

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Obsolete
Core Processor	HC05
Core Size	8-Bit
Speed	2.1MHz
Connectivity	SCI, SPI
Peripherals	POR, WDT
Number of I/O	24
Program Memory Size	16KB (16K x 8)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	352 x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-QFP
Supplier Device Package	44-QFP (10x10)
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=mc68hc705c9acfb

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

List of Chapters

General Description

1.5 Software-Programmable Options (MC68HC05C9A Mode Only)

The C9A option register (OR), shown in Figure 1-4, is enabled only if configured in C9A mode. This register contains the programmable bits for the following options:

- Map two different areas of memory between RAM and EPROM, one of 48 bytes and one of 128 bytes
- Edge-triggered only or edge- and level-triggered external interrupt (IRQ pin and any port B pin configured for interrupt)

This register must be written to by user software during operation of the microcontroller.

Figure 1-4. C9A Option Register

RAM0 — Random Access Memory Control Bit 0

This read/write bit selects between RAM or EPROM in location \$0020 to \$004F. This bit can be read or written at any time.

1 = RAM selected

0 = EPROM selected

RAM1— Random Access Memory Control Bit 1

This read/write bit selects between RAM or EPROM in location \$0100 to \$017F. This bit can be read or written at any time.

- 1 = RAM selected
- 0 = EPROM selected

IRQ — Interrupt Request Bit

This bit selects between an edge-triggered only or edge- and level- triggered external interrupt pin. This bit is set by reset, but can be cleared by software. This bit can be written only once.

- 1 = Edge and level interrupt option selected
- 0 = Edge-only interrupt option selected

Functional Pin Descriptions

1.6 Functional Pin Descriptions

Figure 1-5, Figure 1-6, Figure 1-7, and Figure 1-8 show the pin assignments for the available packages. A functional description of the pins follows.

NOTE A line over a signal name indicates an active low signal. For example, RESET is active high and RESET is active low.

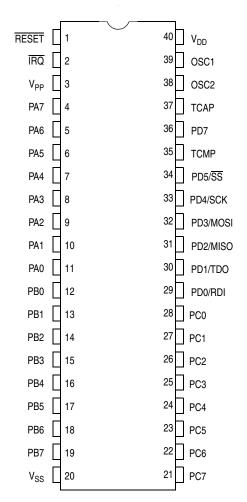


Figure 1-5. 40-Pin PDIP Pin Assignments

General Description

\$0000					\$0000
	I/O REGIS	STERS		PORT A DATA REGISTER PORT B DATA REGISTER	\$0000
	32 BY			PORT C DATA REGISTER	\$0002
				PORT D DATA REGISTER	\$0003
\$001F	l	··· p ·····	·····;, ······	PORT A DATA DIRECTION REGISTER	\$0004
\$0020	USER EPROM	RAM		PORT & DATA DIRECTION REGISTER	\$0005
	48 BYTES RAM0 = 0	48 BYTES RAM0 = 1		PORT C DATA DIRECTION REGISTER	\$0006
\$004F	1 // (1/) = 0		\	PORT D DATA DIRECTION REGISTER	\$0007
\$0050	≜			UNUSED	\$0008
	RAM		\setminus	UNUSED	\$0009
	176 BYTES			SPI CONTROL REGISTER	\$000A
			\setminus	SPI STATUS REGISTER	\$000B
\$00BF \$00C0				SPI DATA REGISTER	\$000C
ψυυου		Ť	\setminus	SCI BAUD RATE REGISTER	\$000D
		(STACK)		SCI CONTROL REGISTER 1	\$000E
\$00FF	•	64 BYTES		SCI CONTROL REGISTER 2	\$000F
\$0100	JSER EPROM	RAM		SCI STATUS REGISTER	\$0010
L L	128 BYTES	128 BYTES		SCI DATA REGISTER	\$0011
				TIMER CONTROL REGISTER	\$0012
\$017F	RAM1 = 0	RAM1 = 1		TIMER STATUS REGISTER	\$0013
\$0170		L		INPUT CAPTURE REGISTER (HIGH)	\$0014
			\setminus	INPUT CAPTURE REGISTER (LOW)	\$0015
			\setminus	OUTPUT COMPARE REGISTER (HIGH)	\$0016
			\setminus	OUTPUT COMPARE REGISTER (LOW)	\$0017
				TIMER COUNTER REGISTER (HIGH)	\$0018
				TIMER COUNTER REGISTER (LOW)	\$0019
		EPROM BYTES		ALTERNATE COUNTER REGISTER (HIGH)	\$001A
	15,744	DIILO	\setminus	ALTERNATE COUNTER REGISTER (LOW)	\$001B
			\setminus	UNUSED	\$001C
			\setminus	COP RESET REGISTER	\$001D
			\setminus	COP CONTROL REGISTER	\$001E
			\	UNUSED	\$001F
			١L		
\$3EFF					
\$3F00			1	PORT B MASK OPTION REGISTER	
			/	MASK OPTION REGISTER 2	\$3FF0 \$3FF1
				MASK OF HOM REDISTENZ	\$3FF1 \$3FF2
				UNUSED (2 BYTES)	\$3FF3
	BOOTL	OADER			\$3FF4
		OM		SPI VECTOR (HIGH)	\$3FF5
		ECTORS BYTES		SPI VECTOR (LOW) SCI VECTOR (HIGH)	\$3FF6
	2001	51120			\$3FF7
				SCI VECTOR (LOW) TIMER VECTOR (HIGH)	\$3FF8
	r	i		TIMER VECTOR (HIGH)	\$3FF9
\$3FDF	C9A OPTION	REGISTER		IRQ VECTOR (HIGH)	\$3FF9 \$3FFA
\$3FEF	l		/	IRQ VECTOR (LOW)	\$3FFA \$3FFB
\$3FF0	MASK OPTION		r	SWI VECTOR (LOW)	\$3FFD \$3FFC
\$3FF1		I NEGISTENS		SWI VECTOR (HIGH) SWI VECTOR (LOW)	\$3FFC \$3FFD
\$3FF2	USER EPRU			RESET VECTOR (LOW)	\$3FFD \$3FFE
\$3FFF	14 B	YTES		RESET VECTOR (HIGH BYTE)	\$3FFE \$3FFF
ψΟΓΓΓ				RESET VEVIOR (LOW DITE)	φορηγ

Figure 2-1. C9A Memory Map

I/O Registers

Addr.	Register Name		Bit 7	6	5	4	3	2	1	Bit 0
\$000D	SCI Baud Rate Register BAUD	Read: Write:			SCP1	SCP0		SCR2	SCR1	SCR0
	See page 69.	Reset:	_	_	0	0	—	U	U	U
\$000E	SCI Control Register 1 (SCCR1)	Read: Write:	R8	T8		М	WAKE			
	See page 65.	Reset:	U	U	0	U	U	0	0	0
\$000F	SCI Control Register 2 (SCCR2)	Read: Write:	TIE	TCIE	RIE	ILIE	TE	RE	RWU	SBK
	See page 66.	Reset:	0	0	0	0	0	0	0	0
	SCI Status Register	Read:	TDRE	TC	RDRF	IDLE	OR	NF	FE	
\$0010	(SČSR)	Write:								
	See page 68.	Reset:	1	1	0	0	0	0	0	_
\$0011	SCI Data Register (SCDR)	Read: Write:	SCD7	SDC6	SCD5	SCD4	SCD3	SCD2	SCD1	SCD0
	See page 65.	Reset:				Unaffect	ed by reset			
\$0012	Timer Control Register (TCR)	Read: Write:	ICIE	OCIE	TOIE	0	0	0	IEDG	OLVL
	See page 53.	Reset:	0	0	0	0	0	0	U	0
	Timer Status Register	Read:	ICF	OCF	TOF	0	0	0	0	0
\$0013	(TSR)	Write:								
	See page 54.	Reset:	U	U	U	0	0	0	0	0
	Input Capture Register High	Read:	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8
\$0014	(ICRH)	Write:								
	See page 56.	Reset:				Unaffect	ed by reset			
	Input Capture Register Low	Read:	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
\$0015	(ICRL)	Write:								
	See page 56.	Reset:				Unaffect	ed by reset			
\$0016	Output Compare Register High (OCRH)	Read: Write:	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8
	See page 56. Res					Unaffect	ed by reset			
\$0017	Output Compare Register Low (OCRL)	Read: Write:	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
	See page 56.	Reset:				Unaffect	ed by reset			
	Timer Register High	Read:	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8
\$0018	(TRH)	Write:								
	See page 55.	Reset:	1	1	1	1	1	1	1	1
		[= Unimpler	mented	R	= Reserved		U = Unaffe	cted

Figure 2-4. Input/Output Registers (Sheet 2 of 3)

Chapter 3 Central Processor Unit (CPU)

3.1 Introduction

This section contains the basic programmers model and the registers contained in the CPU.

3.2 CPU Registers

The MCU contains five registers as shown in the programming model of Figure 3-1. The interrupt stacking order is shown in Figure 3-2.

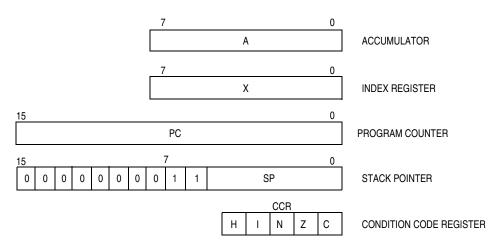


Figure 3-1. Programming Model

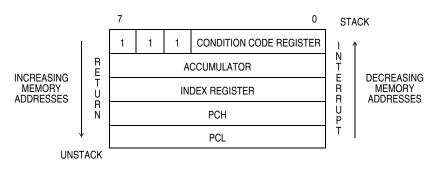


Figure 3-2. Interrupt Stacking Order

Chapter 5 Resets

5.1 Introduction

The MCU can be reset four ways: by the initial power-on reset function, by an active low input to the RESET pin, by the COP, or by the clock monitor. A reset immediately stops the operation of the instruction being executed, initializes some control bits, and loads the program counter with a user-defined reset vector address. Figure 5-1 is a block diagram of the reset sources.

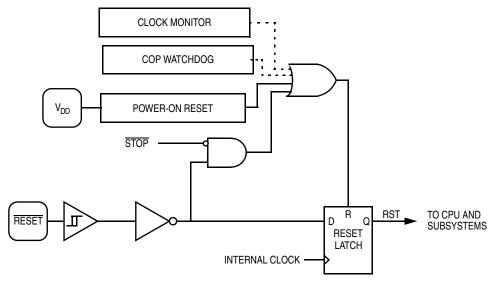


Figure 5-1. Reset Sources

5.2 Power-On Reset (POR)

A power-on-reset occurs when a positive transition is detected on V_{DD} . The power-on reset is strictly for power turn-on conditions and should not be used to detect a drop in the power supply voltage. There is a 4064 internal processor clock cycle (t_{cyc}) oscillator stabilization delay after the oscillator becomes active. (When configured as a C9A, the RESET pin will output a logic 0 during the 4064-cycle delay.) If the RESET pin is low after the end of this 4064-cycle delay, the MCU will remain in the reset condition until RESET is driven high externally.

5.3 RESET Pin

The function of the RESET pin is dependent on whether the device is configured as an MC68HC05C9A or an MC68HC05C12A. When it is in the MC68HC05C12A configuration, the pin is input only. When in MC68HC05C9A configuration the pin is bidirectional. In both cases the MCU is reset when a logic 0 is applied to the RESET pin for a period of one and one-half machine cycles (t_{RL}). For the MC68HC05C9A configuration, the RESET pin will be driven low by a COP, clock monitor, or power-on reset.

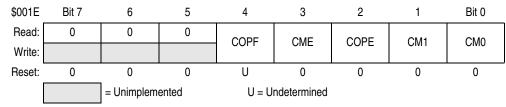


Figure 5-5. COP Control Register (COPCR)

COPF — Computer Operating Properly Flag

Reading the COP control register clears COPF.

1 = COP or clock monitor reset has occurred.

0 = No COP or clock monitor reset has occurred.

CME — Clock Monitor Enable Bit

This bit is readable any time, but may be written only once.

1 = Clock monitor enabled

0 = Clock monitor disabled

COPE — COP Enable Bit

This bit is readable any time. COPE, CM1, and CM0 together may be written with a single write, only once, after reset. This bit is cleared by reset.

1 = COP enabled

0 = COP disabled

CM1 — COP Mode Bit 1

Used in conjunction with CM0 to establish the COP timeout period, this bit is readable any time. COPE, CM1, and CM0 together may be written with a single write, only once, after reset. This bit is cleared by reset.

CM0 — COP Mode Bit 0

Used in conjunction with CM1 to establish the COP timeout period, this bit is readable any time. COPE, CM1, and CM0 together may be written with a single write, only once, after reset. This bit is cleared by reset.

Bits 7–5 — Not Used

These bits always read as 0.

CM1	СМО	f _{op} /2 ¹⁵ Divide By	Timeout Period (f _{osc} = 2.0 MHz)	Timeout Period (f _{osc} = 4.0 MHz)
0	0	1	32.77 ms	16.38 ms
0	1	4	131.07 ms	65.54 ms
1	0	16	524.29 ms	262.14 ms
1	1	64	2.097 sec	1.048 sec

Table 5-1. COP Timeout Period

5.6 MC68HC05C12A Compatible COP

This COP is implemented with an 18-bit ripple counter. This provides a timeout period of 64 milliseconds at a bus rate (f_{op}) of 2 MHz. If the COP should time out, a system reset will occur and the device will be re-initialized in the same fashion as a power-on reset or reset.

Capture/Compare Timer

8.2 Timer Operation

The core of the capture/compare timer is a 16-bit free-running counter. The counter provides the timing reference for the input capture and output compare functions. The input capture and output compare functions provide a means to latch the times at which external events occur, to measure input waveforms, and to generate output waveforms and timing delays. Software can read the value in the 16-bit free-running counter at any time without affecting the counter sequence.

Because of the 16-bit timer architecture, the I/O registers for the input capture and output compare functions are pairs of 8-bit registers.

Because the counter is 16 bits long and preceded by a fixed divide-by-4 prescaler, the counter rolls over every 262,144 internal clock cycles. Timer resolution with a 4-MHz crystal is 2 μ s.

8.2.1 Input Capture

The input capture function is a means to record the time at which an external event occurs. When the input capture circuitry detects an active edge on the TCAP pin, it latches the contents of the timer registers into the input capture registers. The polarity of the active edge is programmable.

Latching values into the input capture registers at successive edges of the same polarity measures the period of the input signal on the TCAP pin. Latching values into the input capture registers at successive edges of opposite polarity measures the pulse width of the signal.

8.2.2 Output Compare

The output compare function is a means of generating an output signal when the 16-bit counter reaches a selected value. Software writes the selected value into the output compare registers. On every fourth internal clock cycle the output compare circuitry compares the value of the counter to the value written in the output compare registers. When a match occurs, the timer transfers the programmable output level bit (OLVL) from the timer control register to the TCMP pin.

The programmer can use the output compare register to measure time periods, to generate timing delays, or to generate a pulse of specific duration or a pulse train of specific frequency and duty cycle on the TCMP pin.

8.3 Timer I/O Registers

The following I/O registers control and monitor timer operation:

- Timer control register (TCR)
- Timer status register (TSR)
- Timer registers (TRH and TRL)
- Alternate timer registers (ATRH and ATRL)
- Input capture registers (ICRH and ICRL)
- Output compare registers (OCRH and OCRL)

8.3.3 Timer Registers

The timer registers (TRH and TRL), shown in Figure 8-4, contains the current high and low bytes of the 16-bit counter. Reading TRH before reading TRL causes TRL to be latched until TRL is read. Reading TRL after reading the timer status register clears the timer overflow flag (TOF). Writing to the timer registers has no effect.

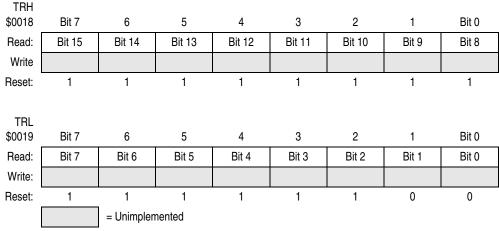
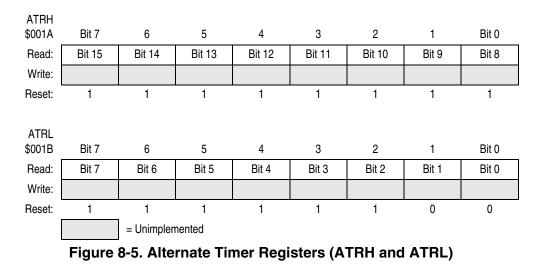



Figure 8-4. Timer Registers (TRH and TRL)

8.3.4 Alternate Timer Registers

The alternate timer registers (ATRH and ATRL), shown in Figure 8-5, contain the current high and low bytes of the 16-bit counter. Reading ATRH before reading ATRL causes ATRL to be latched until ATRL is read. Reading ATRL has no effect on the timer overflow flag (TOF). Writing to the alternate timer registers has no effect.

NOTE

To prevent interrupts from occurring between readings of ATRH and ATRL, set the interrupt flag in the condition code register before reading ATRH, and clear the flag after reading ATRL.

Capture/Compare Timer

Serial Peripheral Interface (SPI)

The SPI is double buffered on read, but not on write. If a write is performed during data transfer, the transfer occurs uninterrupted, and the write will be unsuccessful. This condition will cause the write collision (WCOL) status bit in the SPSR to be set. After a data byte is shifted, the SPIF flag of the SPSR is set.

In the master mode, the SCK pin is an output. It idles high or low, depending on the CPOL bit in the SPCR, until data is written to the shift register, at which point eight clocks are generated to shift the eight bits of data and then SCK goes idle again.

In a slave mode, the slave select start logic receives a logic low at the \overline{SS} pin and a clock at the SCK pin. Thus, the slave is synchronized with the master. Data from the master is received serially at the MOSI line and loads the 8-bit shift register. After the 8-bit shift register is loaded, its data is parallel transferred to the read buffer. During a write cycle, data is written into the shift register, then the slave waits for a clock train from the master to shift the data out on the slave's MISO line.

Figure 10-3 illustrates the MOSI, MISO, SCK, and SS master-slave interconnections.

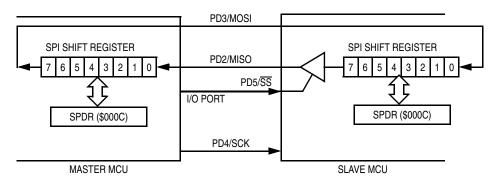


Figure 10-3. Serial Peripheral Interface Master-Slave Interconnection

10.5 SPI Registers

Three registers in the SPI provide control, status, and data storage functions. These registers are called the serial peripheral control register (SPCR), serial peripheral status register (SPSR), and serial peripheral data I/O register (SPDR) and are described in the following paragraphs.

10.5.1 Serial Peripheral Control Register

The SPI control register (SPCR), shown in Figure 10-4, controls these functions:

- Enables SPI interrupts
- Enables the SPI system
- Selects between standard CMOS or open drain outputs for port D (C9A mode only)
- Selects between master mode and slave mode
- · Controls the clock/data relationship between master and slave
- Determines the idle level of the clock pin

11.2.4 Extended

Extended instructions use three bytes and can access any address in memory. The first byte is the opcode; the second and third bytes are the high and low bytes of the operand address.

When using the Freescale assembler, the programmer does not need to specify whether an instruction is direct or extended. The assembler automatically selects the shortest form of the instruction.

11.2.5 Indexed, No Offset

Indexed instructions with no offset are 1-byte instructions that can access data with variable addresses within the first 256 memory locations. The index register contains the low byte of the effective address of the operand. The CPU automatically uses \$00 as the high byte, so these instructions can address locations \$0000-\$00FF.

Indexed, no offset instructions are often used to move a pointer through a table or to hold the address of a frequently used random-access memory (RAM) or input/output (I/O) location.

11.2.6 Indexed, 8-Bit Offset

Indexed, 8-bit offset instructions are 2-byte instructions that can access data with variable addresses within the first 511 memory locations. The CPU adds the unsigned byte in the index register to the unsigned byte following the opcode. The sum is the effective address of the operand. These instructions can access locations \$0000-\$01FE.

Indexed 8-bit offset instructions are useful for selecting the kth element in an n-element table. The table can begin anywhere within the first 256 memory locations and could extend as far as location 510 (\$01FE). The k value is typically in the index register, and the address of the beginning of the table is in the byte following the opcode.

11.2.7 Indexed, 16-Bit Offset

Indexed, 16-bit offset instructions are 3-byte instructions that can access data with variable addresses at any location in memory. The CPU adds the unsigned byte in the index register to the two unsigned bytes following the opcode. The sum is the effective address of the operand. The first byte after the opcode is the high byte of the 16-bit offset; the second byte is the low byte of the offset.

Indexed, 16-bit offset instructions are useful for selecting the kth element in an n-element table anywhere in memory.

As with direct and extended addressing, the Freescale assembler determines the shortest form of indexed addressing.

11.2.8 Relative

Relative addressing is only for branch instructions. If the branch condition is true, the CPU finds the effective branch destination by adding the signed byte following the opcode to the contents of the program counter. If the branch condition is not true, the CPU goes to the next instruction. The offset is a signed, two's complement byte that gives a branching range of -128 to +127 bytes from the address of the next location after the branch instruction.

When using the Freescale assembler, the programmer does not need to calculate the offset, because the assembler determines the proper offset and verifies that it is within the span of the branch.

Instruction Set

Source Form	Operation	Description			Effect on CCR			Address Mode	Opcode	Operand	Cycles
Form	·		Η	I	Ν	Z	С	Ado Me	ď	Ope	S
BIT #opr BIT opr BIT opr BIT opr,X BIT opr,X BIT ,X	Bit Test Accumulator with Memory Byte	(A) ∧ (M)			ţ	ţ		IMM DIR EXT IX2 IX1 IX	A5 B5 C5 D5 E5 F5	dd hh ll	
BLO rel	Branch if Lower (Same as BCS)	PC ← (PC) + 2 + <i>rel</i> ? C = 1			—			REL	25	rr	3
BLS rel	Branch if Lower or Same	$PC \leftarrow (PC) + 2 + \mathit{rel} ? C \lor Z = 1$		—	—		—	REL	23	rr	3
BMC rel	Branch if Interrupt Mask Clear	$PC \leftarrow (PC) + 2 + \mathit{rel} ? I = 0$	—	—	—	—	—	REL	2C	rr	3
BMI <i>rel</i>	Branch if Minus	PC ← (PC) + 2 + <i>rel</i> ? N = 1	—	—	—	—	—	REL	2B	rr	3
BMS rel	Branch if Interrupt Mask Set	PC ← (PC) + 2 + <i>rel</i> ? I = 1	-	—	—	—	—	REL	2D	rr	3
BNE <i>rel</i>	Branch if Not Equal	$PC \leftarrow (PC) + 2 + \mathit{rel} ? Z = 0$	1—	—	—	—		REL	26	rr	3
BPL <i>rel</i>	Branch if Plus	$PC \leftarrow (PC) + 2 + rel ? N = 0$	—	—	—		—	REL	2A	rr	3
BRA rel	Branch Always	PC ← (PC) + 2 + <i>rel</i> ? 1 = 1		—	—			REL	20	rr	3
BRCLR n opr rel	Branch if Bit n Clear	PC ← (PC) + 2 + <i>rel</i> ? Mn = 0					ţ	DIR (b0) DIR (b1) DIR (b2) DIR (b3) DIR (b3) DIR (b5) DIR (b5) DIR (b6) DIR (b7)	05 07 09 0B 0D	dd rr dd rr dd rr dd rr dd rr dd rr	5 5 5 5 5 5 5 5 5 5
BRN <i>rel</i>	Branch Never	$PC \leftarrow (PC) + 2 + \mathit{rel} ? 1 = 0$	 	—	-		—	REL	21	rr	3
BRSET n opr rel	Branch if Bit n Set	PC ← (PC) + 2 + <i>rel</i> ? Mn = 1					ţ	DIR (b0) DIR (b1) DIR (b2) DIR (b3) DIR (b4) DIR (b4) DIR (b5) DIR (b6) DIR (b7)	04 06 08 0A 0C	dd rr dd rr dd rr dd rr dd rr dd rr	5 5 5 5 5 5 5 5 5 5
BSET n opr	Set Bit n	Mn ← 1						DIR (b0) DIR (b1) DIR (b2) DIR (b3) DIR (b3) DIR (b4) DIR (b5) DIR (b6) DIR (b7)	12 14 16 18 1A 1C	dd dd dd dd dd dd dd	5 5 5 5 5 5 5 5
BSR rel	Branch to Subroutine	$\begin{array}{c} PC \leftarrow (PC) + 2; push \; (PCL) \\ SP \leftarrow (SP) - 1; push \; (PCH) \\ SP \leftarrow (SP) - 1 \\ PC \leftarrow (PC) + \mathit{rel} \end{array}$	_	_		_	_	REL	AD	rr	6
CLC	Clear Carry Bit	$C \leftarrow 0$	—		—	—	0	INH	98		2
CLI	Clear Interrupt Mask	l ← 0		0	—	—	-	INH	9A		2

Table 11-6. Instruction Set Summary (Sheet 2 of 6)

Source Form	Operation	Description			Effect on CCR			Effect on CCR I N Z C P V V V			Opcode	Operand	Cycles
Form			н	I	Ν	z	С	Ado	opo	Ope	Š		
RTI	Return from Interrupt	$\begin{array}{c} SP \leftarrow (SP) + 1; Pull (CCR) \\ \qquad SP \leftarrow (SP) + 1; Pull (A) \\ \qquad SP \leftarrow (SP) + 1; Pull (X) \\ \qquad SP \leftarrow (SP) + 1; Pull (PCH) \\ \qquad SP \leftarrow (SP) + 1; Pull (PCL) \end{array}$	ţ	ţ	ţ	ţ	ţ	INH	80		9		
RTS	Return from Subroutine	$SP \leftarrow (SP) + 1$; Pull (PCH) $SP \leftarrow (SP) + 1$; Pull (PCL)	_	_		_		INH	81		6		
SBC #opr SBC opr SBC opr SBC opr,X SBC opr,X SBC ,X	Subtract Memory Byte and Carry Bit from Accumulator	$A \leftarrow (A) - (M) - (C)$			ţ	ţ	ţ	IMM DIR EXT IX2 IX1 IX	A2 B2 C2 D2 E2 F2	ii dd hh II ee ff ff			
SEC	Set Carry Bit	C ← 1		—	_		1	INH	99		2		
SEI	Set Interrupt Mask	l ← 1		1				INH	9B		2		
STA opr STA opr STA opr,X STA opr,X STA ,X	Store Accumulator in Memory	M ← (A)	_	_	ţ	ţ	_	DIR EXT IX2 IX1 IX	B7 C7 D7 E7 F7	dd hh II ee ff ff			
STOP	Stop Oscillator and Enable IRQ Pin		—	0		—	—	INH	8E		2		
STX opr STX opr STX opr,X STX opr,X STX ,X	Store Index Register In Memory	$M \leftarrow (X)$			ţ	ţ		DIR EXT IX2 IX1 IX	BF CF DF EF FF	dd hh ll ee ff ff			
SUB #opr SUB opr SUB opr SUB opr,X SUB opr,X SUB ,X	Subtract Memory Byte from Accumulator	A ← (A) − (M)			ţ	ţ	ţ	IMM DIR EXT IX2 IX1 IX	A0 B0 C0 D0 E0 F0	ii dd hh II ee ff ff			
SWI	Software Interrupt	$\begin{array}{c} PC \leftarrow (PC) + 1; Push (PCL) \\ SP \leftarrow (SP) - 1; Push (PCH) \\ SP \leftarrow (SP) - 1; Push (X) \\ SP \leftarrow (SP) - 1; Push (A) \\ SP \leftarrow (SP) - 1; Push (CCR) \\ SP \leftarrow (SP) - 1; I \leftarrow 1 \\ PCH \leftarrow Interrupt Vector High Byte \\ PCL \leftarrow Interrupt Vector Low Byte \end{array}$		1				INH	83		1 0		
ТАХ	Transfer Accumulator to Index Register	$X \gets (A)$	_	—		_		INH	97		2		
TST opr TSTA TSTX TST opr,X TST ,X	Test Memory Byte for Negative or Zero	(M) – \$00			ţ	ţ		DIR INH INH IX1 IX	3D 4D 5D 6D 7D	dd ff	4 3 3 5 4		

Table 11-6. Instruction Set Summary (Sheet 5 of 6)

12.5 5.0-Vdc Electrical Characteristics

Characteristic ⁽¹⁾	Symbol	Min	Typ ⁽²⁾	Max	Unit
Output voltage $I_{Load} = 10.0 \ \mu A$ $I_{Load} = -10.0 \ \mu A$	V _{OL} V _{OH}	 V _{DD} –0.1		0.1	V
Output high voltage $(I_{Load} = -0.8 \text{ mA}) \text{ PA7-PA0}, \text{ PB7-PB0}, \text{ PC6-PC0},$ TCMP, PD7, PD0 $(I_{Load} = -1.6 \text{ mA}) \text{ PD5-PD1}$ $(I_{Load} = -5.0 \text{ mA}) \text{ PC7}$	V _{OH}	V _{DD} -0.8 V _{DD} -0.8 V _{DD} -0.8		 	V
Output low voltage (I _{Load} = 1.6 mA) PA7–PA0, PB7–PB0, PC6–PC0, PD7, PD5–PD0, TCMP (I _{Load} = 10 mA) PC7	V _{OL}			0.4 0.4	v
Input high voltage PA7–PA0, PB7–PB0, PC7–PC0, PD7, PD5–PD0, TCAP, IRQ, RESET, OSC1	V _{IH}	$0.7 imes V_{DD}$	_	V _{DD}	V
Input low voltage PA7–PA0, PB7–PB0, PC7–PC0, PD7, PD5–PD0, TCAP, IRQ, RESET, OSC1	V _{IL}	V _{SS}	_	$0.2 \times V_{DD}$	V
Supply current (4.5–5.5 Vdc @ f _{OP} = 2.1 MHz) Run ⁽³⁾ Wait ⁽⁴⁾ Stop ⁽⁵⁾ 25°C -40 to 85 °C	I _{DD}	 	3.5 1.0 1.0 7.0	5.25 3.25 20.0 50.0	mA mA μA μA
I/O ports hi-Z leakage current PA7–PA0, PB7–PB0 (without pullup) PC7–PC0, PD7, PD5–PD0	I _{OZ}	_	_	10	μA
Input current RESET, IRQ, OSC1, TCAP, PD7, PD5–PD0	l _{in}	—	_	1	μA
Input pullup current ⁽⁶⁾ PB7–PB0 (with pullup)	l _{in}	5	—	60	μA
Capacitance Ports (as input or output) RESET, IRQ, OSC1, TCAP, PD7, PD5, PD0	C _{Out} C _{In}		_	12 8	pF
Programming voltage (25°C)	V _{PP}	15.0	16.0	17.0	V
Programming current (25°C)	I _{PP}	—	—	200	mA

1. V_{DD} = 5.0 Vdc \pm 10%, V_{SS} = 0 Vdc, T_{A} = –40 to +85 °C, unless otherwise noted

Typical values reflect measurements taken on average processed devices at the midpoint of voltage range, 25 °C only.
 Run (operating) I_{DD} measured using external square wave clock source; all I/O pins configured as inputs, port B = V_{DD}, all other inputs V_{IL} = 0.2 V, V_{IH} = V_{DD}-0.2 V; no DC loads; less than 50 pF on all outputs; C_L = 20 pF on OSC2

4. Wait I_{DD} measured using external square wave clock source; all I/O pins configured as inputs, port B = V_{DD}, all other inputs $V_{IL} = 0.2 \text{ V}$, $V_{IH} = V_{DD} - 0.2 \text{ V}$; no DC loads; less than 50 pF on all outputs; $C_L = 20 \text{ pF}$ on OSC2. Wait I_{DD} is affected linearly by the OSC2 capacitance.

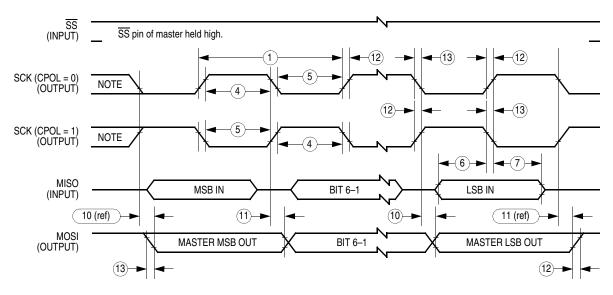
5. Stop I_{DD} measured with OSC1 = 0.2 V; all I/O pins configured as inputs, port B = V_{DD}, all other inputs V_{IL} = 0.2 V, $V_{IH} = V_{DD} - 0.2 V$.

6. Input pullup current measured with $V_{IL} = 0.2 V$.

Electrical Specifications

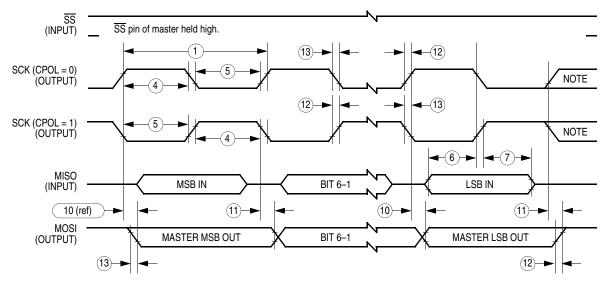
12.7 5.0-Vdc Control Timing

Characteristic ⁽¹⁾	Symbol	Min	Max	Unit
Frequency of operation Crystal External clock	fosc	 DC	4.2 4.2	MHz
Internal pperating frequency (f _{OSC} ÷ 2) Crystal External clock	f _{OP}	 DC	2.1 2.1	MHz
Cycle time	t _{CYC}	480	—	ns
Crystal oscillator startup time	toxov	—	100	ms
Stop recovery startup time (crystal oscillator)	t _{ILCH}	—	100	ms
RESET pulse width	t _{RL}	1.5	—	t _{CYC}
Timer Resolution ⁽²⁾ Input capture pulse width Input capture pulse period	t _{RESL} t _{TH} , t _{TL} t _{TLTL}	4.0 125 (3)		t _{CYC} ns t _{CYC}
Interrupt pulse width low (edge-triggered)	t _{ILIH}	125	—	ns
Interrupt pulse period	t _{ILIL}	(4)	—	t _{CYC}
OSC1 pulse width	t _{OH} ,t _{OL}	90	_	ns


1. V_{DD} = 5.0 Vdc ± 10%, V_{SS} = 0 Vdc, T_A = -40 to +85 °C, unless otherwise noted 2. Because a 2-bit prescaler in the timer must count four internal cycles (t_{CYC}), this is the limiting minimum factor in determining the timer resolution.

3. The minimum period t_{TLTL} should not be less than the number of cycle times it takes to execute the capture interrupt service

routine plus 24 t_{CYC} . 4. The minimum t_{ILIL} should not be less than the number of cycle times it takes to execute the interrupt service routine plus 19 t_{CYC}.


Electrical Specifications

Note:

This first clock edge is generated internally, but is not seen at the SCK pin.

Note: This last clock edge is generated internally, but is not seen at the SCK pin.

b) SPI Master Timing (CPHA = 1)

Figure 12-9. SPI Master Timing Diagram

