGISTER

REGISTER 11-8:	INLVLA: PORTA INPUT LEVEL CONTR	OL REGISTER
----------------	---------------------------------	-------------

U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
—	—			INLVL	_A<5:0>		
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	
u = Bit is unchanged	x = Bit is unknown	U = Unimplemented bit, read as '0'
'1' = Bit is set	'0' = Bit is cleared	-n/n = Value at POR and BOR/Value at all other Resets

bit 7-6 Unimplemented: Read as '0'

bit 5-0

INLVLA<5:0>: PORTA Input Level Select bits

For RA<5:0> Pins:

1 = Port pin digital input operates with ST thresholds

0 = Port pin digital input operates with TTL thresholds

	Output Oinnel	F	PIC16(L)F1768	/9	PIC16(L)F1764/5		
RXYPPS<4:0>	Output Signal	PORTA	PORTB	PORTC	PORTA	PORTC	
1111x	Reserved	_	_	_	—	_	
11101	MD2_out	•	•	•	_	_	
11100	MD1_out	•	•	•	•	•	
11011	sync_C4OUT	•	•	•	—	—	
11010	sync_C3OUT	•	•	•	—	—	
11001	sync_C2OUT	•	•	•	•	•	
11000	sync_C1OUT	•	•	•	•	•	
10111	DT ⁽¹⁾	•	•	•	•	•	
10110	TX/CK ⁽¹⁾	•	•	•	•	•	
10101	Reserved	—	—	—	—	—	
10100	SDO	•	•	•	•	•	
10011	SDA	•	•	•	•	•	
10010	SCK/SCL ⁽¹⁾	•	•	•	•	•	
10001	PWM6_out	•	•	•	—	—	
10000	PWM5_out	•	•	•	•	•	
01111	PWM4_out	•	•	•	—	—	
01110	PWM3_out	•	•	•	•	•	
01101	CCP2_out	•	•	•	•	•	
01100	CCP1_out	•	•	•	•	•	
01011	COG2D ⁽¹⁾	•	•	•	—	—	
01010	COG2C ⁽¹⁾	•	•	•	—	—	
01001	COG2B ⁽¹⁾	•	•	•	—	—	
01000	COG2A ⁽¹⁾	•	•	•	—	—	
00111	COG1D ⁽¹⁾	•	•	•	•	•	
00110	COG1C ⁽¹⁾	•	•	•	•	•	
00101	COG1B ⁽¹⁾	•	•	•	•	•	
00100	COG1A ⁽¹⁾	•	•	•	•	•	
00011	LC3_out	•	•	•	•	•	
00010	LC2_out	•	•	•	•	•	
00001	LC1_out	•	•	•	•	•	
00000	LATxy	•	•	•	•	•	

TABLE 12-2: AVAILABLE PORTS FOR OUTPUT BY PERIPHERAL⁽²⁾

Note 1: TRISx control is overridden by the peripheral as required.

2: Unsupported peripherals will output a 0.

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	U-0	R/W-0/0	R/W-0/0	R/W-0/0				
ADFM		ADCS<2:0>		—	ADNREF	ADPRE	EF<1:0>				
bit 7				-			bit C				
Legend:											
R = Readable	bit	W = Writable b	pit								
u = Bit is uncha	anged	x = Bit is unkn	own	U = Unimpler	mented bit, read	l as '0'					
'1' = Bit is set		'0' = Bit is clea	ired	-n/n = Value a	at POR and BO	R/Value at all	other Resets				
bit 7	ADFM: ADC	Result Format	Select bit								
	1 = Right ju	stified; six Most	Significant bi	ts of ADRESH	are set to '0' w	hen the conve	ersion result is				
	loaded ∩ = Left just	ified: six Least :	Significant bit	s of ADRESL	are set to '∩' w	hen the conve	ersion result is				
	loaded		orgrinioarit on								
bit 6-4	t 6-4 ADCS<2:0>: ADC Conversion Clock Select bits										
	111 = FRC (clock supplied from an internal RC oscillator)										
	110 = Fosc/64										
	101 = FOSC/16 $100 = FOSC/4$										
	011 = FRC (clock supplied from an internal RC oscillator)										
	010 = Fosc/32										
	001 = Fosc	/8									
hit 3		nted: Read as '()'								
bit 2		DC Negative Vol	, Itane Referen	ce Configuratio	n hit						
SIT 2	1 =VREF- is (connected to ext	ernal VREE- n	in							
	0 =VREF- is connected to Vss										
	· · · · · · · · ·										
bit 1-0	ADPREF<1:	0>: ADC Positiv	e Voltage Rei	ference Configu	uration bits						
bit 1-0	ADPREF<1: 11 = VREF+	0>: ADC Positiv is connected to f	e Voltage Rei he internal Fi	ference Configu xed Voltage Re	uration bits eference (FVR)	module ⁽¹⁾					
bit 1-0	ADPREF<1: 11 = VREF+ 10 = VREF+	0>: ADC Positiv is connected to t is connected to t	e Voltage Ret he internal Fi he external V	ference Configu xed Voltage Re ′ _{REF+} pin ⁽¹⁾	uration bits eference (FVR)	module ⁽¹⁾					

REGISTER 16-2: ADCON1: ADC CONTROL REGISTER 1

Note 1: When selecting the VREF+ pin as the source of the positive reference, be aware that a minimum voltage specification exists. See Table 36-16 for details.

17.0 5-BIT DIGITAL-TO-ANALOG CONVERTER (DAC) MODULE

The Digital-to-Analog Converter supplies a variable voltage reference, ratiometric with the input source, with 32 selectable output levels.

The input of the DAC can be connected to:

- External VREF pins
- VDD supply voltage
- FVR (Fixed Voltage Reference)

The output of the DAC can be configured to supply a reference voltage to the following:

- Comparator positive input
- Operational amplifier inverting and non-inverting inputs
- · ADC input channel
- DACxOUT1 pin

TABLE 17-1:AVAILABLE 5-BIT DACs

Device	D3	D4
PIC16(L)F1764	•	
PIC16(L)F1765	•	
PIC16(L)F1768	•	٠
PIC16(L)F1769	•	٠

The Digital-to-Analog Converter (DAC) is enabled by setting the EN bit of the DACxCON0 register.

17.1 Output Voltage Selection

The DAC has 32 voltage level ranges. The 32 levels are set with the REF<4:0> bits of the DACxREF register.

The DAC output voltage is determined by Equation 17-1.

EQUATION 17-1: DAC OUTPUT VOLTAGE

$$\frac{IF \ DACxEN = 1:}{VOUT} = \left((VSOURCE+ - VSOURCE-) \times \frac{DACxR[4:0]}{2^5} \right) + VSOURCE-$$
$$VSOURCE+ = VDD, \ VREF, \ or \ FVR \ Buffer 2$$
$$VSOURCE- = VSS$$

17.2 Ratiometric Output Level

The DAC output value is derived using a resistor ladder with each end of the ladder tied to a positive and negative voltage reference input source. If the voltage of either input source fluctuates, a similar fluctuation will result in the DAC output value.

The value of the individual resistors within the ladder can be found in Table 36-20.

17.3 DAC Voltage Reference Output

The DAC voltage can be output to the DACxOUT1 pin by setting the OE1 bit of the DACxCON0 register. Selecting the DAC voltage for output on the DACxOUT1 pin automatically overrides the digital output buffer and digital input threshold detector functions of that pin. Reading the DACxOUT1 pin when it has been configured for DAC voltage output will always return a '0'.

Due to the limited current drive capability, a buffer must be used on the DAC voltage output for external connections to the DACxOUT1 pin. Figure 17-2 shows an example buffering technique.

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0			
RIS7	RIS6	RIS5	RIS4	RIS3	RIS2	RIS1	RIS0			
bit 7							bit 0			
Legend:										
R = Readable	bit	W = Writable	bit							
u = Bit is unch	anged	x = Bit is unk	nown	U = Unimpler	mented bit, read	as '0'				
'1' = Bit is set	1' = Bit is set '0' = Bit is cleared				at POR and BO	R/Value at all c	ther Resets			
bit 7	RIS7: COGx	Rising Event Ir	nput Source 7	Enable bit						
	1 = PWM3 or	utput is enable	d as a rising e	vent input						
hit C	0 = PWM3 output has no effect on the rising event									
DIL 6	KIS6: COGX Rising Event Input Source 6 Enable bit									
	0 = CCP2 out	itput has no eff	fect on the risi	ng event						
bit 5	RIS5: COGx Rising Event Input Source 5 Enable bit									
	1 = CCP1 ou	itput is enabled	d as a rising ev	/ent input						
	0 = CCP1 ou	itput has no eff	fect on the risi	ng event						
bit 4	RIS4: COGx	Rising Event Ir	nput Source 4	Enable bit						
	1 = Compara	ator 4 output is	enabled as a	rising event inp	out					
h:10		itor 4 output na	as no effect on	The rising even	nt					
DIT 3	$\mathbf{RIS3:} \mathbf{COGX}$	RISING EVENT IN	appled as a	Enable bit	out					
	0 = Compara	ator 3 output is	as no effect on	the rising event in	nt					
bit 2	RIS2: COGx	Rising Event Ir	nput Source 2	Enable bit						
	1 = Compara	ator 2 output is	enabled as a	rising event inp	out					
	0 = Compara	ator 2 output ha	as no effect on	the rising eve	nt					
bit 1	RIS1: COGx	Rising Event Ir	nput Source 1	Enable bit						
	1 = Compara	tor 1 output is	enabled as a	rising event inp	out					
	0 = Compara	ator 1 output ha	as no effect on	the rising eve	nt					
bit 0	RISO: COGx	Rising Event Ir	nput Source 0	Enable bit						
	\perp = Pin selec	ted with COG	(INPPS registed)	er is enabled a er has no effec	s rising event in t on the rising e	put vent				
						vont				

REGISTER 27-3: COGxRIS0: COGx RISING EVENT INPUT SELECTION REGISTER 0

FIGURE 31-4: CARRIER HIGH SYNCHRONIZATION (MDCHSYNC = 1, MDCLSYNC = 0)

REGISTER 31-3: MDxSRC: MODULATION x SOURCE CONTROL REGISTER

U-0	U-0	U-0	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
—	—	—			MS<4:0>		
bit 7							bit 0
Legend:							

R = Readable bit	W = Writable bit	
u = Bit is unchanged	x = Bit is unknown	U = Unimplemented bit, read as '0'
'1' = Bit is set	'0' = Bit is cleared	-n/n = Value at POR and BOR/Value at all other Resets

bit 7-5 Unimplemented: Read as '0'

bit 4-0 **MS<4:0>** Modulation Source Selection bits See Table 31-3.

TABLE 31-3: MODULATION SOURCE

MS<4:0>	Modulation Source PIC16(L)F1764/5	Modulation Source PIC16(L)F1768/9
11111-10100	Fixed Low	Fixed Low
10011	Fixed Low	sync_C4OUT
10010	Fixed Low	sync_C3OUT
10001	sync_C2OUT	sync_C2OUT
10000	sync_C1OUT	sync_C1OUT
01111	LC3_out	LC3_out
01110	LC2_out	LC2_out
01101	LC1_out	LC1_out
01100	Fixed Low	PWM6_out
01011	PWM5_out	PWM5_out
01010	Fixed Low	PWM4_out
01001	PWM3_out	PWM3_out
01000	Fixed low	CCP2_out
00111	CCP1_out	CCP1_out
00110	SDO_out	SDO_out
00101	Fixed Low	COG2A
00100	DT	DT
00011	TX_out	TX_out
00010	COG1A	COG1A
00001	MDxBIT	MDxBIT
00000	MDxMODPPS Pin Selection	MDxMODPPS Pin Selection

32.5.6 CLOCK STRETCHING

Clock stretching occurs when a device on the bus holds the SCL line low, effectively pausing communication. The slave may stretch the clock to allow more time to handle data or prepare a response for the master device. A master device is not concerned with stretching, as anytime it is active on the bus and not transferring data, it is stretching. Any stretching done by a slave is invisible to the master software and handled by the hardware that generates SCL.

The CKP bit of the SSPxCON1 register is used to control stretching in software. Any time the CKP bit is cleared, the module will wait for the SCL line to go low and then hold it. Setting CKP will release SCL and allow more communication.

32.5.6.1 Normal Clock Stretching

Following an \overline{ACK} , if the R/ \overline{W} bit of SSPxSTAT is set and there is a read request, the slave hardware will clear CKP. This allows the slave time to update SSPxBUF with data to transfer to the master. If the SEN bit of SSPxCON2 is set, the slave hardware will always stretch the clock after the \overline{ACK} sequence. Once the slave is ready, CKP is set by software and communication resumes.

- Note 1: The BF bit has no effect on if the clock will be stretched or not. This is different than previous versions of the module that would not stretch the clock, and cleared CKP if SSPxBUF was read before the 9th falling edge of SCL.
 - 2: Previous versions of the module did not stretch the clock for a transmission if SSPxBUF was loaded before the 9th falling edge of SCL; it is now always cleared for read requests.

32.5.6.2 10-Bit Addressing Mode

In 10-Bit Addressing mode when the UA bit is set, the clock is always stretched. This is the only time the SCL is stretched without CKP being cleared. SCL is released immediately after a write to SSPxADD.

Note:	Previous versions of the module did not
	stretch the clock if the second address byte
	did not match.

32.5.6.3 Byte NACKing

When the AHEN bit of SSPxCON3 is set, CKP is cleared by hardware after the eighth falling edge of SCL for a received matching address byte. When the DHEN bit of SSPxCON3 is set, CKP is cleared after the eighth falling edge of SCL for received data.

Stretching after the eighth falling edge of SCL allows the slave to look at the received address or data and decide if it wants to ACK the received data.

32.5.6.4 Clock Synchronization and the CKP Bit

Any time the CKP bit is cleared, the module will wait for the SCL line to go low and then hold it. However, clearing the CKP bit will not assert the SCL output low until the SCL output is already sampled low. Therefore, the CKP bit will not assert the SCL line until an external I^2C master device has already asserted the SCL line. The SCL output will remain low until the CKP bit is set and all other devices on the I^2C bus have released SCL. This ensures that a write to the CKP bit will not violate the minimum high time requirement for SCL (see Figure 32-23).

FIGURE 32-23: CLOCK SYNCHRONIZATION TIMING

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on Page:
ANSELA	_	_	_	ANSA4	_		ANSA<2:0>		137
ANSELB ⁽¹⁾		ANSB	3<7:4>		—	—	—	—	143
ANSELC	ANSC<	<7:6> ⁽¹⁾	—	—		ANSC	><3:0>		148
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	101
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSP1IE	CCP1IE	TMR2IE	TMR1IE	102
PIE2	OSFIE	C2IE	C1IE	—	BCL1IE	C4IE ⁽¹⁾	C3IE ⁽¹⁾	CCP2IE ⁽¹⁾	103
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSP1IF	CCP1IF	TMR2IF	TMR1IF	105
PIR2	OSFIF	C2IF	C1IF	—	BCL1IF	C4IF ⁽¹⁾	C3IF ⁽¹⁾	CCP2IF ⁽¹⁾	106
RxyPPS	—	_	RxyPPS<4:0>						
SSPCLKPPS	—	_	—		SS	PCLKPPS<4	:0>		154, 156
SSPDATPPS	—	_	—		SS	PDATPPS<4	:0>		154, 156
SSPSSPPS	—	_	—		SSPSSPPS<4:0>				154, 156
SSP1ADD				ADD	<7:0>				430
SSP1BUF	Synchronous	s Serial Port F	Receive Buffe	er/Transmit Re	egister				380*
SSP1CON1	WCOL	SSPOV	SSPEN	CKP		SSPN	1<3:0>		426
SSP1CON2	GCEN	ACKSTAT	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	428
SSP1CON3	ACKTIM	PCIE	SCIE	BOEN	SDAHT	SBCDE	AHEN	DHEN	429
SSP1MSK	MSK<7:0>							430	
SSP1STAT	SMP	CKE	D/A	Р	S	R/W	UA	BF	424
TRISA	_	_	TRISA	∖<5:4>	(2)		TRISA<2:0>	•	136
TRISB ⁽¹⁾		TRISE	3<7:4>		—	—	—	—	142
TRISC	TRISC	<7:6>(1)			TRISC	><5:0>			147

TABLE 32-3: SUMMARY OF REGISTERS ASSOCIATED WITH I²C OPERATION

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by the MSSP module in I^2C mode.

* Page provides register information.

Note 1: PIC16(L)F1768/9 only.

2: Unimplemented, read as '1'.

REGISTER 32-2: SSP1CON1: MSSP CONTROL REGISTER 1 (CONTINUED)

bit 4	CKP: Clock Polarity Select bit
	In SPI mode:
	1 = Idle state for clock is a high level
	0 = Idle state for clock is a low level
	In I ² C Slave mode:
	SCL release control.
	1 = Enables clock
	0 = Holds clock low (clock stretch), used to ensure data setup time
	In I ² C Master mode:
	Unused in this mode.
bit 3-0	SSPM<3:0>: Synchronous Serial Port Mode Select bits
	1111 = I^2C Slave mode, 10-bit address with Start and Stop bit interrupts enabled 1110 = I^2C Slave mode, 7-bit address with Start and Stop bit interrupts enabled 1101 = Reserved
	1100 = Reserved
	$1011 = I^2C$ Firmware Controlled Master mode (slave Idle)
	1010 = SPI Master mode, clock = Fosc/(4 * (SSP1ADD + 1)) ⁽³⁾
	1001 = Reserved
	$1000 = 1^{\circ}$ C Master mode, clock = FOSC/(4 * (SSPTADD + 1))**
	$0111 = 1^2 C Slave mode, 7-bit address$
	0101 = SPI Slave mode, clock = SCK pin. SS pin control is disabled. SS can be used as I/O pin
	0100 = SPI Slave mode, clock = SCK pin, SS pin control is enabled
	0011 = SPI Master mode, clock = T2_match/2
	0010 = SPI Master mode, clock = Fosc/64
	0001 = SPI Master mode, clock = Fosc/16
	0000 = SPI Master mode, clock = Fosc/4
Note 1:	In Master mode, the overflow bit is not set since each new reception (and transmission) is initiated by

- writing to the SSPxBUF register.2: When enabled, these pins must be properly configured as input or output. Use SSPSSPPS, SSPCLKPPS, SSPDATPPS and RxyPPS to select the pins.
 - **3:** When enabled, the SDA and SCL pins must be configured as inputs. Use SSPCLKPPS, SSPDATPPS and RxyPPS to select the pins.
 - **4:** SSPxADD values of 0, 1 or 2 are not supported for I²C mode.
 - **5:** SSPxADD value of 0 is not supported; use SSPM<3:0> = 0000 instead.

	SYNC = 0, BRGH = 1, BRG16 = 1 or SYNC = 1, BRG16 = 1											
BAUD	Fosc = 32.000 MHz		0 MHz	Fosc = 20.000 MHz		Fosc = 18.432 MHz			Fosc = 11.0592 MHz			
RATE	Actual Rate	% Error	SPxBRG value (decimal)	Actual Rate	% Error	SPxBRG value (decimal)	Actual Rate	% Error	SPxBRG value (decimal)	Actual Rate	% Error	SPxBRG value (decimal)
300	300.0	0.00	26666	300.0	0.00	16665	300.0	0.00	15359	300.0	0.00	9215
1200	1200	0.00	6666	1200	-0.01	4166	1200	0.00	3839	1200	0.00	2303
2400	2400	0.01	3332	2400	0.02	2082	2400	0.00	1919	2400	0.00	1151
9600	9604	0.04	832	9597	-0.03	520	9600	0.00	479	9600	0.00	287
10417	10417	0.00	767	10417	0.00	479	10425	0.08	441	10433	0.16	264
19.2k	19.18k	-0.08	416	19.23k	0.16	259	19.20k	0.00	239	19.20k	0.00	143
57.6k	57.55k	-0.08	138	57.47k	-0.22	86	57.60k	0.00	79	57.60k	0.00	47
115.2k	115.9k	0.64	68	116.3k	0.94	42	115.2k	0.00	39	115.2k	0.00	23

TABLE 33-5: BAUD RATES FOR ASYNCHRONOUS MODES (CONTINUED)

	SYNC = 0, BRGH = 1, BRG16 = 1 or SYNC = 1, BRG16 = 1											
Fosc = 8.000 MHz		0 MHz	Fosc = 4.000 MHz			Fosc = 3.6864 MHz			Fosc = 1.000 MHz			
RATE	Actual Rate	% Error	SPxBRG value (decimal)	Actual Rate	% Error	SPxBRG value (decimal)	Actual Rate	% Error	SPxBRG value (decimal)	Actual Rate	% Error	SPxBRG value (decimal)
300	300.0	0.00	6666	300.0	0.01	3332	300.0	0.00	3071	300.1	0.04	832
1200	1200	-0.02	1666	1200	0.04	832	1200	0.00	767	1202	0.16	207
2400	2401	0.04	832	2398	0.08	416	2400	0.00	383	2404	0.16	103
9600	9615	0.16	207	9615	0.16	103	9600	0.00	95	9615	0.16	25
10417	10417	0	191	10417	0.00	95	10473	0.53	87	10417	0.00	23
19.2k	19.23k	0.16	103	19.23k	0.16	51	19.20k	0.00	47	19.23k	0.16	12
57.6k	57.14k	-0.79	34	58.82k	2.12	16	57.60k	0.00	15	—	—	—
115.2k	117.6k	2.12	16	111.1k	-3.55	8	115.2k	0.00	7	—	_	_

LSLF	Logical Left Shift
Syntax:	[<i>label</i>]LSLF f{,d}
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	$(f < 7 >) \rightarrow C$ $(f < 6:0 >) \rightarrow dest < 7:1 >$ $0 \rightarrow dest < 0 >$
Status Affected:	C, Z
Description:	The contents of register 'f' are shifted one bit to the left through the Carry flag. A '0' is shifted into the LSb. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is stored back in register 'f'.
	C ← register f ← 0

LSRF	Logical Right Shift
Syntax:	[<i>label</i>]LSRF f{,d}
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in \left[0,1\right] \end{array}$
Operation:	$\begin{array}{l} 0 \rightarrow dest < 7 > \\ (f < 7:1 >) \rightarrow dest < 6:0 >, \\ (f < 0 >) \rightarrow C, \end{array}$
Status Affected:	C, Z
Description:	The contents of register 'f' are shifted one bit to the right through the Carry flag. A '0' is shifted into the MSb. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is stored back in register 'f'.

		. —	
0▶	register f	→C	

MOVF	Move f			
Syntax:	[<i>label</i>] MOVF f,d			
Operands:	$0 \le f \le 127$ $d \in [0,1]$			
Operation:	$(f) \rightarrow (dest)$			
Status Affected:	Z			
Description:	The contents of register f are moved to a destination dependent upon the status of d. If $d = 0$, destination is W register. If $d = 1$, the destination is file register f itself. $d = 1$ is useful to test a file register since status flag Z is affected			
Words:	1			
Cycles:	1			
Example:	MOVF FSR, 0			
	After Instruction W = value in FSRn register Z = 1			

Note: Unless otherwise noted, VIN = 5V, FOSC = 300 kHz, CIN = 0.1 μ F, TA = 25°C.

FIGURE 37-55: 100mA IO VOH vs. IOH Over Temperature, VDD = 1.8V, PIC16LF1764/5/8/9 Only.

FIGURE 37-56: 100mA IO VoL vs. IoL Over Temperature, VDD = 1.8V, PIC16LF1764/5/8/9 Only.

FIGURE 37-57: LFINTOSC Frequency, PIC16LF1764/5/8/9 Only.

FIGURE 37-58: LFINTOSC Frequency, PIC16F1764/5/8/9 Only.

FIGURE 37-59: WDT Time-Out Period, PIC16F1764/5/8/9 Only.

FIGURE 37-60: WDT Time-Out Period, PIC16LF1764/5/8/9 Only.