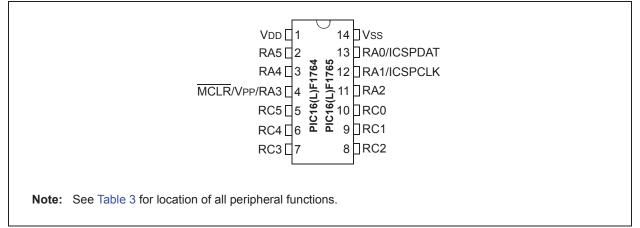


Welcome to E-XFL.COM

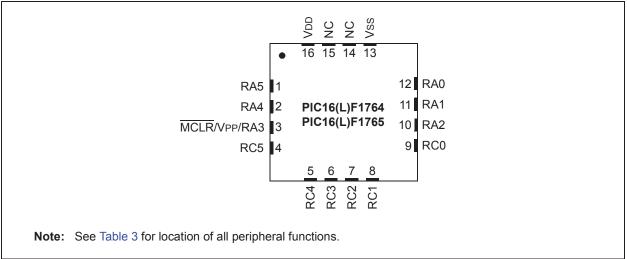
What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

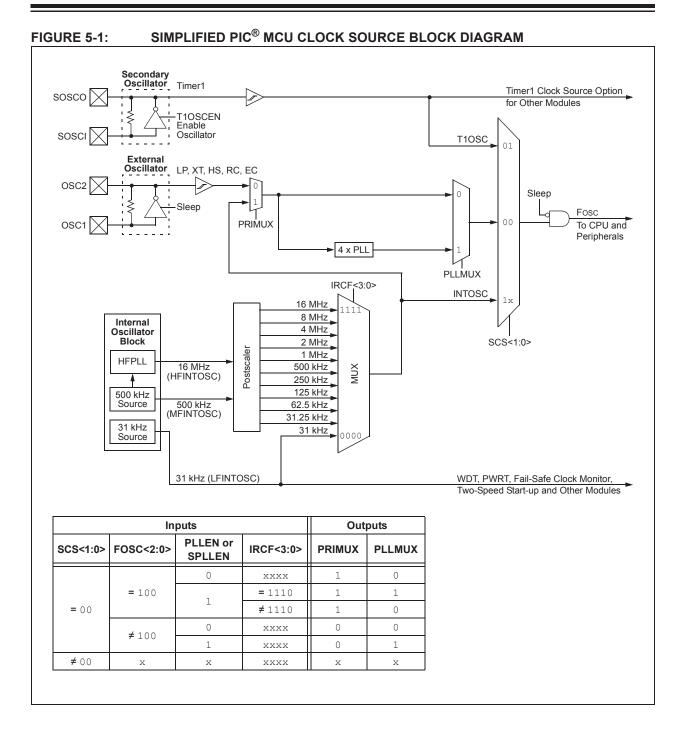

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	18
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	128 x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 12x10b; D/A 2x5b, 2x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SSOP (0.209", 5.30mm Width)
Supplier Device Package	20-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f1769-i-ss


Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

PIN DIAGRAMS


FIGURE 2: 16-PIN QFN (4x4)

		R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	
		LVP ⁽¹⁾	DEBUG ⁽²⁾	LPBOR	BORV ⁽³⁾	STVREN	PLLEN	
		bit 13	•				bit 8	
R/P-1	U-1	U-1	U-1	U-1	R/P-1	R/P-1	R/P-1	
ZCD		_	_		PPS1WAY	WRT-	<1:0>	
bit 7	•	•	•				bit 0	
Legend:								
R = Readab	ole bit	P = Program	nable bit	U = Unimpler	nented bit, read	as '1'		
'0' = Bit is c	leared	'1' = Bit is set		-n = Value wh	en blank or afte	er Bulk Erase		
bit 13	LVP: Low-V	oltage Program	ning Enable bit	(1)				
		w-Voltage Progra						
		gh-voltage on M		sed for program	nming			
bit 12		-Circuit Debugge					(O	
		Circuit Debugge Circuit Debugge						
bit 11		w-Power BOR E		or orreation to			00009901	
		w-Power Brown-		sabled				
	0 = On Lo	w-Power Brown-	out Reset is en	abled				
bit 10	BORV: Brow	wn-out Reset Vo	tage Selection	bit ⁽³⁾				
		own-out Reset V						
		own-out Reset V	•	•	s selected			
bit 9		Stack Overflow/U						
		ack Overflow or l ack Overflow or l			set			
bit 8		L Enable bit						
		PLL is enabled						
	0 = Off 4x	PLL is disabled						
bit 7	ZCD: ZCD I	Enable bit						
		D is disabled, Z		bled by setting	the ZCDSEN b	it of ZCDCON		
		D is always ena						
bit 6-3	-	ented: Read as '						
bit 2		PPSLOCK Bit O						
		e PPSLOCK bit PSLOCK is set, a					(ecuted; once	
		e PPSLOCK bit	-	-			g sequence is	
		ecuted)						
Note 1: 7	he LVP bit car	not be program	ned to '0' when	Programming	mode is entere	ed via LVP.		
		programmers. Fo						
•								

REGISTER 4-2: CONFIG2: CONFIGURATION WORD 2

3: See VBOR parameter for specific trip point voltages.

R-1/q	R-0/q	R-q/q	R-0/q	R-0/q	R-q/q	R-0/0	R-0/q	
SOSCR	PLLR	OSTS	HFIOFR	HFIOFL	MFIOFR	LFIOFR	HFIOFS	
bit 7								
Legend:								
R = Readable	bit	W = Writable	bit	q = Condition	al			
u = Bit is unch	anged	x = Bit is unkr	nown		mented bit, read			
'1' = Bit is set		'0' = Bit is cle	ared	-n/n = Value	at POR and BO	R/Value at all o	other Resets	
hit 7	COCCD: Coo	andon (Oppillo	ar Doody bit					
bit 7	If T10SCEN	ondary Oscillat – 1 ·	IOF Ready DIL					
		$\underline{-}$ $\underline{-}$ ry oscillator is	readv					
		ry oscillator is						
	If T1OSCEN							
		ry clock source	e is always rea	dy				
bit 6	PLLR 4x PLL	2						
	1 = 4x PLL is 0 = 4x PLL is							
bit 5		ator Start-up Ti	mer Status bit					
				FOSC<2:0> b	oits of the Config	guration Words		
		from an interna				5		
bit 4	HFIOFR: Hig	h-Frequency Ir	nternal Oscillat	or Ready bit				
	1 = HFINTOS							
1.10		SC is not ready						
bit 3	•	n-Frequency In		or Locked bit				
	 1 = HFINTOSC is at least 2% accurate 0 = HFINTOSC is not 2% accurate 							
bit 2		dium Frequenc		illator Ready b	it			
	1 = MFINTOSC is ready							
	0 = MFINTOSC is not ready							
bit 1	LFIOFR: Low-Frequency Internal Oscillator Ready bit							
1 = LFINTOSC is ready								
hit 0	0 = LFINTOSC is not ready							
bit 0	HFIOFS: High-Frequency Internal Oscillator Stable bit 1 = HFINTOSC is at least 0.5% accurate							
		SC is at least 0 SC is not 0.5%						

REGISTER 5-2: OSCSTAT: OSCILLATOR STATUS REGISTER

R/W-0/0	R/W-0/0	R/W-0/0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
OSFIE	C2IE	C1IE	_	BCL1IE	C4IE ⁽¹⁾	C3IE ⁽¹⁾	CCP2IE ⁽¹⁾
bit 7				·			bit 0
Lonordi							
Legend:	1.11						
R = Readable		W = Writable k					
u = Bit is uncl	•	x = Bit is unkn			mented bit, read		
'1' = Bit is set		'0' = Bit is clea	red	-n/n = Value a	at POR and BO	R/Value at all o	other Resets
bit 7	OSFIE: Osci	llator Fail Interru	pt Enable b	it			
		the Oscillator fa					
	0 = Disables	s the Oscillator fa	ail interrupt				
bit 6	C2IE: Compa	arator C2 Interru	pt Enable b	t			
		the Comparator					
		the Comparato					
bit 5		arator C1 Interru					
		the Comparator					
		the Comparato		Dt			
bit 4	•	nted: Read as '0					
bit 3		SP Bus Collision					
		the MSSP bus of the MSSP bus					
bit 2	C4IE: TMR6	to T6PR Match	Interrupt En	able bit ⁽¹⁾			
	1 = Enables	the Comparator	C4 interrup	t			
	0 = Disables the Comparator C4 interrupt						
bit 1	C3IE: TMR4	to T4PR Match	Interrupt En	able bit ⁽¹⁾			
	1 = Enables the Comparator C3 interrupt						
	0 = Disables the Comparator C3 interrupt						
bit 0	CCP2IE: CC	P2 Interrupt Ena	ble bit ⁽¹⁾				
		the CCP2 interr					
	0 = Disables	the CCP2 inter	rupt				
Note 1: Pl	C16(L)F1768/9	onlv.					

REGISTER 7-3: PIE2: PERIPHERAL INTERRUPT ENABLE REGISTER 2

Note: Bit PEIE of the INTCON register must be set to enable any peripheral interrupt.

REGISTER 10-6: PMCON2	: PROGRAM MEMORY	CONTROL 2 REGISTER
-----------------------	------------------	--------------------

W-0/0	W-0/0	W-0/0	W-0/0	W-0/0	W-0/0	W-0/0	W-0/0
		Prog	gram Memory	Control Regist	er 2		
bit 7							bit 0
Legend:							
R = Readable b	it	W = Writable I	bit				
S = Bit can only	be set	x = Bit is unkn	iown	U = Unimpler	nented bit, read	l as '0'	
'1' = Bit is set		'0' = Bit is cleared -n/n = Value at POR and BOR/Value at all other Resets					

bit 7-0 Program Memory Control 2: Flash Memory Unlock Pattern bits

To unlock writes, 55h must be written first, followed by AAh, before setting the WR bit of the PMCON1 register. The value written to this register is used to unlock the writes. There are specific timing requirements on these writes.

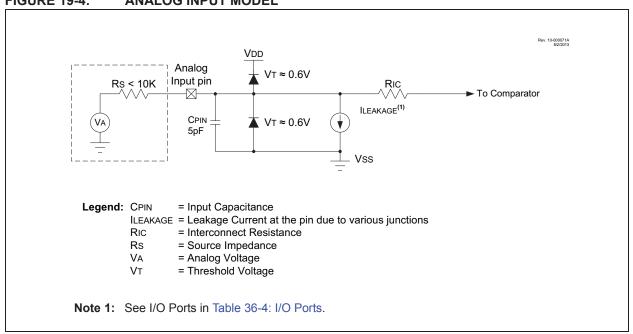
TABLE 10-3: SUMMARY OF REGISTERS ASSOCIATED WITH FLASH PROGRAM MEMORY

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	101
PMCON1	(1)	CFGS	LWLO	FREE	WRERR	WREN	WR	RD	132
PMCON2	Program Memory Control Register 2							133	
PMADRL		PMADRL<7:0>						131	
PMADRH	(1)	(1) PMADRH<6:0>						131	
PMDATL	PMDATL<7:0>						130		
PMDATH	— — PMDATH<5:0>						130		

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by Flash program memory. Note 1: Unimplemented, read as '1'.

TABLE 10-4: SUMMARY OF CONFIGURATION WORD WITH FLASH PROGRAM MEMORY

Name	Bits	Bit -/7	Bit -/6	Bit 13/5	Bit 12/4	Bit 11/3	Bit 10/2	Bit 9/1	Bit 8/0	Register on Page
CONFIG1	13:8			FCMEN	IESO	CLKOUTEN	BOREN	V<1:0>	_	62
CONFIGI	7:0	CP	MCLRE	PWRTE	WDTE<1:0>		F	OSC<2:0>		63
CONFIG2	13:8	_	—	LVP	DEBUG	LPBOR	BORV	STVREN	PLLEN	65
CONFIGZ	7:0	ZCD				_	PPS1WAY	WRT	<1:0>	


Legend: — = unimplemented location, read as '0'. Shaded cells are not used by Flash program memory.

19.10 Analog Input Connection Considerations

A simplified circuit for an analog input is shown in Figure 19-4. Since the analog input pins share their connection with a digital input, they have reverse biased ESD protection diodes to VDD and Vss. The analog input, therefore, must be between Vss and VDD. If the input voltage deviates from this range by more than 0.6V in either direction, one of the diodes is forward biased and a latch-up may occur.

A maximum source impedance of 10 k Ω is recommended for the analog sources. Also, any external component connected to an analog input pin, such as a capacitor or a Zener diode, should have very little leakage current to minimize inaccuracies introduced.

- **Note 1:** When reading a PORT register, all pins configured as analog inputs will read as a '0'. Pins configured as digital inputs will convert as an analog input, according to the input specification.
 - 2: Analog levels on any pin defined as a digital input, may cause the input buffer to consume more current than is specified.

FIGURE 19-4: ANALOG INPUT MODEL

22.6.2 TIMER1 GATE SOURCE SELECTION

Timer1 gate source selections are shown in Table 22-4. Source selection is controlled by the T1GSS bits of the T1GCON register. The polarity for each available source is also selectable. Polarity selection is controlled by the T1GPOL bit of the T1GCON register.

TABLE 22-4: TIM	IER1 GATE	SOURCES
-----------------	-----------	---------

T1GSS<1:0>	Timer1 Gate Source
00	Timer1 Gate Pin
01	Overflow of Timer0 (TMR0 increments from FFh to 00h)
10	Comparator 1 Output sync_C1OUT (optionally Timer1 synchronized output)
11	Comparator 2 Output sync_C2OUT (optionally Timer1 synchronized output)

22.6.2.1 T1G Pin Gate Operation

The T1G pin is one source for Timer1 gate control. It can be used to supply an external source to the Timer1 gate circuitry.

22.6.2.2 Timer0 Overflow Gate Operation

When Timer0 increments from FFh to 00h, a low-to-high pulse will automatically be generated and internally supplied to the Timer1 gate circuitry.

22.6.2.3 Comparator C1 Gate Operation

The output resulting from a Comparator 1 operation can be selected as a source for Timer1 gate control. The Comparator 1 output (sync_C1OUT) can be synchronized to the Timer1 clock or left asynchronous. For more information, see Section 19.4.1 "Comparator Output Synchronization".

22.6.2.4 Comparator C2 Gate Operation

The output resulting from a Comparator 2 operation can be selected as a source for Timer1 gate control. The Comparator 2 output (sync_C2OUT) can be synchronized to the Timer1 clock or left asynchronous. For more information, see Section 19.4.1 "Comparator Output Synchronization".

22.6.3 TIMER1 GATE TOGGLE MODE

When Timer1 Gate Toggle mode is enabled, it is possible to measure the full-cycle length of a Timer1 gate signal, as opposed to the duration of a single level pulse.

The Timer1 gate source is routed through a flip-flop that changes state on every incrementing edge of the signal. See Figure 22-4 for timing details.

Timer1 Gate Toggle mode is enabled by setting the T1GTM bit of the T1GCON register. When the T1GTM bit is cleared, the flip-flop is cleared and held clear. This is necessary in order to control which edge is measured.

Note:	Enabling Toggle mode at the same time
	as changing the gate polarity may result in
	indeterminate operation.

22.6.4 TIMER1 GATE SINGLE-PULSE MODE

When Timer1 Gate Single-Pulse mode is enabled, it is possible to capture a single-pulse gate event. Timer1 Gate Single-Pulse mode is first enabled by setting the T1GSPM bit in the T1GCON register. Next, the T1GGO/DONE bit in the T1GCON register must be set. The Timer1 will be fully enabled on the next incrementing edge. On the next trailing edge of the pulse, the T1GGO/DONE bit will automatically be cleared. No other gate events will be allowed to increment Timer1 until the T1GGO/DONE bit is once again set in software. See Figure 22-5 for timing details.

If the Single-Pulse Gate mode is disabled by clearing the T1GSPM bit in the T1GCON register, the T1GGO/DONE bit should also be cleared.

Enabling the Toggle mode and the Single-Pulse mode simultaneously will permit both sections to work together. This allows the cycle times on the Timer1 gate source to be measured. See Figure 22-6 for timing details.

22.6.5 TIMER1 GATE VALUE STATUS

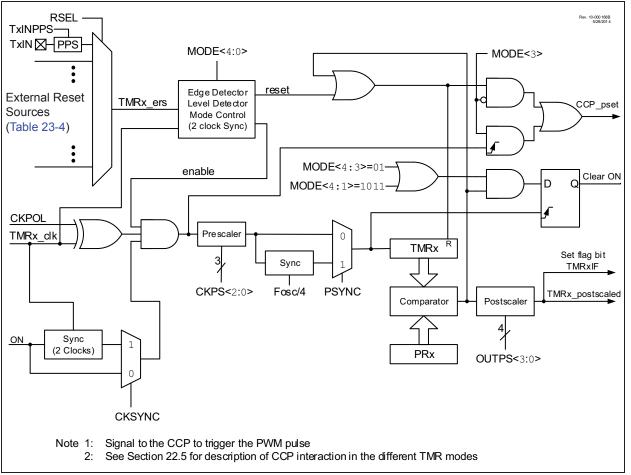
When Timer1 gate value status is utilized, it is possible to read the most current level of the gate control value. The value is stored in the T1GVAL bit in the T1GCON register. The T1GVAL bit is valid even when the Timer1 gate is not enabled (TMR1GE bit is cleared).

22.6.6 TIMER1 GATE EVENT INTERRUPT

When Timer1 Gate Event Interrupt is enabled, it is possible to generate an interrupt upon the completion of a gate event. When the falling edge of T1GVAL occurs, the TMR1GIF flag bit in the PIR1 register will be set. If the TMR1GIE bit in the PIE1 register is set, then an interrupt will be recognized.

The TMR1GIF flag bit operates even when the Timer1 gate is not enabled (TMR1GE bit is cleared).

23.0 TIMER2/4/6 MODULE


The Timer2/4/6 modules are 8-bit timers that can operate as free-running period counters or in conjunction with external signals that control Start, Run, Freeze and Reset operation in One-Shot and Monostable modes of operation. Sophisticated waveform control, such as pulse density modulation, are possible by combining the operation of these timers with other internal peripherals, such as the comparators and CCP modules. Features of the timer include:

- 8-Bit Timer register
- 8-Bit Period register
- · Selectable external hardware timer Resets
- Programmable prescaler (1:1 to 1:128)
- Programmable postscaler (1:1 to 1:16)
- · Selectable synchronous/asynchronous operation
- · Alternate clock sources
- · Interrupt-on-period

- Three modes of operation:
 - Free-Running Period
 - One-Shot
 - Monostable

See Figure 23-1 for a block diagram of Timer2. See Figure 23-2 for the clock source block diagram.

Note: Three identical Timer2 modules are implemented on this device. The timers are named Timer2, Timer4 and Timer6. All references to Timer2 apply as well to Timer4 and Timer6. All references to T2PR apply as well to T4PR and T6PR.

FIGURE 23-1: TIMER2 BLOCK DIAGRAM

23.6.2 HARDWARE GATE MODE

The Hardware Gate modes operate the same as the Software Gate mode, except the TMRx_ers external signal can also gate the timer. When used with the CCP, the gating extends the PWM period. If the timer is stopped when the PWM output is high, then the duty cycle is also extended.

When MODE<4:0> = 00001, then the timer is stopped when the external signal is high. When MODE<4:0> = 00010, then the timer is stopped when the external signal is low.

Figure 23-5 illustrates the Hardware Gating mode for MODE<4:0> = 00001 in which a high input level starts the counter.

	Rev. 19-00 1988 5/30/2014
MODE	0600001
TMRx_dk	
TMRx_ers	
PRx	5
TMRx	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
TMRx_postscaled	
PWM Duty Cycle	3
PWM Output	

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page	
CCP1CON	EN	OE	OUT	FMT		MODE	=<3:0>		256	
CCP2CON ⁽²⁾	EN	OE	DE OUT FMT MODE<3:0>						256	
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	101	
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSP1IE	CCP1IE	TMR2IE	TMR1IE	102	
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSP1IF	CCP1IF	TMR2IF	TMR1IF	105	
T2PR	Timer2 Module Period Register									
TMR2	Holding Register for the 8-Bit TMR2 Register								227*	
T2CON	ON	CKPS<2:0> OUTPS<3:0>							244	
T2CLKCON	—	_	— — — CS<3:0>						243	
T2RST		_	— — RSEL<3:0>						246	
T2HLT	PSYNC	CKPOL	CKPOL CKSYNC MODE<4:0>							
T4PR	Timer4 Mod	lule Period R	legister						227*	
TMR4	Holding Reg	gister for the	8-Bit TMR4 I	Register					227*	
T4CON	ON	(CKPS<2:0>			OUTPS<3:0>				
T4CLKCON	—	_	—			CS<	:3:0>		243	
T4RST		_				RSEL	<3:0>		246	
T4HLT	PSYNC	CKPOL	CKSYNC		•	MODE<4:0	>		245	
T6PR	Timer6 Mod	lule Period R	legister						227*	
TMR6	Holding Reg	gister for the	8-Bit TMR6 I	Register					227*	
T6CON	ON		CKPS<2:0>		OUTPS<3:0>				244	
T6CLKCON	—				CS<3:0>				243	
T6RST	—	—	—	—		RSEL	<3:0>		246	
T6HLT	PSYNC	CKPOL	CKSYNC		•	MODE<4:0	>		245	

TABLE 23-5: SUMMARY OF REGISTERS ASSOCIATED WITH TIMER2

Legend: — = unimplemented location, read as '0'. Shaded cells are not used for the Timer2 module.

* Page provides register information.

Note 1: PIC16(L)F1768/9 only.

24.4 CCP/PWM Clock Selection

The PIC16(L)F1764/5/8/9 allows each individual CCP and PWM module to select the timer source that controls the module. Each module has an independent selection.

As there are up to three 8-bit timers with auto-reload (Timer2/4/6), the PWM mode on the CCP and PWM modules can use any of these timers.

The CCPTMRS register is used to select which timer is used.

24.4.1 USING THE TMR2/4/6 WITH THE CCP MODULE

This device has a new version of the TMR2 module that has many new modes, which allow for greater customization and control of the PWM signals than older parts. Refer to **Section 23.6 "Operation Examples"** for examples of PWM signal generation using the different modes of Timer2. The CCP operation requires that the timer used as the PWM time base has the Fosc/4 clock source selected.

24.4.2 PWM PERIOD

The PWM period is specified by the T2PR/T4PR/T6PR register of Timer2/4/6. The PWM period can be calculated using the formula of Equation 24-1.

EQUATION 24-1: PWM PERIOD

 $PWM Period = [(PR2) + 1] \bullet 4 \bullet Tosc \bullet$ (TMR2 Prescale Value)

Note 1: Tosc = 1/Fosc.

When TMR2/4/6 is equal to its respective T2PR/T4PR/T6PR register, the following three events occur on the next increment cycle:

- TMR2/4/6 is cleared
- The CCPx pin is set. (Exception: If the PWM duty cycle = 0%, the pin will not be set.)
- The PWM duty cycle is latched from the CCPRxH:CCPRxL pair into the internal 10-bit latch.

Note: The Timer postscaler (see Figure 24-1) is not used in the determination of the PWM frequency.

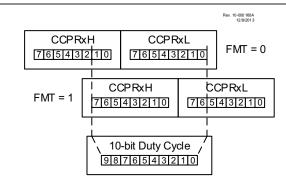
24.4.3 PWM DUTY CYCLE

The PWM duty cycle is specified by writing a 10-bit value to two registers: the CCPRxH:CCPRxL register pair. Where the particular bits go is determined by the FMT bit of the CCPxCON register. If FMT = 0, the two Most Significant bits of the duty cycle value should be written to bits<1:0> of the CCPRxH register and the remaining eight bits to the CCPRxL register. If FMT = 1, the Least Significant two bits of the duty cycle should be written to bits<7:6> of the CCPRxL register and the Most Significant eight bits to the CCPRxL register and the Most Significant eight bits to the CCPRxL register. This is illustrated in Figure 24-4. These bits can be written at any time. The duty cycle value is not latched into the internal latch until after the period completes (i.e., a match between T2PR/T4PR/T6PR and TMR2/4/6 registers occurs).

Equation 24-2 is used to calculate the PWM pulse width. Equation 24-3 is used to calculate the PWM duty cycle ratio.

EQUATION 24-2: PULSE WIDTH

EQUATION 24-3: DUTY CYCLE RATIO


 $Duty Cycle Ratio = \frac{(CCPRxH:CCPRxL)}{4(PRx+1)}$

The PWM Duty Cycle registers are double-buffered for glitchless PWM operation.

The 8-bit timer TMR2/4/6 register is concatenated with either the 2-bit internal system clock (Fosc), or two bits of the prescaler, to create the 10-bit time base. The system clock is used if the Timer2/4/6 prescaler is set to 1:1.

When the 10-bit time base matches the internal buffer register, then the CCPx pin is cleared (see Figure 24-3).

FIGURE 24-4: CCPx DUTY CYCLE ALIGNMENT

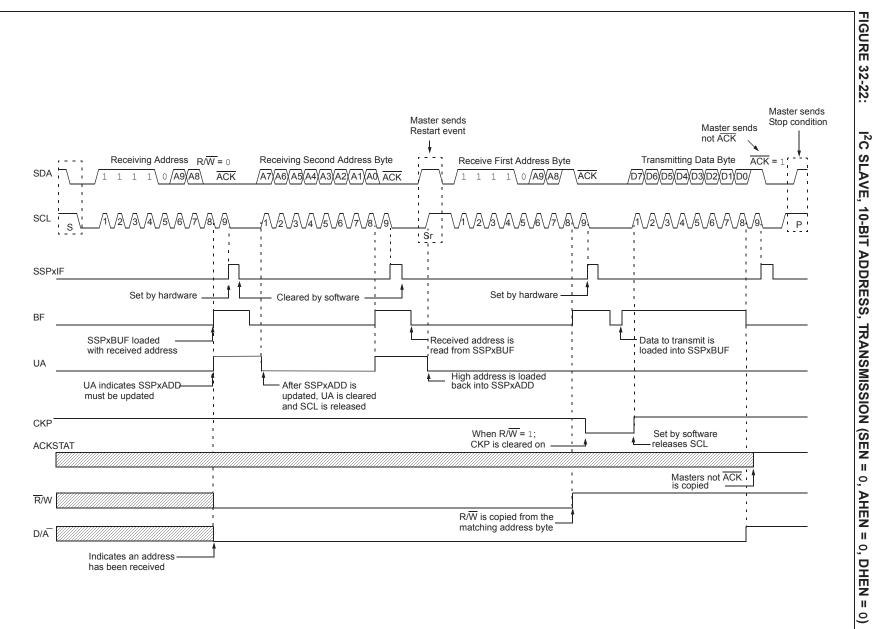
24.5 Register Definitions: CCP Control

REGISTER 24-1: CCPxCON: CCPx CONTROL REGISTER

R/W-0/0	U-0	R-x	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0			
EN	—	OUT	FMT		MODE	=<3:0>				
bit 7							bit 0			
Legend:										
R = Readable	bit	W = Writable	bit							
u = Bit is uncha	anged	x = Bit is unkr	nown		nented bit, read					
'1' = Bit is set		'0' = Bit is cle	ared	-n/n = Value a	at POR and BC	R/Value at all	other Reset			
bit 7		odule Enable b	it							
	1 = CCPx is $0 = CCPx$ is									
bit 6		ited: Read as '	0'							
bit 5	-	Dutput Data bit								
bit 4		(Pulse-Width)								
DIL 4		, ,	•							
	<u>If MODE<3:0> = PWM Mode:</u> 1 = Left-aligned format, CCPRxH<7> is the MSB of the PWM duty cycle									
	0			the LSB of the I						
bit 3-0	MODE<3:0>:	CCPx Mode S	election bits							
	11xx = PWN	/I mode								
	1011 = Com	pare mode: Pu	lse output, cle	ar TMR1						
	1010 = Com	pare mode: Pu	lse output (0 -	1-0)						
				compare match						
	1000 = Com	pare mode: Se	t output on co	mpare match; c	output is set up	on selection of	this mode			
	0111 = Capt	ure mode: Eve	ry 16th rising e	edge						
		ure mode: Eve		dge						
		ure mode: Eve ure mode: Eve								
	0100 - Cap i	ure mode. Eve	ry lailing euge							
		ure mode: Eve								
		pare mode: To								
				d clear TMR1 c s CCPx module		hackwards co	mnatibility)			
		are/compare/r					mpationity)			

R/W/HC-0/0	R/W-0/0	U-0	U-0	U-0	U-0	U-0	R/W-0/0			
LDA ⁽¹⁾	LDT ⁽³⁾	_	_	_	_	_	LDS ^(2,3)			
bit 7	l			1			bit 0			
Legend:										
R = Readable	R = Readable bit W = Writable bit HC = Hardware Clearable bit									
u = Bit is unch	nanged	x = Bit is unkn	own	U = Unimplem	nented bit, read	as '0'				
'1' = Bit is set		'0' = Bit is clea	ared	-n/n = Value a	t POR and BOF	R/Value at all o	other Resets			
	selected 0 = Does not $\frac{\text{If LDT} = 0}{1 = \text{Loads the}}$ 0 = Does not	trigger occurs load buffers, lo e ODO bit, and load buffers, lo	ad has compl OFx, PHx, DC ad has compl	Cx and PRx buff		·				
bit 6	LDT: Load Buffer on Trigger bit ⁽³⁾ 1 = Waits for trigger selected by the LDS<1:0> bits to occur before enabling the LDA bit 0 = Load triggering is disabled; buffer loads are controlled by the LDA bit alone									
bit 5-1	Unimplemen	ted: Read as '0)'							
bit 0	LDS: Load Tr 1 = LD6_trigg 0 = LD5_trigg	•	elect bit ^(2,3)							
Note 1: Thi	is bit is cleared	by the module	after a reload	operation. It ca	n be cleared in	software to cle	ear an existing			

REGISTER 26-5: PWMxLDCON: PWMx RELOAD TRIGGER SOURCE SELECT REGISTER


- **Note 1:** This bit is cleared by the module after a reload operation. It can be cleared in software to clear an existing arming event.
 - **2:** The source corresponding to a PWM module's own LDx_trigger is reserved.
 - 3: PIC16(L)F1768/9 only.

REGISTER 29-3: OPAXNCHS: OP AMP x NEGATIVE CHANNEL SOURCE SELECT REGISTER

U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0		
_	—	—	_	NCH<3:0>					
bit 7							bit 0		
Legend:									
R = Reada	able bit	W = Writable	bit						
u = Bit is ι	unchanged	x = Bit is unkn	iown	U = Unimplen	nented bit, read	l as '0'			
'1' = Bit is set '0' = Bit is cleared -n/n = Value at POR and BOR/Valu							ther Resets		
bit 7-4	Unimpleme	nted: Read as ')'						
bit 3-0	NCH<3:0>: (Op Amp Invertin	g Input Chanr	nel Selection bi	its				
		erved; do not us	•						
	•	,							
	•								
	•								
		erved; do not us							
		rammable Ram							
		rammable Ram		'RG1_out					
	0111 = Rese 0110 = FVR	erved. Do not us	e.						
	0110 – PVR								
	0100 = DAC	_							
	0011 = DAC								
	0010 = DAC								
	0001 = OPA								
	0000 = OPA								

Note 1: PIC16(L)F1768/9 only

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
ANSELA	—	—	—	ANSA4	—		ANSA<2:0>		137
ANSELB ⁽¹⁾		ANSB	<7:4>		—	—	—	—	143
ANSELC	ANSC<	7:6> (1)	—	—		ANSC	<3:0>		148
BAUD1CON	ABDOVF	RCIDL	—	SCKP	BRG16	_	WUE	ABDEN	442
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	101
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSP1IE	CCP1IE	TMR2IE	TMR1IE	102
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSP1IF	CCP1IF	TMR2IF	TMR1IF	105
RC1REG	EUSART Receive Data Register							436*	
RC1STA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	441
RxyPPS	_	—	—	RxyPPS<4:0>					
SP1BRGL	BRG<7:0>							443	
SP1BRGH	BRG<15:8>						443		
TRISA	_	_	TRISA	\<5:4>	(2)		TRISA<2:0>		136
TRISB ⁽¹⁾		TRISB	<7:4>		_	_	_	_	142
TRISC	TRISC<	7:6>(1)			TRISC<5:0>				147
TX1STA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	440

TABLE 33-2: SUMMARY OF REGISTERS ASSOCIATED WITH ASYNCHRONOUS RECEPTION

Legend: — = unimplemented location, read as '0'. Shaded cells are not used for asynchronous reception.

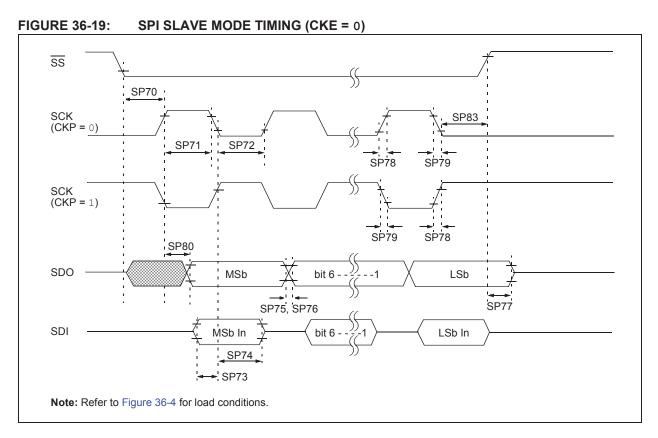
* Page provides register information.

Note 1: PIC16(L)F1768/9 only.

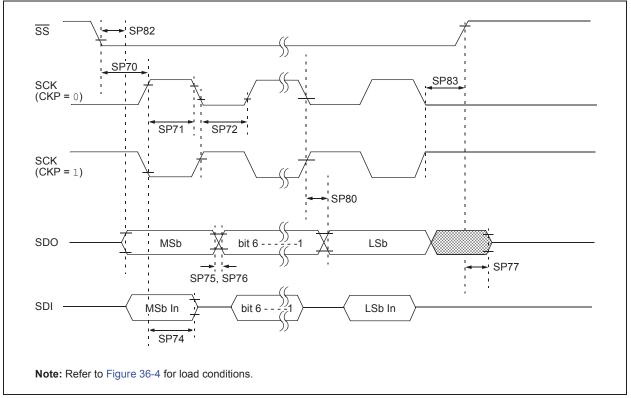
2: Unimplemented, read as '1'.

33.2 Clock Accuracy with Asynchronous Operation

The factory calibrates the Internal Oscillator Block (INTOSC) output. However, the INTOSC frequency may drift as VDD or temperature changes and this directly affects the asynchronous baud rate. Two methods may be used to adjust the baud rate clock, but both require a reference clock source of some kind.

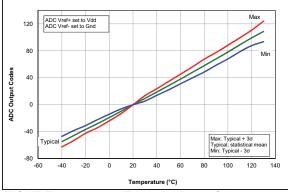

The first (preferred) method uses the OSCTUNE register to adjust the INTOSC output. Adjusting the value in the OSCTUNE register allows for fine resolution changes to the system clock source. See Section 5.2.2.3 "Internal Oscillator Frequency Adjustment" for more information.

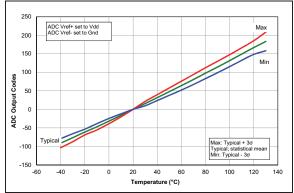
The other method adjusts the value in the Baud Rate Generator. This can be done automatically with the Auto-Baud Detect feature (see Section 33.4.1 "Auto-Baud Detect"). There may not be fine enough resolution when adjusting the Baud Rate Generator to compensate for a gradual change in the peripheral clock frequency.


R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R-0/0	R-0/0	R-0/0				
SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D				
bit 7	·						bit C				
Legend:											
R = Readable	e bit	W = Writable	bit								
u = Bit is uncl	nanged	x = Bit is unk	nown	U = Unimple	mented bit, read	as '0'					
'1' = Bit is set		'0' = Bit is cle	ared	-n/n = Value	at POR and BO	R/Value at all o	other Resets				
1.1.7											
bit 7		I Port Enable b	IT								
		ort is enabled ort is disabled (l	neld in Reset)								
bit 6	RX9: 9-Bit R	eceive Enable I	oit								
		9-bit reception 8-bit reception									
bit 5	SREN: Singl	e Receive Enal	ole bit								
	<u>Asynchronou</u> Don't care.	<u>is mode:</u>									
	1 = Enables 0 = Disables	s mode – Maste single receive single receive ared after rece		ete.							
		s mode – Slave									
bit 4	CREN: Continuous Receive Enable bit										
	Asynchronou 1 = Enables 0 = Disables	receiver									
				ble bit, CREN,	is cleared (CRE	N overrides SF	REN)				
bit 3	ADDEN: Add	dress Detect Er	able bit								
	1 = Enables 0 = Disables	address detec	tion, enables i tion, all bytes	•	ads the receive and ninth bit can						
	Don't care.	is mode, 8-bit (<u>клэ = 0).</u>								
bit 2	FERR: Framing Error bit										
		error (can be u	pdated by rea	ading RCxREG	register and re	ceiving next va	lid byte)				
bit 1	OERR: Overrun Error bit										
	1 = Overrun 0 = No overr	error (can be c run error	leared by clea	aring bit, CREN	1)						
bit 0	RX9D: Ninth	bit of Received	l Data								
					calculated by us						

REGISTER 33-2: RC1STA: RECEIVE STATUS AND CONTROL REGISTER

PIC16(L)F1764/5/8/9


FIGURE 36-20: SPI SLAVE MODE TIMING (CKE = 1)


Note: Unless otherwise noted, VIN = 5V, FOSC = 300 kHz, CIN = 0.1 μ F, TA = 25°C.

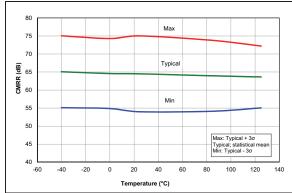

FIGURE 37-91: Temp. Indicator Slope Normalized to 20°C, Low Range, VDD = 1.8V, PIC16LF1764/5/8/9 Only.

FIGURE 37-92: Temp. Indicator Slope Normalized to 20°C, Low Range, VDD = 3.0V, PIC16LF1764/5/8/9 Only.

FIGURE 37-93: Temp. Indicator Slope Normalized to 20°C, High Range, VDD = 3.6V, PIC16LF1764/5/8/9 Only.

FIGURE 37-94: Op Amp, Common Mode Rejection Ratio (CMRR), VDD = 3.0V.

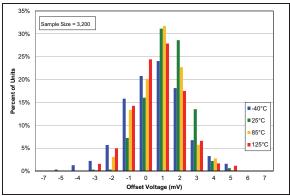
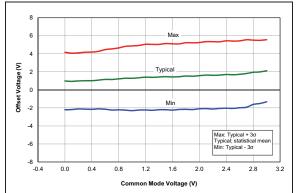



FIGURE 37-95:Op Amp, Output VoltageHistogram, VDD = 3.0V, VCM = VDD/2.

FIGURE 37-96: Op Amp, Offset Over Common Mode Voltage, VDD = 3.0V, Temp. = 25°C.