

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	18
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	128 x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 12x10b; D/A 2x5b, 2x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	20-VFQFN Exposed Pad
Supplier Device Package	20-QFN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f1769-e-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on All Other Resets
Bank	< 2										
10Ch	LATA	—	—	LATA<	<5:4>	—		LATA<2:0>		xx -xxx	uu -uuu
10Dh	LATB ⁽²⁾		LA	ATB<7:4>		_	_	—	—	xxxx	uuuu
10Eh	LATC	LATC	<7:6> ⁽²⁾			LATC<5	i:0>			XXXX XXXX	uuuu uuuu
10Fh	CMOUT	—	_	_	—	MC4OUT ⁽²⁾	MC3OUT ⁽²⁾	MC2OUT	MC1OUT	0000	0000
110h	CM1CON0	ON	OUT	—	POL	ZLF	Reserved	HYS	SYNC	00-0 0100	00-0 0100
111h	CM1CON1	_	—	—	—	_	—	INTP	INTN	00	00
112h	CM1NSEL	_	—	—	—	_		NCH<2:0>		000	000
113h	CM1PSEL	_	—	—	—	_		PCH<2:0>		000	000
114h	CM2CON0	ON	OUT	—	POL	ZLF	Reserved	HYS	SYNC	00-0 0100	00-0 0100
115h	CM2CON1	—	—	—	—	—	—	INTP	INTN	00	00
116h	CM2NSEL	—	—	—	—	—		NCH<2:0>		000	000
117h	CM2PSEL	_	—	—	—	_		PCH<2:0>		000	000
118h	CM3CON0 ⁽²⁾	ON	OUT	—	POL	ZLF	Reserved	HYS	SYNC	00-0 0100	00-0 0100
119h	CM3CON1 ⁽²⁾	_	_	—	_	_	_	INTP	INTN	00	00
11Ah	CM3NSEL ⁽²⁾	_	_	—	_	_		NCH<2:0>		000	000
11Bh	CM3PSEL ⁽²⁾	_	_	—	_	_		PCH<2:0>		000	000
11Ch	CM4CON0 ⁽²⁾	ON	OUT	—	POL	ZLF	Reserved	HYS	SYNC	00-0 0100	00-0 0100
11Dh	CM4CON1 ⁽²⁾	_	_	—	_	_	—	INTP	INTN	00	00
11Eh	CM4NSEL ⁽²⁾	_	_	—	_	_		NCH<2:0>		000	000
11Fh	CM4PSEL ⁽²⁾	—	—	—	—	_		PCH<2:0>		000	000
Bank	c 3										
18Ch	ANSELA	_	—	—	ANSA4	_		ANSA<2:0>		1 -111	1 -111
18Dh	ANSELB ⁽²⁾		AN	ISB<7:4>		_	—	_	_	1111	1111
18Eh	ANSELC	ANSC	<7:6> ⁽²⁾	—	—		ANSC	C<3:0>		11 1111	11 1111
18Fh	—	Unimplemer	nted							—	—
190h	—	Unimplemen	nted							—	—
191h	PMADRL	Program Me	emory Address	s Register Low By	/te					0000 0000	0000 0000
192h	PMADRH	(1)	Program Mei	mory Address Re	gister High Byte					1000 0000	1000 0000
193h	PMDATL	Program Me	emory Read D	ata Register Low	Byte					XXXX XXXX	uuuu uuuu
194h	PMDATH	_	_	Program Memor	y Read Data Re	gister High Byt	e			xx xxxx	uu uuuu
195h	PMCON1	(1)	CFGS	LWLO	FREE	WRERR	WREN	WR	RD	1000 x000	1000 q000
196h	PMCON2	Program Me	emory Control	Register 2						0000 0000	0000 0000
197h	VREGCON ⁽⁴⁾	_	_	—	_	_	_	VREGPM	Reserved	01	01
198h	—	Unimplemer	nted							_	_
199h	RC1REG	EUSART Re	eceive Data R	egister						0000 0000	0000 0000
19Ah	TX1REG	EUSART Tr	ransmit Data F	Register						0000 0000	0000 0000
19Bh	SP1BRGL				SP1BR0	G<7:0>				0000 0000	0000 0000
19Ch	SP1BRGH				SP1BRG	i<15:8>				0000 0000	0000 0000
19Dh	RC1STA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 0000	0000 0000
19Eh	TX1STA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	0000 0010	0000 0010
19Fh	BAUD1CON	ABDOVF	RCIDL	_	SCKP	BRG16	_	WUE	ABDEN	01-0 0-00	01-0 0-00

TABLE 3-16: SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)

Legend: x = unknown; u = unchanged; q = value depends on condition; - = unimplemented, read as '0'; r = reserved. Shaded locations are unimplemented, read as '0'.

Note 1: Unimplemented, read as '1'.

2: PIC16(L)F1768/9 only.

3: PIC16(L)F1764/5 only.

4: Unimplemented on PIC16LF1764/5/8/9.

REGISTER 4-4: REVID: REVISION ID REGISTER

		R	R	R	R	R	R
			IX I	IX.	IX .	IX I	IX IX
				REV<13:	8>		
		bit 13					bit 8
R	R	R	R	R	R	R	R
			RE\	/<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit		'1' = Bit is set		'0' = Bit is cleared			

R = Readable bit '1' = Bit is set

bit 13-0 REV<13:0>: Revision ID bits

5.4 Two-Speed Clock Start-up Mode

Two-Speed Clock Start-up mode provides additional power savings by minimizing the latency between external oscillator start-up and code execution. In applications that make heavy use of the Sleep mode, Two-Speed Start-up will remove the external oscillator start-up time from the time spent awake and can reduce the overall power consumption of the device. This mode allows the application to wake-up from Sleep, perform a few instructions using the Internal Oscillator Block, INTOSC, as the clock source and go back to Sleep without waiting for the external oscillator to become stable.

Two-Speed Start-up provides benefits when the oscillator module is configured for LP, XT or HS modes. The Oscillator Start-up Timer (OST) is enabled for these modes and must count 1024 oscillations before the oscillator can be used as the system clock source.

If the oscillator module is configured for any mode other than LP, XT or HS mode, then Two-Speed Start-up is disabled. This is because the external clock oscillator does not require any stabilization time after POR or an exit from Sleep. If the OST count reaches 1024 before the device enters Sleep mode, the OSTS bit of the OSCSTAT register is set and program execution switches to the external oscillator. However, the system may never operate from the external oscillator if the time spent awake is very short.

Note:	Executing a SLEEP instruction will abort
	the oscillator start-up time and will cause
	the OSTS bit of the OSCSTAT register to
	remain clear.

5.4.1 TWO-SPEED START-UP MODE CONFIGURATION

Two-Speed Start-up mode is configured by the following settings:

- IESO (of the Configuration Words) = 1; Internal/External Switchover bit (Two-Speed Start-up mode enabled).
- SCS<1:0> (of the OSCCON register) = 00.
- FOSC<2:0> bits in the Configuration Words configured for LP, XT or HS mode.

Two-Speed Start-up mode is entered after:

- Power-on Reset (POR) and, if enabled, after Power-up Timer (PWRT) has expired, or
- · Wake-up from Sleep.

Switch From	Switch To	Frequency	Oscillator Delay
Sleep	LFINTOSC MFINTOSC HFINTOSC ⁽¹⁾	31 kHz 31.25 kHz-500 kHz 31.25 kHz-16 MHz	Oscillator Warm-up Delay (Twarm) ⁽²⁾
Sleep	EC, RC ⁽¹⁾	DC- 32 MHz	2 cycles
LFINTOSC	EC, RC ⁽¹⁾	DC-32 MHz	1 Cycle of Each
Sleep	Secondary Oscillator LP, XT, HS ⁽¹⁾	32 kHz-20 MHz	1024 Clock Cycles (OST)
Any Clock Source	MFINTOSC HFINTOSC ⁽¹⁾	31.25 kHz-500 kHz 31.25 kHz-16 MHz	2 μs (approx.)
Any Clock Source	LFINTOSC	31 kHz	1 Cycle of Each
Any Clock Source	Secondary Oscillator	32 kHz	1024 Clock Cycles (OST)
PLL Inactive	PLL Active	16-32 MHz	2 ms (approx.)

TABLE 5-1: OSCILLATOR SWITCHING DELAYS

Note 1: PLL is inactive.

2: See Table 36-8.

23.6.4 LEVEL-TRIGGERED HARDWARE LIMIT MODE

In the Level-Triggered Hardware Limit Timer modes, the counter is reset by high or low levels of the external signal, TMRx_ers, as shown in Figure 23-7. Selecting MODE<4:0> = 00110 will cause the timer to reset on a low-level external signal. Selecting MODE<4:0> = 00111 will cause the timer to reset on a high-level external signal. In the example, the counter is reset while TMRx_ers = 1. ON is controlled by BSF and BCF instructions. When ON = 0, the external signal is ignored.

When the CCP uses the timer as the PWM time base, then the PWM output will be set high when the timer starts counting and then set low only when the timer count matches the CCPRx value. The timer is reset when either the timer count matches the PRx value or two clock periods after the external Reset signal goes true and stays true.

The timer starts counting, and the PWM output is set high, on either the clock following the PRx match or two clocks after the external Reset signal relinquishes the Reset. The PWM output will remain high until the timer counts up to match the CCPRx pulse-width value. If the external Reset signal goes true while the PWM output is high then the PWM output will remain high until the Reset signal is released allowing the timer to count up to match the CCPRx value.

24.4 CCP/PWM Clock Selection

The PIC16(L)F1764/5/8/9 allows each individual CCP and PWM module to select the timer source that controls the module. Each module has an independent selection.

As there are up to three 8-bit timers with auto-reload (Timer2/4/6), the PWM mode on the CCP and PWM modules can use any of these timers.

The CCPTMRS register is used to select which timer is used.

24.4.1 USING THE TMR2/4/6 WITH THE CCP MODULE

This device has a new version of the TMR2 module that has many new modes, which allow for greater customization and control of the PWM signals than older parts. Refer to **Section 23.6 "Operation Examples"** for examples of PWM signal generation using the different modes of Timer2. The CCP operation requires that the timer used as the PWM time base has the Fosc/4 clock source selected.

24.4.2 PWM PERIOD

The PWM period is specified by the T2PR/T4PR/T6PR register of Timer2/4/6. The PWM period can be calculated using the formula of Equation 24-1.

EQUATION 24-1: PWM PERIOD

 $PWM Period = [(PR2) + 1] \bullet 4 \bullet Tosc \bullet$ (TMR2 Prescale Value)

Note 1: Tosc = 1/Fosc.

When TMR2/4/6 is equal to its respective T2PR/T4PR/T6PR register, the following three events occur on the next increment cycle:

- TMR2/4/6 is cleared
- The CCPx pin is set. (Exception: If the PWM duty cycle = 0%, the pin will not be set.)
- The PWM duty cycle is latched from the CCPRxH:CCPRxL pair into the internal 10-bit latch.

Note: The Timer postscaler (see Figure 24-1) is not used in the determination of the PWM frequency.

24.4.3 PWM DUTY CYCLE

The PWM duty cycle is specified by writing a 10-bit value to two registers: the CCPRxH:CCPRxL register pair. Where the particular bits go is determined by the FMT bit of the CCPxCON register. If FMT = 0, the two Most Significant bits of the duty cycle value should be written to bits<1:0> of the CCPRxH register and the remaining eight bits to the CCPRxL register. If FMT = 1, the Least Significant two bits of the duty cycle should be written to bits<7:6> of the CCPRxL register and the Most Significant eight bits to the CCPRxL register and the Most Significant eight bits to the CCPRxL register. This is illustrated in Figure 24-4. These bits can be written at any time. The duty cycle value is not latched into the internal latch until after the period completes (i.e., a match between T2PR/T4PR/T6PR and TMR2/4/6 registers occurs).

Equation 24-2 is used to calculate the PWM pulse width. Equation 24-3 is used to calculate the PWM duty cycle ratio.

EQUATION 24-2: PULSE WIDTH

EQUATION 24-3: DUTY CYCLE RATIO

 $Duty Cycle Ratio = \frac{(CCPRxH:CCPRxL)}{4(PRx+1)}$

The PWM Duty Cycle registers are double-buffered for glitchless PWM operation.

The 8-bit timer TMR2/4/6 register is concatenated with either the 2-bit internal system clock (Fosc), or two bits of the prescaler, to create the 10-bit time base. The system clock is used if the Timer2/4/6 prescaler is set to 1:1.

When the 10-bit time base matches the internal buffer register, then the CCPx pin is cleared (see Figure 24-3).

FIGURE 24-4: CCPx DUTY CYCLE ALIGNMENT

FIGURE 26-2: LOAD TRIGGER BLOCK DIAGRAM

26.1 Fundamental Operation

The PWM module produces a 16-bit resolution Pulse-Width Modulated output.

Each PWM module has an independent timer driven by a selection of clock sources determined by the PWMxCLKCON register (Register 26-4). The timer value is compared to Event Count registers to generate the various events of a the PWM waveform, such as the period and duty cycle. For a block diagram describing the clock sources, refer to Figure 26-3.

Each PWM module can be enabled individually using the EN bit of the PWMxCON register, or several PWM modules can be enabled simultaneously using the MPWMxEN bits of the PWMEN register.

The current state of the PWM output can be read using the OUT bit of the PWMxCON register. In some modes, this bit can be set and cleared by software, giving additional software control over the PWM waveform. This bit is synchronized to Fosc/4 and therefore, does not change in real time with respect to the PWM_clock.

Note: If PWM_clock > Fosc/4, the OUT bit may not accurately represent the output state of the PWM.

FIGURE 26-3:

PWMx CLOCK SOURCE BLOCK DIAGRAM

26.1.1 PWMx PIN CONFIGURATION

This device uses the PPS control circuitry to route peripherals to any device I/O pin. Select the desired pin, or pins, for PWM output with the device pin, using the RxyPPS control register (Register 12-2).

All PWM outputs are multiplexed with the PORT data latch, so the pins must also be configured as outputs by clearing the associated PORT TRISx bits.

The slew rate feature may be configured to optimize the rate to be used in conjunction with the PWM _outputs. High-speed output switching is attained by clearing the associated PORT SLRCONx bits.

The PWM outputs can be configured to be open-drain outputs by setting the associated PORT ODCONx bits.

26.1.2 PWMx Output Polarity

The output polarity is inverted by setting the POL bit of the PWMxCON register. The polarity control affects the PWM output even when the module is not enabled.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
OSCCON	SPLLEN		IRCF<3:0> — SCS<1:0>						84
PWMEN	_	_	MPWM6EN ⁽¹⁾	MPWM5EN	_	_	_	_	291
PWMLD	—	_	MPWM6LD ⁽¹⁾	MPWM5LD	_	—	_		291
PWMOUT	_	_	MPWM6OUT ⁽¹⁾	MPWM5OUT	_	_	_	_	291
PWM5PHL			•	PH<7:0	>				286
PWM5PHH				PH<15:8	}>				286
PWM5DCL				DC<7:0	>				287
PWM5DCH				DC<15:8	}>				287
PWM5PRH				PR<15:8	}>				288
PWM5PRL				PR<7:0	>				288
PWM50FH				OF<15:8	}>				289
PWM50FL				OF<7:0	>				289
PWM5TMRH				TMR<15:	8>				290
PWM5TMRL				TMR<7:0)>				290
PWM5CON	EN	_	OUT	POL	MODE	<1:0>	_	—	280
PWM5INTE	—	—	—	—	OFIE	PHIE	DCIE	PRIE	281
PWM5INTF	_	_	—		OFIF	PHIF	DCIF	PRIF	282
PWM5CLKCON	—		PS<2:0>		—	—	CS<	<1:0>	283
PWM5LDCON	LDA	LDT ⁽¹⁾	—	_	_	—	—	LDS ⁽¹⁾	284
PWM50FC0N	—	OF	M<1:0> ⁽¹⁾	OFO	—	—	—	OFS ⁽¹⁾	285
PWM6PHL ⁽¹⁾				PH<7:0	>				286
PWM6PHH ⁽¹⁾				PH<15:8	}>				286
PWM6DCL ⁽¹⁾				DC<7:0	>				287
PWM6DCH ⁽¹⁾				DC<15:8	}>				287
PWM6PRL ⁽¹⁾				PR<7:0	>				288
PWM6PRH ⁽¹⁾				PR<15:8	}>				288
PWM6OFL ⁽¹⁾				OF<7:0	>				289
PWM6OFH ⁽¹⁾				OF<15:8	}>				289
PWM6TMRL ⁽¹⁾				TMR<7:0)>				290
PWM6TMRH ⁽¹⁾				TMR<15:	8>				290
PWM6CON ⁽¹⁾	EN	_	OUT	POL	MODE	<1:0>	_	—	280
PWM6INTE ⁽¹⁾	_	_		—	OFIE	PHIE	DCIE	PRIE	281
PWM6INTF ⁽¹⁾	—	_		_	OFIF	PHIF	DCIF	PRIF	282
PWM6CLKCON ⁽¹⁾	—		PS<2:0>		_	_	CS<	<1:0>	283
PWM6LDCON ⁽¹⁾	LDA	LDT ⁽¹⁾		—	—	—	—	LDS ⁽¹⁾	284
PWM60FC0N ⁽¹⁾	—	OF	M<1:0> ⁽¹⁾	OFO	_	—	—	OFS ⁽¹⁾	285

TABLE 26-2: SUMMARY OF REGISTERS ASSOCIATED WITH PWMx

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by PWM.

Note 1: PIC16(L)F1768/9 only

TABLE 26-3: SUMMARY OF CONFIGURATION WORDS WITH CLOCK SOURCES

Name	Bits	Bit -/7	Bit -/6	Bit 13/5	Bit 12/4	Bit 11/3	Bit 10/2	Bit 9/1	Bit 8/0	Register on Page
	13:8	_	—	FCMEN	IESO	CLKOUTEN	BOREN<1:0>		—	62
CONFIGT	7:0	CP	MCLRE	PWRTE	WDTE<1:0>		<1:0> FOSC<2:0>			03

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by clock sources.

FIGURE 27-12:	FULL-BRIDGE FORWARD MODE COG OPERATION WITH CCP1
CCP1	
COGxA	
COGxB	
COGxC	
COGxD	

FIGURE 27-13: FULL-BRIDGE MODE COG OPERATION WITH CCP1 AND DIRECTION CHANGE

CCP1					
COGxA					
COGxB		→ ← Fa	alling Event Dead	I-Band	
COGxC					
COGxD					
MD0					

27.4 Clock Sources

The COG_clock is used as the reference clock to the various timers in the peripheral. Timers that use the COG_clock include:

- Rising and falling dead-band time
- Rising and falling blanking time
- · Rising and falling event phase delay

Clock sources available for selection include:

- 16 MHz HFINTOSC (active during Sleep)
- Instruction clock (Fosc/4)
- System clock (Fosc)

The clock source is selected with the CS<1:0> bits of the COGxCON0 register (Register 27-1).

27.5 Selectable Event Sources

The COG uses any combination of independently selectable event sources to generate the complementary waveform. Sources fall into two categories:

- Rising event sources
- · Falling event sources

The rising event sources are selected by setting bits in the COGxRIS0 and COGxRIS1 registers (Register 27-3 and Register 27-4). The falling event sources are selected by setting bits in the COGxFIS0 and COGxF1 registers (Register 27-7 and Register 27-8). All selected sources are OR'd together to generate the corresponding event signal. Refer to Figure 27-7.

27.5.1 EDGE vs. LEVEL SENSING

Event input detection may be selected as level or edge-sensitive. The Detection mode is individually selectable for every source. Rising Source Detection modes are selected with the COGxRSIM0 and COGxRSIM1 registers (Register 27-5 and Register 27-6). Falling Source Detection modes are selected with the COGxFSIM0 and COGxFSIM1 registers (Register 27-9 and Register 27-10). A set bit selects edge detection for the corresponding event source. A cleared bit selects level detection. In general, events that are driven from a periodic source should be edge-detected and events that are derived from voltage thresholds at the target circuit should be level-sensitive. Consider the following two examples:

1. The first example is an application in which the period is determined by a 50% duty cycle clock on the rising event input and the COG output duty cycle is determined by a voltage level fed back through a comparator on the falling event input. If the clock input is level-sensitive, duty cycles less than 50% will exhibit erratic operation because the level-sensitive clock will suppress the comparator feedback.

2. The second example is similar to the first except that the duty cycle is close to 100%. The feedback comparator high-to-low transition trips the COG drive off, but almost immediately the period source turns the drive back on. If the off cycle is short enough, the comparator input may not reach the low side of the hysteresis band precluding an output change. The comparator output stays low and without a high-to-low transition to trigger the edge sense, the drive of the COG output will be stuck in a constant drive-on condition. See Figure 27-14.

FIGURE 27-14: EDGE vs. LEVEL SENSE

Rising (CCP1)
Falling (C1OUT)
C1IN- hyst
COGOUT
Edge-Sensitive
Rising (CCP1)
Falling (C1OUT)
C1IN- hyst
COGOUT
Level-Sensitive

REGISTER 27-5: COGxRSIM0: COGx RISING EVENT SOURCE INPUT MODE REGISTER 0 (CONTINUED)

bit 1 RSIM1: COGx Rising Event Input Source 1 Mode bit

RIS1 = 1:

- 1 = Comparator 1 low-to-high transition will cause a rising event after rising event phase delay
- 0 = Comparator 1 high level will cause an immediate rising event

RIS1 = 0:

Comparator 1 has no effect on rising event.

RSIM0: COGx Rising Event Input Source 0 Mode bit

RIS0 = 1:

bit 0

- 1 = Pin selected with COGxINPPS register low-to-high transition will cause a rising event after rising event phase delay
- 0 = Pin selected with COGxINPPS register high level will cause an immediate rising event RIS0 = 0:

Pin selected with COGxINPPS register has no effect on rising event.

DS40001775C-page 404

PIC16(L)F1764/5/8/9

32.8 Register Definitions: MSSP Control

REGISTER 32-1: SSP1STAT: MSSP STATUS REGISTER

R/W-0/0	R/W-0/0	R-0/0	R-0/0	R-0/0	R-0/0	R-0/0	R-0/0	
SMP	CKE	D/A	Р	S	R/W	UA	BF	
bit 7							bit 0	
							,	
Legend:								
R = Readable I	oit	W = Writable I	oit					
u = Bit is uncha	anged	x = Bit is unkn	own	U = Unimpler	nented bit, read	as '0'		
'1' = Bit is set		'0' = Bit is clea	ared	-n/n = Value a	at POR and BOI	R/Value at all o	ther Resets	
bit 7	SMP: SPI Data Input Sample bit <u>SPI Master mode:</u> 1 = Input data sampled at end of data output time							
	 Input data sampled at middle of data output time <u>SPI Slave mode:</u> SMP must be cleared when SPI is used in Slave mode. <u>In I²C Master or Slave mode:</u> 1 = Slew rate control is disabled for Standard Speed mode (100 kHz and 1 MHz) Slew rate control is enabled for High-Speed mode (400 kHz) 							
bit 6	 CKE: SPI Clock Edge Select bit (SPI mode only) <u>In SPI Master or Slave mode:</u> 1 = Transmit occurs on transition from active to Idle clock state 0 = Transmit occurs on transition from Idle to active clock state <u>In I²C mode only:</u> 1 = Enables input logic so that thresholds are compliant with SMBus specification 							
bit 5	D/A: Data/Add 1 = Indicates f 0 = Indicates f	dress bit (I ² C m that the last by that the last by	node only) te received or te received or	transmitted wa	as data as address			
bit 4	P: Stop bit (I ² 1 = Indicates f 0 = Stop bit w	C mode only; th that a Stop bit I as not detected	nis bit is clear nas been dete t last	ed when the M ected last (this	ISSP module is bit is '0' on Res	disabled, SSPI et)	EN is cleared)	
bit 3	S: Start bit (I ²) 1 = Indicates f 0 = Start bit w	C mode only; th that a Start bit I as not detected	nis bit is clear nas been dete d last	ed when the M ected last (this	ISSP module is bit is '0' on Res	disabled, SSPI et)	EN is cleared)	
bit 2	 R/W: Read/Write bit information (I²C mode only) This bit holds the R/W bit information following the last address match. This bit is only valid from the address match to the next Start bit, Stop bit or not ACK bit. In I²C Slave mode: Read Write In I²C Master mode: Transmit is in progress Transmit is not in progress Transmit is pot in progress 							
bit 1	UA: Update A 1 = Indicates t 0 = Address d	ddress bit (10- that the user ne loes not need t	bit I ² C mode eeds to updat o be updated	only) e the address i	in the SSPxADE) register		

RX/DT Pin TX/CK Pin (SCKP = 0)	bit 0 bit 2 bit 3 bit 4 bit 5 bit 6 bit 7
TX/CK Pin (SCKP = 1)	
Write to SREN bit	
SREN bit	
CREN bit'0'	·0'
RCIF bit (Interrupt)	
Read RCxREG	
Note: Timing diagrar	n demonstrates Sync Master mode with bit SREN = 1 and bit BRGH = 0 .

FIGURE 33-12: SYNCHRONOUS RECEPTION (MASTER MODE, SREN)

TABLE 33-8: SUMMARY OF REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER RECEPTION RECEPTION

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
ANSELA	_	—	—	ANSA4	— ANSA<2:0>				137
ANSELB ⁽¹⁾	ANSB<7:4>				—	—	—	—	143
ANSELC	ANSC<	7:6> (1)	—	—	ANSC<3:0>				148
BAUD1CON	ABDOVF	RCIDL	—	SCKP	BRG16	—	WUE	ABDEN	442
CKPPS	_	—	—		CKPPS<4:0>				
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	101
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSP1IE	CCP1IE	TMR2IE	TMR1IE	102
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSP1IF	CCP1IF	TMR2IF	TMR1IF	105
RC1REG	EUSART Receive Data Register							436*	
RC1STA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	441
RXPPS	_	—	—		154, 156				
RxyPPS	_	—	—	RxyPPS<4:0>					154
SP1BRGL	BRG<7:0>							443*	
SP1BRGH	BRG<15:8>							443*	
TRISA	_	—	TRISA	A<5:4>(2) TRISA<2:0>			136		
TRISB ⁽¹⁾	TRISB<7:4>				_	—	—	_	142
TRISC	TRISC<7:6> ⁽¹⁾				TRISC<5:0>				147
TX1STA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	440

Legend: — = unimplemented location, read as '0'. Shaded cells are not used for synchronous master reception.

* Page provides register information.

Note 1: PIC16(L)F1768/9 only.

2: Unimplemented, read as '1'.

TABLE 36-4: I/O PORTS

	1	· · · · · · · · · · · · · · · · · · ·	, 		1		1	
Param No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions	
	VIL	Input Low Voltage						
		I/O Ports:						
D034		with TTL Buffer	—		0.8	V	$4.5V \leq V\text{DD} \leq 5.5V$	
D034A			—	_	0.15 VDD	V	$1.8V \leq V\text{DD} \leq 4.5V$	
D035		with Schmitt Trigger Buffer	—		0.2 Vdd	V	$2.0V \leq V\text{DD} \leq 5.5V$	
		with I ² C Levels	—	_	0.3 Vdd	V		
		with SMBus Levels	—		0.8	V	$2.7V \leq V\text{DD} \leq 5.5V$	
D036		MCLR, OSC1 (EXTRC mode)	—		0.2 Vdd	V	(Note 1)	
D036A		OSC1 (HS mode)	—	_	0.3 VDD	V		
	Vih	Input High Voltage						
		I/O Ports:						
D040		with TTL Buffer	2.0	_	_	V	$4.5V \leq V\text{DD} \leq 5.5V$	
D040A			0.25 VDD + 0.8	_	_	V	$1.8V \le VDD \le 4.5V$	
D041		with Schmitt Trigger Buffer	0.8 VDD	_	_	V	$2.0V \le VDD \le 5.5V$	
		with I ² C Levels	0.7 Vdd	_	_	V		
		with SMBus Levels	2.1	_	_	V	$2.7V \le VDD \le 5.5V$	
D042		MCLR	0.8 VDD	_	_	V		
D043A		OSC1 (HS mode)	0.7 Vdd		_	V		
D043B		OSC1 (EXTRC oscillator)	0.9 VDD	_	_	V	VDD > 2.0V(Note 1)	
	lı∟	Input Leakage Current ⁽²⁾						
D060		I/O Ports	—	± 5	± 125	nA	Vss \leq VPIN \leq VDD, Pin at high-impedance, +85°C	
			—	± 5	± 1000	nA	Vss \leq VPIN \leq VDD, Pin at high-impedance, +125°C	
D061		MCLR ⁽³⁾	—	± 50	± 200	nA	Vss \leq VPIN \leq VDD, Pin at high-impedance, +85°C	
	IPUR	Weak Pull-up Current			•			
D070*			25	100	200	μA	VDD = 3.3V, VPIN = VSS	
			25	140	300	μA	VDD = 5.0V, VPIN = VSS	
	Vol	Output Low Voltage ⁽⁴⁾			•			
D080		Standard I/O ports	—	_	0.6	V	IOL = 8mA, VDD = 5V IOL = 6mA, VDD = 3.3V IOL = 1.8mA, VDD = 1.8V	
D080A		High Drive I/O ports	_	_	0.6	V	ЮН = 10mA, VDD = 2.3V, HIDCx = 1	
				0.6 0.6		V V	IOH = 32mA, VDD = 3.0V, HIDCx = 1 IOH = 51mA, VDD = 5.0V, HIDCx = 1	

Data in "Typ" column is at 3.0V, +25°C unless otherwise stated. These parameters are for design guidance only and are not † tested.

Note 1: In EXTRC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended to use an external clock in EXTRC mode.

2: Negative current is defined as current sourced by the pin.

3: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

4: Including OSC2 in CLKOUT mode.

Standar	Standard Operating Conditions (unless otherwise stated)							
Param No.	Sym.	Characteristic	Тур.	Units	Conditions			
TH01	θJA	Thermal Resistance Junction to Ambient	70.0	°C/W	14-pin PDIP package			
			95.3	°C/W	14-pin SOIC package			
			100.0	°C/W	14-pin TSSOP package			
			51.5	°C/W	16-pin QFN 4x4 mm package			
			62.2	°C/W	20-pin PDIP package			
			87.3	°C/W	20-pin SSOP			
			77.7	°C/W	20-pin SOIC package			
			43.0	°C/W	20-pin QFN 4x4 mm package			
TH02	θJC	Thermal Resistance Junction to Case	32.75	°C/W	14-pin PDIP package			
			31.0	°C/W	14-pin SOIC package			
			24.4	°C/W	14-pin TSSOP package			
			5.4	°C/W	16-pin QFN 4x4 mm package			
			27.5	°C/W	20-pin PDIP package			
			31.1	°C/W	20-pin SSOP			
			23.1	°C/W	20-pin SOIC package			
			5.3	°C/W	20-pin QFN 4x4 mm package			
TH03	Тјмах	Maximum Junction Temperature	150	°C				
TH04	PD	Power Dissipation	_	W	PD = PINTERNAL + PI/O			
TH05	PINTERNAL	Internal Power Dissipation	_	W	PINTERNAL = IDD x VDD ⁽¹⁾			
TH06	Pi/o	I/O Power Dissipation		W	$PI/O = \Sigma (IOL * VOL) + \Sigma (IOH * (VDD - VOH))$			
TH07	Pder	Derated Power	_	W	РDER = PDMAX (ТJ – ТА)/ӨЈА ⁽²⁾			

TABLE 36-6: THERMAL CHARACTERISTICS

Г

Note 1: IDD is current to run the chip alone without driving any load on the output pins.

2: TA = Ambient Temperature, TJ = Junction Temperature.

Note: Unless otherwise noted, VIN = 5V, Fosc = 300 kHz, CIN = 0.1 μ F, TA = 25°C.

FIGURE 37-49: Standard IO Voн vs. Ioн Over Temperature, VDD = 1.8V, PIC16LF1764/5/8/9 Only.

FIGURE 37-50: Standard IO VOL vs. IOL Over Temperature, VDD = 1.8V, PIC16LF1764/5/8/9 Only.

FIGURE 37-51: 100mA IO VOH vs. IOH Over Temperature, VDD = 5.5V, PIC16F1764/5/8/9 Only.

FIGURE 37-52: 100mA IO VoL vs. IoL Over Temperature, VDD = 5.5V, PIC16F1764/5/8/9 Only.

FIGURE 37-53: 100mA IO Voh vs. Ioh Over Temperature, VDD = 3.0V.

FIGURE 37-54: VOL vs. IOL Over Temperature, VDD = 3.0V.

Example

PIN 1

PIN 1

16-Lead QFN (4x4x0.9 mm)

PIC16(L)F1764/5/8/9

20-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

VIEW C

l	MILLIMETERS				
Dimension Lim	MIN	NOM	MAX		
Number of Pins	Ν	20			
Pitch	е	1.27 BSC			
Overall Height	Α	-	-	2.65	
Molded Package Thickness	A2	2.05	-	-	
Standoff §	A1	0.10	-	0.30	
Overall Width	E	10.30 BSC			
Molded Package Width	E1	7.50 BSC			
Overall Length	D	12.80 BSC			
Chamfer (Optional)	h	0.25	-	0.75	
Foot Length	L	0.40	-	1.27	
Footprint	L1	1.40 REF			
Lead Angle	O	0°	-	-	
Foot Angle	φ	0°	-	8°	
Lead Thickness	c	0.20	-	0.33	
Lead Width	b	0.31	-	0.51	
Mold Draft Angle Top	α	5°	-	15°	
Mold Draft Angle Bottom	β	5°	_	15°	

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. § Significant Characteristic
- 3. Dimension D does not include mold flash, protrusions or gate burrs, which shall not exceed 0.15 mm per end. Dimension E1 does not include interlead flash or protrusion, which shall not exceed 0.25 mm per side.
- Dimensioning and tolerancing per ASME Y14.5M BSC: Basic Dimension. Theoretically exact value shown without tolerances.
 - REF: Reference Dimension, usually without tolerance, for information purposes only.
- 5 Datums A & B to be determined at Datum H.

Microchip Technology Drawing No. C04-094C Sheet 2 of 2

Note the following details of the code protection feature on Microchip devices:

- · Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC[®] MCUs and dsPIC[®] DSCs, KEELOQ[®] code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV = ISO/TS 16949=

Trademarks

The Microchip name and logo, the Microchip logo, AnyRate, AVR, AVR logo, AVR Freaks, BeaconThings, BitCloud, chipKIT, chipKIT logo, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, Heldo, JukeBlox, KEELOQ, KEELOQ logo, Kleer, LANCheck, LINK MD, maXStylus, maXTouch, MediaLB, megaAVR, MOST, MOST logo, MPLAB, OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, Prochip Designer, QTouch, RightTouch, SAM-BA, SpyNIC, SST, SST Logo, SuperFlash, tinyAVR, UNI/O, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

ClockWorks, The Embedded Control Solutions Company, EtherSynch, Hyper Speed Control, HyperLight Load, IntelliMOS, mTouch, Precision Edge, and Quiet-Wire are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, BodyCom, CodeGuard, CryptoAuthentication, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial Programming, ICSP, Inter-Chip Connectivity, JitterBlocker, KleerNet, KleerNet Iogo, Mindi, MiWi, motorBench, MPASM, MPF, MPLAB Certified Iogo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PureSilicon, QMatrix, RightTouch Iogo, REAL ICE, Ripple Blocker, SAM-ICE, Serial Quad I/O, SMART-I.S., SQI, SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2014-2017, Microchip Technology Incorporated, All Rights Reserved.

ISBN: 978-1-5224-1442-1