Microchip Technology - PIC16F1769-I/SO Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	18
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	128 × 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 12x10b; D/A 2x5b, 2x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SOIC (0.295", 7.50mm Width)
Supplier Device Package	20-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f1769-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 3-12: PIC16(L)F1764/5 MEMORY MAP (BANKS 27-30)

	Bank 27		Bank 28		Bank 29		Bank 30
8Ch	—	E0Ch	—	E8Ch	—	F0Ch	_
8Dh	_	E0Dh	_	E8Dh	_	F0Dh	_
08Eh	PWMEN	E0Eh	_	E8Eh	_	F0Eh	_
D8Fh	PWMLD	E0Fh	PPSLOCK	E8Fh	_	F0Fh	CLCDATA
D90h	PWMOUT	E10h	INTPPS	E90h	RA0PPS	F10h	CLC1CON
D91h	PWM5PHL	E11h	TOCKIPPS	E91h	RA1PPS	F11h	CLC1POL
D92h	PWM5PHH	E12h	T1CKIPPS	E92h	RA2PPS	F12h	CLC1SEL0
D93h	PWM5DCL	E13h	TIGPPS	E93h	-	F13h	CLC1SEL1
D94h	PWM5DCH	E14h	CCP1PPS	E94h	RA4PPS	F14h	CLC1SEL2
D95h	PWM5PRL	E15h	0011110	E95h	RA5PPS	F15h	CLC1SEL3
D96h	PWM5PRH	E16h	COG1INPPS	E96h	NAJEE 3	F16h	CLC1GLS0
D97h	PWM50FL	E17h	COGHINFF3	E97h		F17h	CLC1GLS1
D98h	PWM50FH	E18h		E98h		F18h	CLC1GLS2
D99h	PWM5TMRL	E19h	T2INPPS	E99h	_	F19h	CLC1GLS3
D9Ah	PWM5TMRH	E1Ah	T3CKIPPS	E9Ah		F1Ah	CLC2CON
D9Bh	PWM5CON	E1Bh	T3GPPS	E9Bh		F1Bh	CLC2POL
D9Ch	PWM5INTE	E1Ch	T4INPPS	E9Ch	_	F1Ch	CLC2SEL0
D9Dh	PWM5INTF	E1Dh	T5CKIPPS	E9Dh	_	F1Dh	CLC2SEL1
D9Eh	PWM5CLKCON	E1Eh	T5GPPS	E9Eh	_	F1Eh	CLC2SEL2
D9Fh	PWM5LDCON	E1Fh	T6INPPS	E9Fh	_	F1Fh	CLC2SEL3
DA0h	PWM50FC0N	E20h	SSPCLKPPS	EA0h	RC0PPS	F20h	CLC2GLS0
DA1h	_	E21h	SSPDATPPS	EA1h	RC1PPS	F21h	CLC2GLS1
DA2h	—	E22h	SSPSSPPS	EA2h	RC2PPS	F22h	CLC2GLS2
DA3h	—	E23h	-	EA3h	RC3PPS	F23h	CLC2GLS3
DA4h	—	E24h	RXPPS	EA4h	RC4PPS	F24h	CLC3CON
DA5h	_	E25h	CKPPS	EA5h	RC5PPS	F25h	CLC3POL
DA6h	_	E26h	_	EA6h	_	F26h	CLC3SEL0
DA7h	_	E27h	_	EA7h	—	F27h	CLC3SEL1
DA8h	_	E28h	CLCIN0PPS	EA8h	_	F28h	CLC3SEL2
DA9h	_	E29h	CLCIN1PPS	EA9h	_	F29h	CLC3SEL3
DAAh	_	E2Ah	CLCIN2PPS	EAAh	_	F2Ah	CLC3GLS0
DABh	_	E2Bh	CLCIN3PPS	EABh	_	F2Bh	CLC3GLS1
DACh	_	E2Ch	PRG1FPPS	EACh	_	F2Ch	CLC3GLS2
DADh		E2Dh	PRG1RPPS	EADh		F2Dh	CLC3GLS3
DAEh		E2Eh		EAEh		F2Eh	
DAFh		E2Fh		EAFh		F2Fh	
DB0h		E30h	MD1CHPPS	EB0h		F30h	
DB011		E3011 E31h	MD1CLPPS	EB011		F301	
			MD1CLPPS MD1MODPPS				
DB2h	_	E32h		EB2h	_	F32h	_
DB3h	_	E33h	_	EB3h	_	F33h	_
DB4h	_	E34h	—	EB4h	_	F34h	_
DB5h		E35h	—	EB5h		F35h	_
DB6h	_	E36h	_	EB6h		F36h	_
DB7h	—	E37h	—	EB7h	—	F37h	—
DB8h	—	E38h	—	EB8h	_	F38h	—
DB9h	—	E39h	—	EB9h		F39h	—
DBAh	—	E3Ah	—	EBAh	_	F3Ah	_
DBBh	—	E3Bh	_	EBBh	—	F3Bh	—
DBCh	_	E3Ch	_	EBCh	_	F3Ch	_
DBDh	_	E3Dh	_	EBDh	_	F3Dh	_
DBEh	_	E3Eh	_	EBEh	_	F3Eh	_
DBFh	_	E3Fh	—	EBFh	_	F3Fh	_
DC0h		E40h		EC0h		F40h	
	-		—		—		-

PIC16(L)F1764/5/8/9

TABLE 3-16: SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)

	LE 3-10.								i	+	·
Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on All Other Resets
Bank	< 8										
40Ch											
 40Dh	_	Unimpleme	nted							_	_
40Eh	HIDRVC	_	_	HIDC	<5:4>	—	—	_	—	00	00
40Fh			•	•				•	•		
 412h	_	Unimpleme	nted							-	—
413h	T4TMR	Holding Reg	gister for the 8	-Bit TMR4 Regist	er					0000 0000	0000 0000
413h	T4PR	TMR4 Peric	od Register							1111 1111	1111 1111
415h	T4CON	ON		CKPS<2:0>			OUTP	S<3:0>		0000 0000	0000 0000
416h	T4HLT	PSYNC	CKPOL	CKSYNC			MODE<4:0>			0000 0000	0000 0000
417h	T4CLKCON	—	_	—	—		CS<	<3:0>		0000	0000
418h	T4RST	—	_	—	—		RSEL	_<3:0>		0000	0000
419h	_	Unimpleme	Unimplemented							_	—
41Ah	T6TMR	6TMR Holding Register for the 8-Bit TMR4 Register								0000 0000	0000 0000
41Bh	T6PR	TMR4 Perio	TMR4 Period Register						1111 1111	1111 1111	
41Ch	T6CON	ON	ON CKPS<2:0> OUTPS<3:0>						0000 0000	0000 0000	
41Dh	T6HLT	PSYNC	CKPOL	CKSYNC		I	MODE<4:0>			0000 0000	0000 0000
41Eh	T6CLKCON	—	—	—	_		CS<	<3:0>		0000	0000
41Fh	T6RST	—	—	—	—		RSEL	_<3:0>		0000	0000
Bank	(9										
48Ch to 492h	_	Unimplemented								_	_
493h	TMR3L	Holding Reg	gister for the L	east Significant B	yte of the 16-Bi	t TMR1 Register	r			XXXX XXXX	uuuu uuuu
494h	TMR3H	Holding Reg	gister for the N	lost Significant By	yte of the 16-Bit	TMR1 Register				XXXX XXXX	uuuu uuuu
495h	T3CON	CS	<1:0>	CKPS	<1:0>	OSCEN	SYNC	—	ON	0000 00-0	uuuu uu-u
496h	T3GCON	GE	GPOL	GTM	GSPM	GGO/DONE	GVAL	GSS	S<1:0>	00x0 0x00	uuuu uxuu
497h to 499h	_	Unimplemented								_	_
49Ah	TMR5L	Holding Reg	Holding Register for the Least Significant Byte of the 16-Bit TMR1 Register							XXXX XXXX	uuuu uuuu
49Bh	TMR5H	Holding Reg	gister for the N	lost Significant By	yte of the 16-Bit	TMR1 Register				XXXX XXXX	uuuu uuuu
49Ch	T5CON	CS	<1:0>	CKPS	<1:0>	OSCEN	SYNC	—	ON	0000 00-0	uuuu uu-u
49Dh	T5GCON	GE	GPOL	GTM	GSPM	GGO/DONE	GVAL	GSS	6<1:0>	00x0 0x00	uuuu uxuu
49Eh to 49Fh	—	Unimpleme	nted							_	_

Legend: x = unknown; u = unchanged; q = value depends on condition; - = unimplemented, read as '0'; x = reserved. Shaded locations are unimplemented, read as '0'.

Note 1: Unimplemented, read as '1'.

2: PIC16(L)F1768/9 only.

3: PIC16(L)F1764/5 only.

4: Unimplemented on PIC16LF1764/5/8/9.

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	
TMR1GIE	ADIE	RCIE	TXIE	SSP1IE	CCP1IE	TMR2IE	TMR1IE	
bit 7		·					bit	
Legend:								
R = Readable	bit	W = Writable	hit					
u = Bit is unch		x = Bit is unkr		U = Unimpler	mented bit, read	l as '0'		
'1' = Bit is set	•	'0' = Bit is cle			at POR and BO		ther Resets	
		0 21110 010						
bit 7	TMR1GIE: Ti	mer1 Gate Inte	errupt Enable b	oit				
	1 = Enables t	he Timer1 gate	e acquisition ir	nterrupt				
	0 = Disables	the Timer1 gate	e acquisition i	nterrupt				
bit 6	-	j-to-Digital Con	, ,	Interrupt Enabl	le bit			
		he ADC interru						
		= Disables the ADC interrupt						
bit 5		RT Receive Int	•					
	 1 = Enables the EUSART receive interrupt 0 = Disables the EUSART receive interrupt 							
bit 4		RT Transmit Int						
		he EUSART tra	•					
		the EUSART tr						
bit 3	SSP1IE: Mas	ter Synchrono	us Serial Port	(MSSP) Interru	upt Enable bit			
		he MSSP inter						
		the MSSP inter						
bit 2		P1 Interrupt En						
		he CCP1 interi						
bit 1		the CCP1 inter	•	-nabla bit				
DILI	1 TMR2IE: TMR2 to T2PR Match Interrupt Enable bit 1 = Enables the Timer2 to T2PR match interrupt							
		the Timer2 to T						
bit 0		er1 Overflow Ir		•				
		he Timer1 ove						
	0 = Disables							

REGISTER 7-2: PIE1: PERIPHERAL INTERRUPT ENABLE REGISTER 1

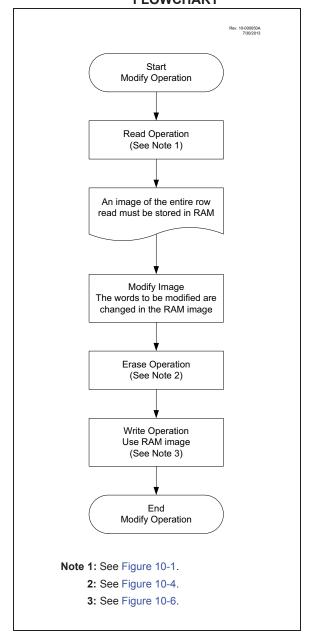
Note: Bit PEIE of the INTCON register must be set to enable any peripheral interrupt.

IABLE /-1:	SUMMAI	SUMMARY OF REGISTERS ASSOCIATED WITH INTERRUPTS							
Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	101
OPTION_REG	WPUEN	INTEDG	TMR0CS	TMR0SE	PSA		PS<2:0>		214
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSP1IE	CCP1IE	TMR2IE	TMR1IE	102
PIE2	OSFIE	C2IE	C1IE	—	BCL1IE	C4IE ⁽¹⁾	C3IE ⁽¹⁾	CCP2IE ⁽¹⁾	103
PIE3	PWM6IE ⁽¹⁾	PWM5IE	COG1IE	ZCDIE	COG2IE ⁽¹⁾	CLC3IE	CLC2IE	CLC1IE	104
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSP1IF	CCP1IF	TMR2IF	TMR1IF	105
PIR2	OSFIF	C2IF	C1IF	—	BCL1IF	C4IF ⁽¹⁾	C3IF ⁽¹⁾	CCP2IF ⁽¹⁾	106
PIR3	PWM6IF ⁽¹⁾	PWM5IF	COG1IF	ZCDIF	COG2IF ⁽¹⁾	CLC3IF	CLC2IF	CLC1IF	107

011

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by interrupts.

Note 1: PIC16(L)F1768/9 only.


10.3 Modifying Flash Program Memory

When modifying existing data in a program memory row, and data within that row must be preserved, it must first be read and saved in a RAM image. Program memory is modified using the following steps:

- 1. Load the starting address of the row to be modified.
- 2. Read the existing data from the row into a RAM image.
- 3. Modify the RAM image to contain the new data to be written into program memory.
- 4. Load the starting address of the row to be rewritten.
- 5. Erase the program memory row.
- 6. Load the write latches with data from the RAM image.
- 7. Initiate a programming operation.

FIGURE 10-7:

FLASH PROGRAM MEMORY MODIFY FLOWCHART

11.4 Register Definitions: PORTB

REGISTER 11-9: PORTB: PORTB REGISTER

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	U-0	U-0	U-0	U-0
	RB<7:	4> ⁽¹⁾		—	—	—	—
bit 7			· · ·			bit 0	
Legend:							
R = Readable bit W = Writable bit							
u = Bit is uncha	anged	x = Bit is unkr	nown	U = Unimplen	nented bit, read	as '0'	
'1' = Bit is set '0' = Bit is cleared -n/n = Value at POR and BOR/Value at all other Re				other Resets			

bit 7-4 **RB<7:4>**: PORTB General Purpose I/O Pin bits⁽¹⁾ 1 = Port pin is ≥ VIH 0 = Port pin is ≤ VIL

bit 3-0 Unimplemented: Read as '0'

Note 1: Writes to PORTB are actually written to the corresponding LATB register. Reads from PORTB register are the return of the actual I/O pin values.

REGISTER 11-10: TRISB: PORTB TRI-STATE REGISTER

R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	U-0	U-0	U-0	U-0
	TRISB	<7:4>		—	—	—	—
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	
u = Bit is unchanged	x = Bit is unknown	U = Unimplemented bit, read as '0'
'1' = Bit is set	'0' = Bit is cleared	-n/n = Value at POR and BOR/Value at all other Resets

TRISB<7:4>: PORTB Tri-State Control bits
1 = PORTB pin is configured as an input (tri-stated)
0 = PORTB pin is configured as an output

bit 3-0 Unimplemented: Read as '0'

REGISTER 11-19: LATC: PORTC DATA LATCH REGISTER

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
		LATC	<7:0> ⁽¹⁾			
						bit 0
bit	W = Writable	bit				
anged	x = Bit is unkr	nown	U = Unimpler	nented bit, read	as '0'	
	'0' = Bit is clea	ared	-n/n = Value a	at POR and BO	R/Value at all o	ther Resets
	bit	bit W = Writable anged x = Bit is unkr	bit W = Writable bit	bit $W = Writable bit$ anged $x = Bit is unknown U = Unimpler$	bit $W = Writable bit$ anged $x = Bit is unknown U = Unimplemented bit, read$	bit $W = Writable bit$ anged $x = Bit is unknown U = Unimplemented bit, read as '0'$

bit 7-0 LATC<7:0>: PORTC Output Latch Value bits⁽¹⁾

Note 1: LATC<7:6> are available on PIC16(L)F1768/9 only.

REGISTER 11-20: ANSELC: PORTC ANALOG SELECT REGISTER

R/W-1/1	R/W-1/1	U-0	U-0	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1
ANSC<	:7:6> ⁽²⁾	—	—		ANSC	2<3:0>	
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	
u = Bit is unchanged	x = Bit is unknown	U = Unimplemented bit, read as '0'
'1' = Bit is set	'0' = Bit is cleared	-n/n = Value at POR and BOR/Value at all other Resets

bit 7-6	 ANSC<7:6>: Analog Select Between Analog or Digital Function on RC<7:6> Pins bits⁽²⁾ 1 = Analog input; pin is assigned as an analog input, digital input buffer is disabled⁽¹⁾ 0 = Digital I/O; pin is assigned to port or digital special function
bit 5-4	Unimplemented: Read as '0'
bit 3-0	ANSC<3:0> : Analog Select Between Analog or Digital Function on RC<3:0> Pins bits 1 = Analog input; pin is assigned as an analog input, digital input buffer is disabled ⁽¹⁾ 0 = Digital I/O; pin is assigned to port or digital special function

- **Note 1:** When setting a pin to an analog input, the corresponding TRISx bit must be set to Input mode in order to allow external control of the voltage on the pin.
 - 2: ANSC<7:6> are available on PIC16(L)F1768/9 only.

17.0 5-BIT DIGITAL-TO-ANALOG CONVERTER (DAC) MODULE

The Digital-to-Analog Converter supplies a variable voltage reference, ratiometric with the input source, with 32 selectable output levels.

The input of the DAC can be connected to:

- External VREF pins
- VDD supply voltage
- FVR (Fixed Voltage Reference)

The output of the DAC can be configured to supply a reference voltage to the following:

- Comparator positive input
- Operational amplifier inverting and non-inverting inputs
- · ADC input channel
- DACxOUT1 pin

TABLE 17-1:AVAILABLE 5-BIT DACs

Device	D3	D4
PIC16(L)F1764	•	
PIC16(L)F1765	•	
PIC16(L)F1768	•	٠
PIC16(L)F1769	٠	•

The Digital-to-Analog Converter (DAC) is enabled by setting the EN bit of the DACxCON0 register.

17.1 Output Voltage Selection

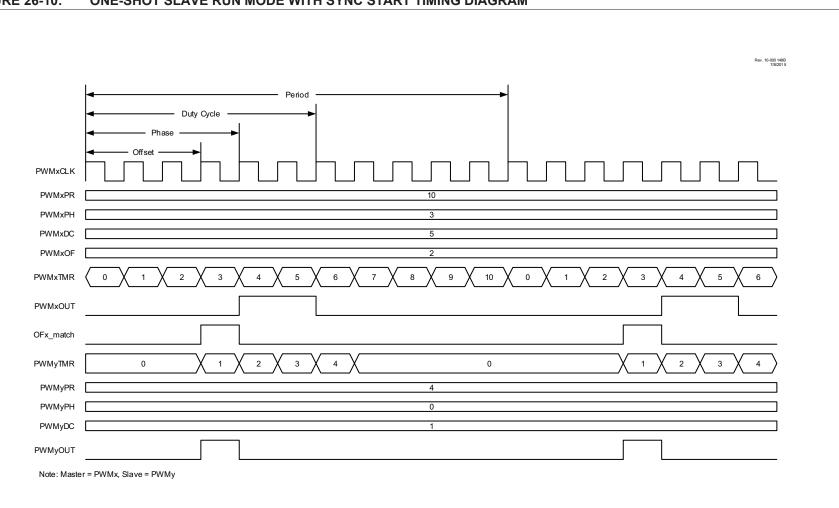
The DAC has 32 voltage level ranges. The 32 levels are set with the REF<4:0> bits of the DACxREF register.

The DAC output voltage is determined by Equation 17-1.

EQUATION 17-1: DAC OUTPUT VOLTAGE

$$\frac{IF \ DACxEN = 1:}{VOUT} = \left((VSOURCE+ - VSOURCE-) \times \frac{DACxR[4:0]}{2^5} \right) + VSOURCE-$$
$$VSOURCE+ = VDD, \ VREF, \ or \ FVR \ Buffer 2$$
$$VSOURCE- = VSS$$

17.2 Ratiometric Output Level


The DAC output value is derived using a resistor ladder with each end of the ladder tied to a positive and negative voltage reference input source. If the voltage of either input source fluctuates, a similar fluctuation will result in the DAC output value.

The value of the individual resistors within the ladder can be found in Table 36-20.

17.3 DAC Voltage Reference Output

The DAC voltage can be output to the DACxOUT1 pin by setting the OE1 bit of the DACxCON0 register. Selecting the DAC voltage for output on the DACxOUT1 pin automatically overrides the digital output buffer and digital input threshold detector functions of that pin. Reading the DACxOUT1 pin when it has been configured for DAC voltage output will always return a '0'.

Due to the limited current drive capability, a buffer must be used on the DAC voltage output for external connections to the DACxOUT1 pin. Figure 17-2 shows an example buffering technique.

FIGURE 26-10: ONE-SHOT SLAVE RUN MODE WITH SYNC START TIMING DIAGRAM

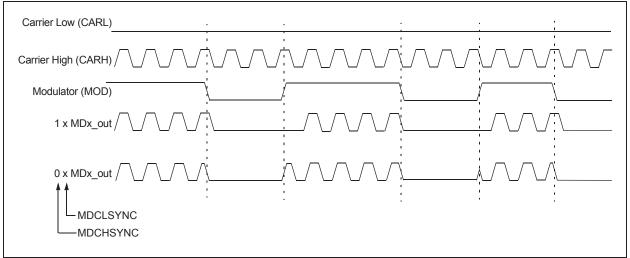
PIC16(L)F1764/5/8/9

27.15 Register Definitions: COG Control

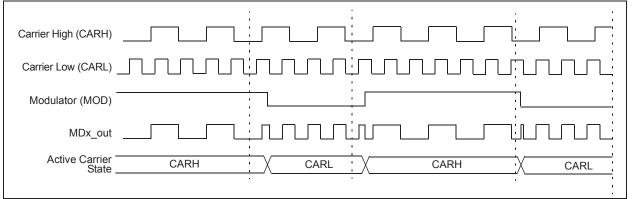
Long bit name prefixes for the COG peripherals are shown in Table 27-3. Refer to **Section 1.1** "**Register and Bit Naming Conventions**" for more information.

TABLE 27-3: BIT NAME PREFIXES

Peripheral	Bit Name Prefix
COG1	G1
COG2 ⁽¹⁾	G2


Note 1: PIC16(L)F1768/9 devices only.

REGISTER 27-1: COGxCON0: COGx CONTROL REGISTER 0


R/W-0/0	R/W-0/0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
EN	LD		CS<1:0>			MD<2:0>	
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit				
u = Bit is unch	anged	x = Bit is unkr	nown	U = Unimpler	mented bit, read	1 as '0'	
'1' = Bit is set		'0' = Bit is clea	ared	-n/n = Value a	at POR and BO	R/Value at all o	ther Resets
bit 7	EN: COGx Er	nable bit					
	1 = Module is 0 = Module is						
bit 6	LD: COGx Lo	ad Buffers bit					
		lanking and de to buffer transf			d with register v	alues on next i	nput events
bit 5	Unimplemen	ted: Read as '	0'				
bit 4-3	CS<1:0>: CO	Gx Clock Sele	ction bits				
11 = Reserved; do not use 10 = COG_clock is HFINTOSC (stays active during Sleep) 01 = COG_clock is Fosc 00 = COG_clock is Fosc/4							
bit 2-0	MD<2:0>: CC	OGx Mode Sele	ection bits				
<pre>11x = Reserved; do not use 101 = COG outputs operate in Push-Pull mode 100 = COG outputs operate in Half-Bridge mode 011 = COG outputs operate in Reverse Full-Bridge mode 010 = COG outputs operate in Forward Full-Bridge mode 001 = COG outputs operate in Synchronous Steered PWM mode 000 = COG outputs operate in Steered PWM mode</pre>							

PIC16(L)F1764/5/8/9

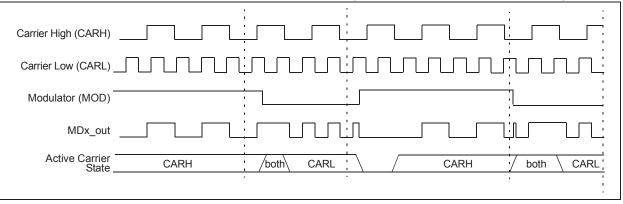


FIGURE 31-4: CARRIER HIGH SYNCHRONIZATION (MDCHSYNC = 1, MDCLSYNC = 0)

32.4.9 ACKNOWLEDGE SEQUENCE

The 9th SCL pulse for any transferred byte in I^2C is dedicated as an Acknowledge. It allows receiving devices to respond back to the transmitter by pulling the SDA line low. The transmitter must release control of the line during this time to shift in the response. The Acknowledge (ACK) is an active-low signal, pulling the SDA line low indicates to the transmitter that the device has received the transmitted data and is ready to receive more.

The result of an \overline{ACK} is placed in the ACKSTAT bit of the SSPxCON2 register.

Slave software, when the AHEN and DHEN bits are set, allows the user to set the ACK value sent back to the transmitter. The ACKDT bit of the SSPxCON2 register is set/cleared to determine the response.

Slave hardware will generate an ACK response if the AHEN and DHEN bits of the SSPxCON3 register are clear.

There are certain conditions where an ACK will not be sent by the slave. If the BF bit of the SSPxSTAT register or the SSPOV bit of the SSPxCON1 register are set when a byte is received.

When the module is addressed, after the eighth falling edge of SCL on the bus, the ACKTIM bit of the SSPxCON3 register is set. The ACKTIM bit indicates the Acknowledge time of the active bus. The ACKTIM status bit is only active when the AHEN bit or DHEN bit is enabled.

32.5 I²C Slave Mode Operation

The MSSP Slave mode operates in one of four modes selected by the SSPM<3:0> bits of SSPxCON1 register. The modes can be divided into 7-Bit and 10-Bit Addressing modes. 10-Bit Addressing mode operates the same as 7-bit with some additional overhead for handling the larger addresses.

Modes with Start and Stop bit interrupts operate the same as the other modes, with SSPxIF additionally getting set upon detection of a Start, Restart or Stop condition.

32.5.1 SLAVE MODE ADDRESSES

The SSPxADD register (Register 32-6) contains the Slave mode address. The first byte received after a Start or Restart condition is compared against the value stored in this register. If the byte matches, the value is loaded into the SSPxBUF register and an interrupt is generated. If the value does not match, the module goes Idle and no indication is given to the software that anything happened.

The SSP Mask register (Register 32-5) affects the address matching process. See **Section 32.5.8 "SSP Mask Register**" for more information.

32.5.1.1 I²C Slave 7-Bit Addressing Mode

In 7-Bit Addressing mode, the LSb of the received data byte is ignored when determining if there is an address match.

32.5.1.2 I²C Slave 10-Bit Addressing Mode

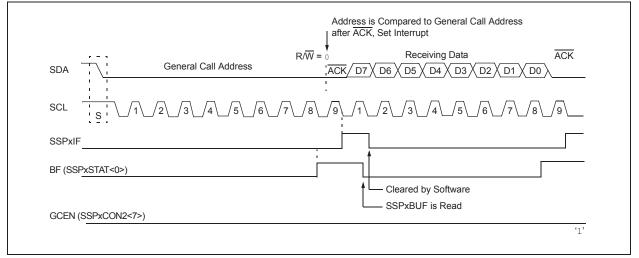
In 10-Bit Addressing mode, the first received byte is compared to the binary value of '1 1 1 1 0 A9 A8 0'. A9 and A8 are the two MSbs of the 10-bit address and stored in bits 2 and 1 of the SSPxADD register.

After the Acknowledge of the high byte, the UA bit is set and SCL is held low until the user updates SSPxADD with the low address. The low address byte is clocked in and all eight bits are compared to the low address value in SSPxADD. Even if there is not an address match, SSPxIF and UA are set, and SCL is held low until SSPxADD is updated to receive a high byte again. When SSPxADD is updated, the UA bit is cleared. This ensures the module is ready to receive the high address byte on the next communication.

A high and low address match as a write request is required at the start of all 10-Bit Addressing communication. A transmission can be initiated by issuing a Restart once the slave is addressed, and clocking in the high address with the R/W bit set. The slave hardware will then Acknowledge the read request and prepare to clock out data. This is only valid for a slave after it has received a complete high and low address byte match.

32.5.7 GENERAL CALL ADDRESS SUPPORT

The addressing procedure for the I^2C bus is such that the first byte after the Start condition usually determines which device will be the slave addressed by the master device. The exception is the general call address which can address all devices. When this address is used, all devices should, in theory, respond with an Acknowledge.


The general call address is a reserved address in the $I^{2}C$ protocol, defined as address: 0x00. When the GCEN bit of the SSPxCON2 register is set, the slave module will automatically ACK the reception of this address, regardless of the value stored in SSPxADD. After the slave clocks in an address of all zeros, with the

R/W bit clear, an interrupt is generated and slave software can read SSPxBUF and respond. Figure 32-24 shows a general call reception sequence.

In 10-Bit Address mode, the UA bit will not be set on the reception of the general call address. The slave will prepare to receive the second byte as data, just as it would in 7-bit mode.

If the AHEN bit of the SSPxCON3 register is set, just as with any other address reception, the slave hardware will stretch the clock after the eighth falling edge of SCL. The slave must then set its ACKDT value and release the clock with communication progressing as it would normally.

FIGURE 32-24: SLAVE MODE GENERAL CALL ADDRESS SEQUENCE

32.5.8 SSP MASK REGISTER

An MSSP Mask (SSPxMSK) register (Register 32-5) is available in I²C Slave mode as a mask for the value held in the SSPSR register during an address comparison operation. A zero ('0') bit in the SSPxMSK register has the effect of making the corresponding bit of the received address a "don't care". This register is reset to all '1's upon any Reset condition, and therefore, has no effect on standard SSP operation until written with a mask value.

The MSSP Mask register is active during:

- 7-Bit Address mode: Address compare of A<7:1>.
- 10-Bit Address mode: Address compare of A<7:0> only. The MSSP mask has no effect during the reception of the first (high) byte of the address.

32.6.13.3 Bus Collision During a Stop Condition

Bus collision occurs during a Stop condition if:

- a) After the SDA pin has been deasserted and allowed to float high, SDA is sampled low after the BRG has timed out (Case 1).
- b) After the SCL pin is deasserted, SCL is sampled low before SDA goes high (Case 2).

The Stop condition begins with SDA asserted low. When SDA is sampled low, the SCL pin is allowed to float. When the pin is sampled high (clock arbitration), the Baud Rate Generator is loaded with SSPxADD and counts down to zero. After the BRG times out, SDA is sampled. If SDA is sampled low, a bus collision has occurred. This is due to another master attempting to drive a data '0' (Figure 32-38). If the SCL pin is sampled low before SDA is allowed to float high, a bus collision occurs. This is another case of another master attempting to drive a data '0' (Figure 32-39).

FIGURE 32-38: BUS COLLISION DURING A STOP CONDITION (CASE 1)

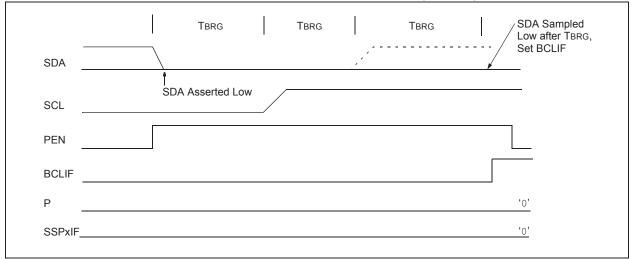
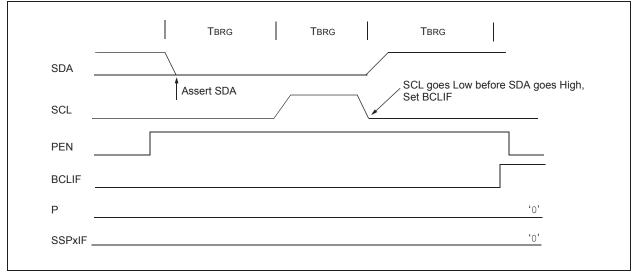
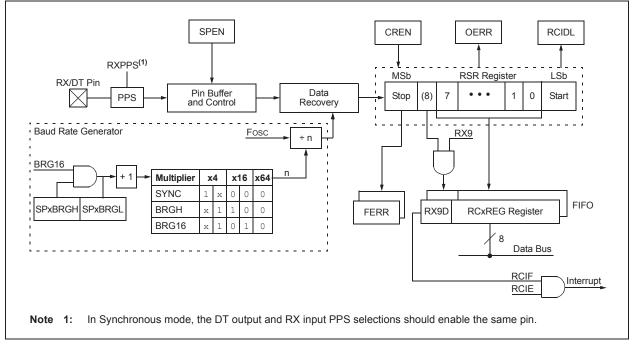



FIGURE 32-39: BUS COLLISION DURING A STOP CONDITION (CASE 2)


R-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
ACKTIM ⁽³⁾	PCIE	SCIE	BOEN	SDAHT	SBCDE	AHEN	DHEN
bit 7							bit (
Legend:							
R = Readable	e bit	W = Writable	bit				
u = Bit is unc	hanged	x = Bit is unki	nown	U = Unimpler	mented bit, read	l as '0'	
'1' = Bit is set	t	'0' = Bit is cle	ared	-n/n = Value	at POR and BO	R/Value at all c	other Resets
			or r - 1 · · · · · · · · · · · · · · · · · ·		(3)		
bit 7		nowledge Tim			s only) ^{ey} e, set on eighth	falling adda of	SCI alaak
	1 = Indicates 0 = Not an Ac	knowledae se	quence. cleare	edge sequenc ed on 9 th rising	edge of SCL cl	lock	SCL CIUCK
bit 6		ondition Interru	-	-	-		
		nterrupt on det		•	5,		
	•	ction interrupts					
bit 5		ondition Interru	•	•	• /		
		nterrupt on det ction interrupts			ditions		
bit 4		· Overwrite Ena		,			
	In SPI Slave						
			ry time that a r	new data byte	is shifted in, ign	oring the BF bi	t
		te is received N1 register is s			T register alrea	dy set, the SS	POV bit of th
	In I ² C Master	mode and SP	I Master mode	<u>:</u>			
	This bit is igno						
	of the SS	F is updated a POV bit only it	f the BF bit = 0)	eceived address	s/data byte, ign	oring the stat
		F is only updat					
bit 3		Hold Time Se					
		of 300 ns hold of 100 ns hold					
bit 2				-	C Slave mode o	onlv)	
	If, on the risir	ng edge of SC	L, SDA is san	npled low whe	n the module is	• •	high state, th
		the PIR2 regis		the bus goes I	dle		
		lave bus collis collision interi		led			
bit 1		ss Hold Enabl	-				
			,	3,	ching received	address byte:	CKP bit of th
	SSPxCO	N1 register wil	I be cleared an				
		holding is disa					
bit 0		Hold Enable bi		3,			
	bit of the	y the eighth fall SSPxCON1 re ding is disabled	egister and SC		ed data byte; sla	ave hardware o	lears the CK
		-					
wł	or daisy-chained s nen a new byte is	received and	BF = 1, but ha	rdware continu	es to write the n	nost recent byte	e to SSP1BU
	his bit has no effe abled.	ect in Slave mo	oues in which S	Start and Stop	condition detec	uon is explicitly	IISTED AS

REGISTER 32-4: SSP1CON3: MSSP CONTROL REGISTER 3

3: The ACKTIM status bit is only active when the AHEN bit or DHEN bit is set.

PIC16(L)F1764/5/8/9

The operation of the EUSART module is controlled through three registers:

- Transmit Status and Control (TXxSTA)
- Receive Status and Control (RCxSTA)
- Baud Rate Control (BAUDxCON)

These registers are detailed in Register 33-1, Register 33-2 and Register 33-3, respectively.

The RX and CK input pins are selected with the RXPPS and CKPPS registers, respectively. TX, CK and DT output pins are selected with each pin's RxyPPS register. Since the RX input is coupled with the DT output in Synchronous mode, it is the user's responsibility to select the same pin for both of these functions when operating in Synchronous mode. The EUSART control logic will control the data direction drivers automatically.

TABLE 36-15: ANALOG-TO-DIGITAL CONVERTER (ADC) CHARACTERISTICS^(1,2,3,4)

Operating Conditions (unless otherwise stated) VDD = 3.0V, Ta = +25°C, Single-Ended, 2 μs TaD, VREF+ = 3V, VREF- = Vss										
Param No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions			
AD01	Nr	Resolution	_	_	10	bit				
AD02	EIL	Integral Error	—		±1.7	LSb	VREF = 3.0V			
AD03	Edl	Differential Error	—		±1	LSb	No missing codes, VREF = 3.0V			
AD04	EOFF	Offset Error	_	—	±2.5	LSb	VREF = 3.0V			
AD05	Egn	Gain Error	_	—	±2.0	LSb	VREF = 3.0V			
AD06	Vref	Reference Voltage	1.8		Vdd	V	VREF = (VREF+ – VREF-)			
AD07	VAIN	Full-Scale Range	Vss	_	VREF	V				
AD08	Zain	Recommended Impedance of Analog Voltage Source	-	—	10	kΩ	Can go higher if external 0.01 μF capacitor is present on input pin			

These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, +25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Total Absolute Error includes integral, differential, offset and gain errors.

- 2: The ADC conversion result never decreases with an increase in the input voltage and has no missing codes.
- 3: ADC VREF is from external VREF+ pin, VDD pin or FVR, whichever is selected as reference input.
- 4: See Section 37.0 "DC and AC Characteristics Graphs and Charts" for operating characterization.

TABLE 36-16: ADC CONVERSION REQUIREMENTS

Standar	Standard Operating Conditions (unless otherwise stated)									
Param No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions			
AD130*	TAD	ADC Clock Period (TADC)	1.0	—	9.0	μS	Fosc-based			
		ADC Internal FRC Oscillator Period (TFRC)	1.0	2	6.0	μS	ADCS<1:0> = 11 (ADC FRC mode)			
AD131	TCNV	Conversion Time (not including Acquisition Time) ⁽¹⁾	-	11	—	Tad	Set GO/DONE bit to conversion complete			
AD132*	TACQ	Acquisition Time	_	5.0	_	μS				
AD133*	THCD	Holding Capacitor Disconnect Time	—	1/2 Tad	_		ADCS<2:0> ≠ x11 (Fosc-based)			
			—	1/2 TAD + 1 TCY	—		ADCS<2:0> = x11 (FRC-based)			

These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, +25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: The ADRES register may be read on the following TCY cycle.

TABLE 36-17: OPERATIONAL AMPLIFIER (OPA)

Operating Conditions (unless otherwise stated) VDD = 3.0V, TA = +25°C, OPAxSP = 1 (High GBWP mode)									
Param No.	Symbol	Parameters	Min.	Тур.	Max.	Units	Conditions		
OPA01*	GBWP	Gain Bandwidth Product		3	—	MHz			
OPA02*	TON	Turn-on Time	—	10		μS			
OPA03*	Рм	Phase Margin	—	40	—	degrees			
OPA04*	SR	Slew Rate		3	—	V/μs			
OPA05	Off	Offset	—	±3	±9	mV			
OPA06	CMRR	Common-Mode Rejection Ratio	52	70	—	dB			
OPA07*	AOL	Open-Loop Gain	—	90	—	dB			
OPA08	VICM	Input Common-Mode Voltage	0	—	Vdd	V	VDD > 2.5V		
OPA09*	PSRR	Power Supply Rejection Ratio	—	80		dB			
OPA10*	HZ	High-Impedance On/Off Time	_	50		ns			
OPA11*	ISC	Short Circuit Current	—	50	_	mA			

* These parameters are characterized but not tested.

TABLE 36-18: PROGRAMMABLE RAMP GENERATOR (PRG) SPECIFICATIONS

Operating Conditions (unless otherwise stated)	
--	--

VDD = 3.0V, TA = $+25^{\circ}C$ (unless otherwise stated)

Param No.	Sym.	Characteristics	Min.	Тур.	Max.	Units	Comments
PRG01	RRR	Rising Ramp Rate	_	1	_	V/µs	PRGxCON2 = 10h
PRG02	FRR	Falling Ramp Rate		1	_	V/μs	PRGxCON2 = 10h

* These parameters are characterized but not tested.

TABLE 36-19: COMPARATOR SPECIFICATIONS

Operating Conditions (unless otherwise stated)

VDD = 3.0V, TA = +25°C

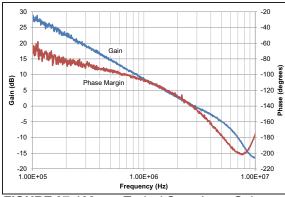
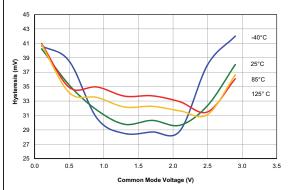
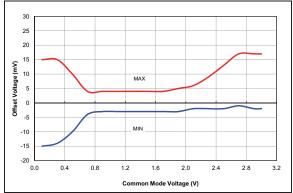
See Section 37.0 "DC and AC Characteristics Graphs and Charts" for operating characterization.

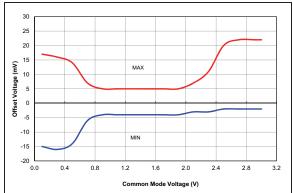
					-	-	
Param No.	Sym.	Characteristics	Min.	Тур.	Max.	Units	Comments
CM01	VIOFF	Input Offset Voltage	—	±2.5	±5	mV	VICM = VDD/2
CM02	VICM	Input Common-Mode Voltage	0	—	Vdd	V	
CM03	CMRR	Common-Mode Rejection Ratio	35	50	—	dB	
CM04A	TRESP ⁽¹⁾	Response Time Rising Edge	—	60	125	ns	Normal Power mode
CM04B		Response Time Falling Edge	—	60	110	ns	Normal Power mode
CM04C		Response Time Rising Edge	_	85	—	ns	Low-Power mode
CM04D		Response Time Falling Edge	—	85	—	ns	Low-Power mode
CM05*	Тмс2о∨	Comparator Mode Change to Output Valid*	_	_	10	μS	
CM06	CHYSTER	Comparator Hysteresis	20	45	75	mV	CxHYS = 1

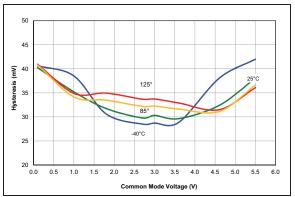
* These parameters are characterized but not tested.

Note 1: Response time measured with one comparator input at VDD/2, while the other input transitions from Vss to VDD.

Note: Unless otherwise noted, VIN = 5V, Fosc = 300 kHz, CIN = 0.1 μ F, TA = 25°C.


FIGURE 37-103: Typical Open Loop Gain, Phase Vs. Frequency, PIC16F1764/5/8/9 Only.


FIGURE 37-104: Comparator Hysteresis, NP Mode (CxSP = 1), VDD = 3.0V, Typical Measured Values.

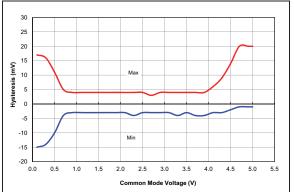

FIGURE 37-105: Comparator Offset, NP Mode (CxSP = 1), VDD = 3.0V, Typical Measured Values at 25°C.

FIGURE 37-106: Comparator Offset, NP Mode (CxSP = 1), VDD = 3.0V, Typical Measured Values From -40°C to 125°C.

FIGURE 37-107: Comparator Hysteresis, NP Mode (CxSP = 1), VDD = 5.5V, Typical Measured Values, PIC16F1764/5/8/9 Only.

FIGURE 37-108: Comparator Offset, NP Mode (CxSP = 1), VDD = 5.0V, Typical Measured Values at 25°C, PIC16F1764/5/8/9 Only.

THE MICROCHIP WEBSITE

Microchip provides online support via our WWW site at www.microchip.com. This website is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the website contains the following information:

- Product Support Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip website at www.microchip.com. Under "Support", click on "Customer Change Notification" and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- · Local Sales Office
- Field Application Engineer (FAE)
- Technical Support

Customers should contact their distributor, representative or Field Application Engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the website at: http://microchip.com/support