

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	V850ES
Core Size	32-Bit Single-Core
Speed	20MHz
Connectivity	CSI, EBI/EMI, I ² C, UART/USART
Peripherals	DMA, LVD, PWM, WDT
Number of I/O	84
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	2.2V ~ 3.6V
Data Converters	A/D 12x10b; D/A 2x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/upd70f3738gc-ueu-ax

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Address	Function Register Name	Symbol	R/W	Manip	oulatabl	le Bits	Default Value
				1	8	16	
FFFFF712H	Port 9 function control expansion register	PFCE9	R/W			\checkmark	0000H
FFFFF712H	Port 9 function control expansion register L	PFCE9L		\checkmark	\checkmark		00H
FFFFF713H	Port 9 function control expansion register H	PFCE9H		\checkmark	\checkmark		00H
FFFFF802H	System status register	SYS		\checkmark	\checkmark		00H
FFFFF80CH	Internal oscillation mode register	RCM		\checkmark	\checkmark		00H
FFFFF810H	DMA trigger factor register 0	DTFR0		\checkmark	\checkmark		00H
FFFFF812H	DMA trigger factor register 1	DTFR1		\checkmark	\checkmark		00H
FFFFF814H	DMA trigger factor register 2	DTFR2		\checkmark	\checkmark		00H
FFFFF816H	DMA trigger factor register 3	DTFR3		\checkmark	\checkmark		00H
FFFFF820H	Power save mode register	PSMR		\checkmark	\checkmark		00H
FFFFF822H	Clock control register	СКС		\checkmark	\checkmark		0AH
FFFFF824H	Lock register	LOCKR	R	\checkmark	\checkmark		00H
FFFFF828H	Processor clock control register	PCC ^{Note}	R/W	\checkmark	\checkmark		03H
FFFFF82CH	PLL control register	PLLCTL		\checkmark	\checkmark		01H
FFFFF82EH	CPU operation clock status register	CCLS	R	\checkmark	\checkmark		00H
FFFFF870H	Clock monitor mode register	CLM	R/W	\checkmark	\checkmark		00H
FFFFF888H	Reset source flag register	RESF		\checkmark	\checkmark		00H
FFFFF890H	Low-voltage detection register	LVIM		\checkmark	\checkmark		00H
FFFFF891H	Low-voltage detection level select register	LVIS			\checkmark		00H
FFFFF8B0H	Prescaler mode register 0	PRSM0		\checkmark	\checkmark		00H
FFFFF8B1H	Prescaler compare register 0	PRSCM0			\checkmark		00H
FFFF9FCH	On-chip debug mode register	OCDM ^{Note}		\checkmark	\checkmark		01H
FFFFFA00H	UARTA0 control register 0	UA0CTL0		\checkmark	\checkmark		10H
FFFFFA01H	UARTA0 control register 1	UA0CTL1			\checkmark		00H
FFFFFA02H	UARTA0 control register 2	UA0CTL2			\checkmark		FFH
FFFFFA03H	UARTA0 option control register 0	UA0OPT0		\checkmark	\checkmark		14H
FFFFFA04H	UARTA0 status register	UA0STR		\checkmark	\checkmark		00H
FFFFFA06H	UARTA0 receive data register	UA0RX	R		\checkmark		FFH
FFFFFA07H	UARTA0 transmit data register	UA0TX	R/W		\checkmark		FFH
FFFFFA10H	UARTA1 control register 0	UA1CTL0		\checkmark	\checkmark		10H
FFFFFA11H	UARTA1 control register 1	UA1CTL1			\checkmark		00H
FFFFFA12H	UARTA1 control register 2	UA1CTL2			\checkmark		FFH
FFFFFA13H	UARTA1 option control register 0	UA1OPT0		\checkmark	\checkmark		14H
FFFFFA14H	UARTA1 status register	UA1STR		\checkmark	\checkmark		00H
FFFFFA16H	UARTA1 receive data register	UA1RX	R		\checkmark		FFH
FFFFFA17H	UARTA1 transmit data register	UA1TX	R/W		\checkmark		FFH
FFFFFA20H	UARTA2 control register 0	UA2CTL0		\checkmark	\checkmark		10H
FFFFFA21H	UARTA2 control register 1	UA2CTL1			\checkmark		00H
FFFFFA22H	UARTA2 control register 2	UA2CTL2			\checkmark		FFH
FFFFFA23H	UARTA2 option control register 0	UA2OPT0		\checkmark	\checkmark		14H
FFFFFA24H	UARTA2 status register	UA2STR		\checkmark	\checkmark		00H
FFFFFA26H	UARTA2 receive data register	UA2RX	R		\checkmark		FFH
FFFFFA27H	UARTA2 transmit data register	UA2TX	R/W				FFH

Note This is a special register.

(2) Port 0 mode register (PM0)

After res	et: FFH	R/W	Address: F	FFFF420H	4			
	7	6	5	4	3	2	1	0
PM0	1	PM06	PM05	PM04	PM03	PM02	1	1
	PM0n		I/O mode control ($n = 2$ to 6)					
	0	Output mo	utput mode					
	1	Input mod	e					
	1	· ·						

<R> (3) Port 0 mode control register (PMC0)

	7	6	5	4	3	2	1	0
PMC0	0	PMC06	PMC05	PMC04	PMC03	PMC02	0	0
								·
	PMC06			Specifica	tion of pin	operation		
	0	I/O port (p	06)					
	1	INTP3 inp	ut					
	PMC05		Specification of pin operation					
	0	I/O port (p	port (p05)					
	1	INTP2 inp	TP2 input					
	PMC04			Specifica	tion of pin	operation		
	0	I/O port (p	04)					
	1	INTP1 inp	out (/RTCD	IV output/F	RTCCL outp	out) ^{Note}		
	PMC03			Specifica	tion of pin	operation		
	0	I/O port (p	03)					
	1	INTP0 inp	ut/ADTRG	input (/RT	C1HZ outp	ut) ^{Note}		
	PMC02			Specifica	tion of pin	operation		
	0	I/O port (p	02)					
	1	NMI input	(/A21 outp	ut) ^{Note}				

Caution The P05/INTP2/DRST pin becomes the DRST pin regardless of the value of the PMC05 bit when the OCDM.OCDM0 bit is 1.

4.3.6 Port 7

Port 7 is a 12-bit port for which I/O settings can be controlled in 1-bit units. Port 7 includes the following alternate-function pins.

	Pin No.		Function	Alternate Fu	inction	Remark	Block Type
GF	GC	F1	Name	Name	I/O		
2	100	A3	P70	ANIO	Input	-	A-1
1	99	B3	P71	ANI1	Input		A-1
100	98	C3	P72	ANI2	Input		A-1
99	97	D3	P73	ANI3	Input		A-1
98	96	A4	P74	ANI4	Input		A-1
97	95	B4	P77	ANI5	Input		A-1
96	94	C4	P76	ANI6	Input		A-1
95	93	D4	P77	ANI7	Input		A-1
94	92	A5	P78	ANI8	Input		A-1
93	91	B5	P79	ANI9	Input		A-1
92	90	C5	P710	ANI10	Input		A-1
91	89	D5	P711	ANI11	Input		A-1

Table 4-9. Port 7 Alternate-Function Pins

Remark GF: 100-pin plastic LQFP (14 × 20) (*µ*PD70F3737, 70F3738 only)

GC: 100-pin plastic LQFP (fine pitch) (14×14)

F1: 121-pin plastic FBGA (8×8)

(7) Port 9 function register (PF9)

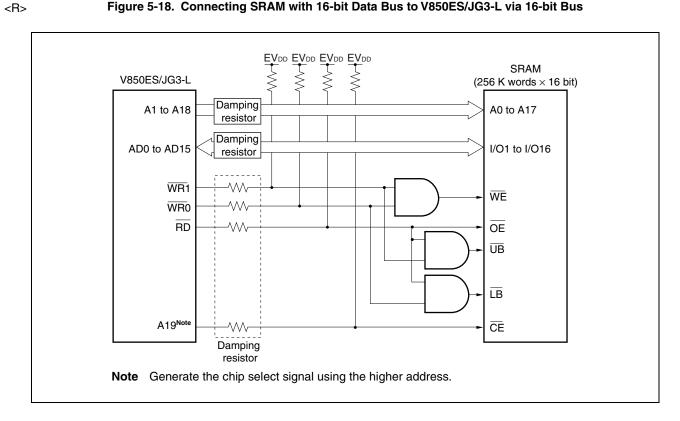
After re	set: 0000H	R/W	Address	PF9 FFF PF9L FF	,	PF9H FFF	FFC73H			
	15	14	13	12	11	10	9	8		
PF9 (PF9H)	PF915	PF914	PF913	PF912	PF911	PF910	PF99	PF98		
	7	6	5	4	3	2	1	0		
(PF9L)	PF97	PF96	PF95	PF94	PF93	PF92	PF91	PF90		
	PF9n Specification of normal output (CMOS output) or N-ch open-drain output (n = 0 to 15)									
	0 Normal output (CMOS output)									
	1	N-ch oper	n-drain outp	out						
1. Pull up		ns P97 to	P915 to t			•		o set the F en they ar		
	ever, wher s as the Pl	n using the =9L registe	e higher 8 er, PF9 ca	bits of the n be read	e PF9 reg or writter	ister as th	or 1-bit uni			

5.6 Wait Function

5.6.1 Programmable wait function

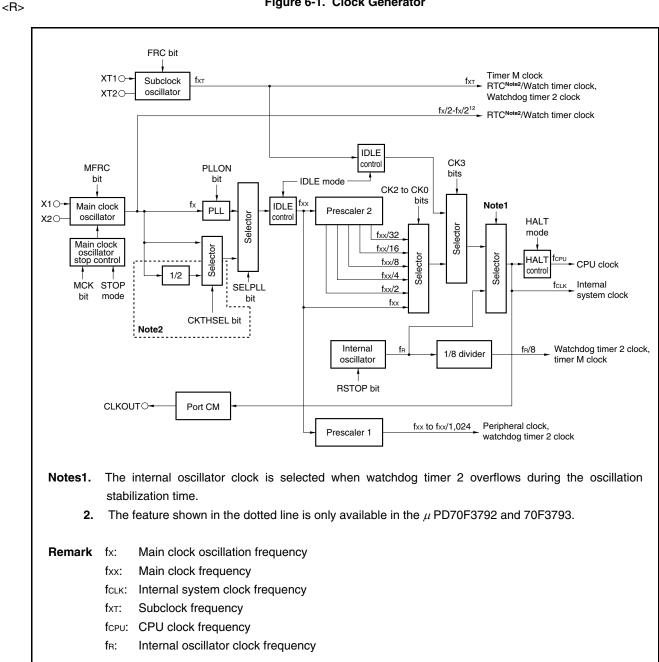
(1) Data wait control register 0 (DWC0)

To realize interfacing with a low-speed memory or I/O device, up to seven data wait states can be inserted in the bus cycle that is executed for each memory block space.


The number of wait states can be programmed by using the DWC0 register. Immediately after system reset, 7 data wait states are inserted for all the memory block areas.

The DWC0 register can be read or written in 16-bit units.

Reset sets this register to 7777H.


- Cautions 1. The internal ROM and internal RAM areas are not subject to programmable wait, and are always accessed without a wait state. The on-chip peripheral I/O area is also not subject to programmable wait, and only wait control from each peripheral function is performed.
 - 2. Write to the DWC0 register after reset, and then do not change the set values. Also, when changing the initial values of the DWC0 register, do not access an external memory area until the settings are complete.

г	15	14	13	12	11	10	9	8	
DWC0	0	DW32	DW31	DW30	0	DW22	DW21	DW20	
Memo	ry block n	signal Me	emory blocl	< 3		Μ	emory bloc	k 2	
-	7	6	5	4	3	2	1	0	
	0	DW12	DW11	DW10	0	DW02	DW01	DW00	
Memo	1emory block n signal Memory block 1 Memory block 0								
	DWn2	DWn1	DWn0	Number of w	ait states inse	rted in memory	y block n space	e (n = 0 to 3)	
	0	0	0	None					
	0	0	1	1					
	0	1	0	2					
	0	1	1	3					
	1	0	0	4					
	1	0	1	5					
	1	1	0	6					
	1	1	1	7					
L									

Figure 5-18. Connecting SRAM with 16-bit Data Bus to V850ES/JG3-L via 16-bit Bus

6.2 Configuration

7.4 Operations

TMPn can execute the following operations:

Table 7-5. TMPn Operating Modes

Operating Mode	TPnCTL1.TPnEST Bit (Software Trigger Bit)	TIPn0 Pin (External Trigger Input)	Capture/Compare Register Setting	Compare Register Write	Count Clock
Interval timer mode	Invalid	Invalid	Compare only	Anytime write	Internal/external
External event count mode ^{Note 1}	Invalid	Invalid	Compare only	Anytime write	External
External trigger pulse output mode ^{Note 2}	Valid	Valid	Compare only	Batch write	Internal
One-shot pulse output mode ^{Note 2}	Valid	Valid	Compare only	Anytime write	Internal
PWM output mode	Invalid	Invalid	Compare only	Batch write	Internal/external
Free-running timer mode	Invalid	Invalid	Can be switched	Anytime write	Internal/external
Pulse width measurement mode ^{Note 2}	Invalid	Invalid	Capture only	Not applicable	Internal

- **Notes 1.** When using the external event count mode, specify that the valid edge of the TIPn0 pin capture trigger input is not detected (by clearing the TPnIOC1.TPnIS1 and TPnIOC1.TPnIS0 bits to 0).
 - 2. When using the external trigger pulse output mode, one-shot pulse output mode, and pulse width measurement mode, select the internal clock as the count clock (by clearing the TPnCTL1.TPnEEE bit to 0).

Remark n = 0 to 5

(d) Detection of trigger immediately before or after INTTQ0CC0 generation

If the trigger is detected immediately after the INTTQ0CC0 signal is generated, the 16-bit counter is cleared to 0000H and continues incrementing. Therefore, the active period of the TOQ0k pin is extended by the amount of time between the generation of the INTTQ0CC0 signal and the detection of the trigger.

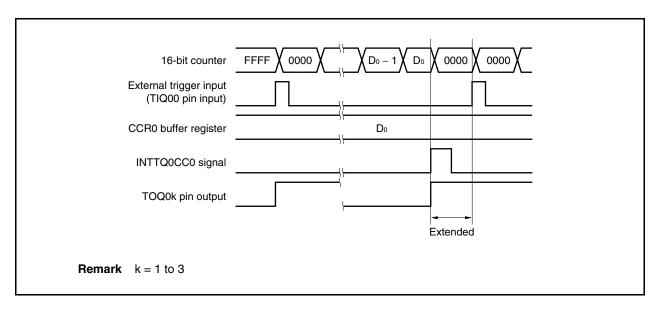


Figure 8-35. Detection of Trigger Immediately After INTTQ0CC0 Signal Was Generated

If the trigger is detected immediately before the INTTQ0CC0 signal is generated, the INTTQ0CC0 signal is not generated. The 16-bit counter is cleared to 0000H, the TOQ0k pin output is set to the active level, and the counter continues incrementing. Consequently, the inactive period of the PWM waveform is shortened.

Figure 8-36. Detection of Trigger Immediately Before INTTQ0CC0 Signal Is Generated

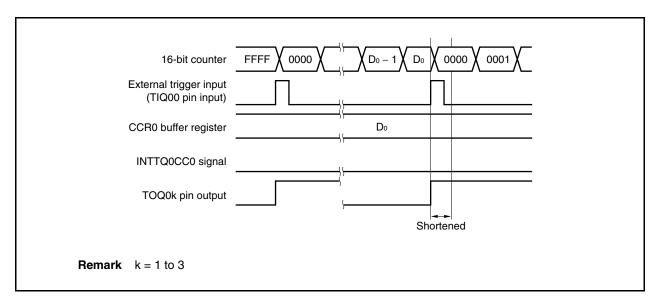


Figure 8-46. Register Settings in PWM Output Mode (3/3)

(f) TMQ0 capture/compare registers 0 to 3 (TQ0CCR0 to TQ0CCR3)

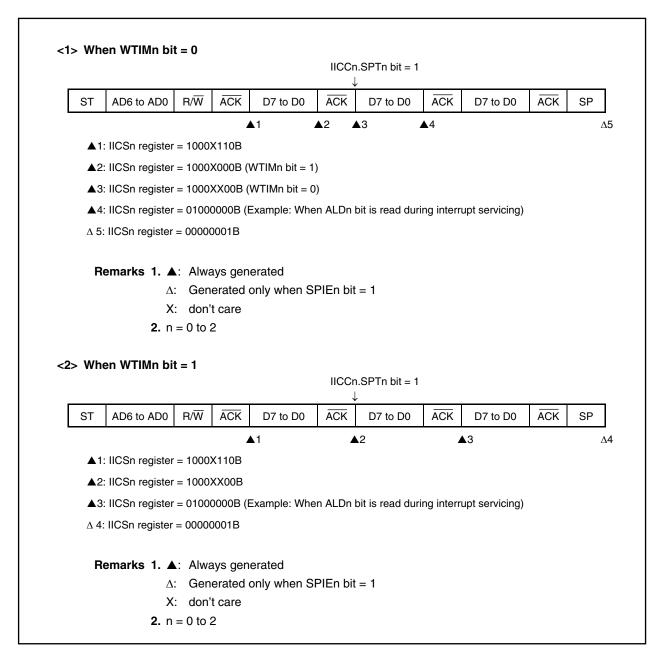
If the TQ0CCR0 register is set to D_0 and the TQ0CCRk register is set to D_k , the PWM waveform is as follows:

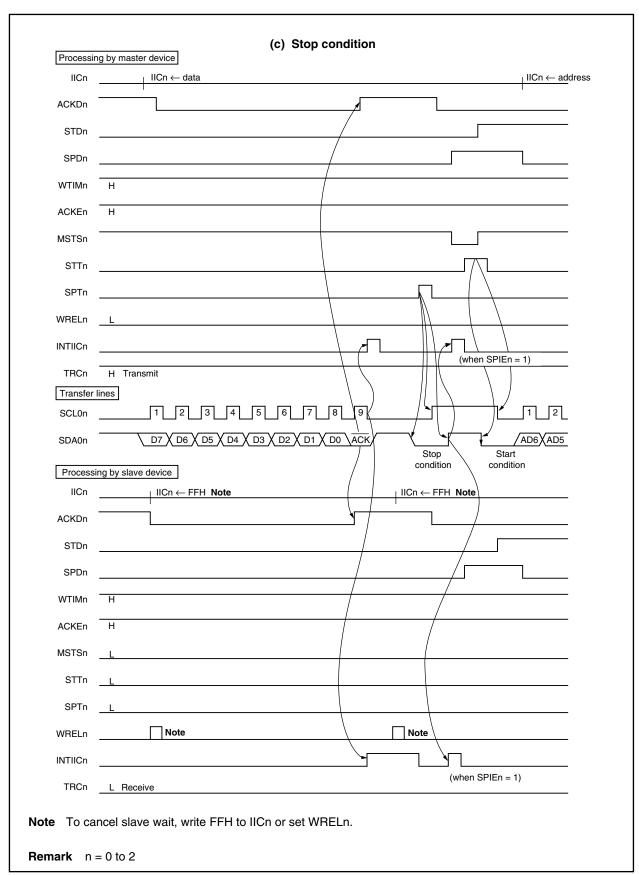
 $\label{eq:pwm} \begin{array}{l} \text{PWM waveform cycle} = (D_0 + 1) \times \text{Count clock cycle} \\ \\ \text{PWM waveform active level width} = D_{k} \times \text{Count clock cycle} \end{array}$

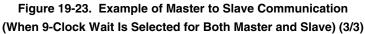
Remarks 1. TMQ0 I/O control register 1 (TQ0IOC1) and TMQ0 option register 0 (TQ0OPT0) are not used in the PWM output mode.

 Updating TMQ0 capture/compare register 2 (TQ0CCR2) and TMQ0 capture/compare register 3 (TQ0CCR3) is enabled by writing to TMQ0 capture/compare register 1 (TQ0CCR1).

JC0SLS2	UC0SLS1	UC0SLS0	SBF transmit length selection
1	0	1	13-bit output (initial value)
1	1	0	14-bit output
1	1	1	15-bit output
0	0	0	16-bit output
0	0	1	17-bit output
0	1	0	18-bit output
0	1	1	19-bit output
1	0	0	20-bit output
This regis	ster can be	set when th	ne UC0PWR bit or the UC0TXE bit is 0.
JCOTDL			Transmit data level bit
0	Normal or	utput of trar	sfer data
1	Inverted of	output of tra	nsfer data
			pin can be inverted by using the UC0TDL bit the UC0PWR bit or the UC0TXE bit is 0.
UCORDL			Receive data level bit
0	Normal in	put of trans	fer data
0			sfer data


IICX0		IICCL0		Selection Clock	Transfer	Settable Main Clock	Operating
	Dit 0		Rit O	Selection Clock	Clock	Frequency (fxx) Range	Mode
Bit 0	Bit 3 SMC0	Bit 1	Bit 0				
CLX0	0 0	CL01 0	CL00 0	$f_{\rm ex}$ (when OCKS0 - 19H act)	fxx/44	2 50 MHz < free < 1 10 MHz	Standard
0	0	0	0	fxx (when OCKS0 = 18H set)		$2.50 \text{ MHz} \le f_{xx} \le 4.19 \text{ MHz}$	mode
				fxx/2 (when OCKS0 = 10H set)	fxx/88	4.00 MHz \leq fxx \leq 8.38 MHz	(SMC0 bit = 0)
				fxx/3 (when OCKS0 = 11H set)	fxx/132	6.00 MHz ≤ fxx ≤ 12.57 MHz	-
				fxx/4 (when OCKS0 = 12H set)	fxx/176	8.00 MHz ≤ fxx ≤ 16.76 MHz	
				fxx/5 (when OCKS0 = 13H set)	fxx/220	10.00 MHz \leq fxx \leq 20.00 MHz	-
0	0	0	1	fxx (when OCKS0 = 18H set)	fxx/86	4.19 MHz \leq fxx \leq 8.38 MHz	-
				fxx/2 (when OCKS0 = 10H set)	fxx/172	8.38 MHz ≤ fxx ≤ 16.76 MHz	
				fxx/3 (when OCKS0 = 11H set)	fxx/258	12.57 MHz \leq fxx \leq 20.00 MHz	-
				fxx/4 (when OCKS0 = 12H set)	fxx/344	16.76 MHz \leq fxx \leq 20.00 MHz	
0	0	1	0	fxx ^{Note}	fxx/86	$4.19 \text{ MHz} \leq \text{fxx} \leq 8.38 \text{ MHz}$	
0	0	1	1	fxx (when OCKS0 = 18H set)	fxx/66	fxx = 6.40 MHz	
				fxx/2 (when OCKS0 = 10H set)	fxx/132	fxx = 12.80 MHz	
				fxx/3 (when OCKS0 = 11H set)	fxx/198	fxx = 19.20 MHz	
0	1	0	×	fxx (when OCKS0 = 18H set)	fxx/24	4.19 MHz ≤ fxx ≤ 8.38 MHz	High-speed
				fxx/2 (when OCKS0 = 10H set)	fxx/48	8.00 MHz ≤ fxx ≤ 16.76 MHz	mode
				fxx/3 (when OCKS0 = 11H set)	fxx/72	12.00 MHz \leq fxx \leq 20.00 MHz	(SMC0 bit = 1)
				fxx/4 (when OCKS0 = 12H set)	fxx/96	$16.00 \text{ MHz} \le \text{fxx} \le 20.00 \text{ MHz}$	
0	1	1	0	fxx ^{Note}	fxx/24	$4.00 \text{ MHz} \le \text{fxx} \le 8.38 \text{ MHz}$	
0	1	1	1	fxx (when OCKS0 = 18H set)	fxx/18	fxx = 6.40 MHz	
				fxx/2 (when OCKS0 = 10H set)	fxx/36	fxx = 12.80 MHz	
				fxx/3 (when OCKS0 = 11H set)	fxx/54	fxx = 19.20 MHz	
1	1	0	×	fxx (when OCKS0 = 18H set)	fxx/12	$4.00 \text{ MHz} \le f_{xx} \le 4.19 \text{ MHz}$	
				fxx/2 (when OCKS0 = 10H set)	fxx/24	8.00 MHz ≤ fxx ≤ 8.38 MHz	-
				fxx/3 (when OCKS0 = 11H set)	fxx/36	12.00 MHz ≤ fxx ≤ 12.57 MHz	
				fxx/4 (when OCKS0 = 12H set)	fxx/48	16.00 MHz ≤ fxx ≤ 16.67 MHz	1
				fxx/5 (when OCKS0 = 13H set)	fxx/60	fxx = 20.00 MHz	1
1	1	1	0	fxx ^{Note}	fxx/12	4.00 MHz ≤ fxx ≤ 4.19 MHz	1
	Other tha	an above		Setting prohibited	_	_	_


Table 19-2. Clock Settings (1/2)


Note Since the selection clock is fxx regardless of the value set to the OCKS0 register, clear the OCKS0 register to 00H (l²C division clock stopped status).

Remark ×: don't care

(8) When arbitration loss occurs due to low level of SDA0n pin when attempting to generate a stop condition

22.4 Cautions

- (1) If a low level is input to any of the KR0 to KR7 pins, the INTKR signal is not generated even if the falling edge is input to another pin.
- (2) The RXDA1 and KR7 pins must not be used at the same time. When using the RXDA1 pin, do not use the KR7 pin. When using the KR7 pin, do not use the RXDA1 pin (it is recommended to set the PFC91 bit to 1 and clear PFCE91 bit to 0).
- (3) If the KRM register is changed, an interrupt request signal (INTKR) may be generated. To prevent this, change the KRM register after disabling (DI) or masking interrupts, then clear the interrupt request flag (KRIC.KRIF bit) to 0, and enable (EI) or unmask interrupts.
- (4) To use the key interrupt function, be sure to set the function of the port pin to "key return pin" and then enable the key interrupt function by using the KRM register. To switch the pin function from key return pin to port pin, disable the key interrupt function by using the KRM register and then set pin function to "port pin".

<R>

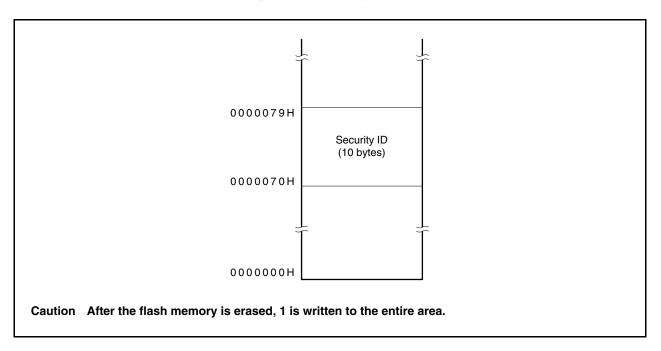
Table 23-7. Operating Status in IDLE2 Mode

	Setting of IDLE2 Mode	Operatin	ig Status					
Item		When Subclock Is Not Used	When Subclock Is Used					
LVI		Operable						
Main clock oscillat	or	Oscillates						
Subclock oscillator		_	Oscillates					
Internal oscillator		Oscillation enabled						
PLL		Stops operation						
CPU		Stops operation						
DMA		Stops operation						
Interrupt controller		Stops operation (but standby mode release	e is possible)					
Timer P (TMP0 to	TMP5)	Stops operation						
Timer Q (TMQ0)		Stops operation						
Timer M (TMM0)		Operable when $f_{\mbox{\scriptsize F}}/8$ is selected as the count clock	Operable when $f_{\text{R}}/8$ or f_{XT} is selected as the count clock					
Watch timer(/RTC)	Note1	Operable when fx (divided BRG) is selected as the count clock	Operable					
Watchdog timer 2		Operable when fn/8 is selected as the count clock	Operable when $f_{\text{R}}/8$ or f_{XT} is selected as the count clock					
Serial interface	CSIB0 to CSIB4	Operable when the $\overline{\text{SCKBn}}$ input clock is selected as the count clock (n = 0 to 4)						
	l ² C00 to l ² C02	Stops operation						
	UARTA0 to UARTA5	Stops operation (but UARTA0 is operable when the ASCKA0 input clock is selected)						
	UARTC0 ^{Note1}	Stops operation						
A/D converter		Holds operation (conversion result held) ^{Note}	2					
D/A converter		Holds operation (output held ^{Note2})						
Real-time output fu	unction (RTO)	Stops operation (output held)						
Key interrupt funct	ion (KR)	Operable						
CRC operation cire	cuit	Stops operation						
External bus interf	ace	See 2.2 Pin States.						
Port function		Retains status before IDLE2 mode was set	t					
CPU register set		Retains status before IDLE2 mode was set	t					
Internal RAM								

Notes1. *μ* PD70F3792, 70F3793 only

2. To realize low power consumption, stop the A/D and D/A converters before shifting to the IDLE2 mode.

31.3 ROM Security Function


31.3.1 Security ID

The flash memory versions of the V850ES/JG3-L perform authentication using a 10-byte ID code to prevent the contents of the flash memory from being read by an unauthorized person during on-chip debugging by the on-chip debug emulator.

Set the ID code in the 10-byte internal flash memory area from 0000070H to 0000079H to allow the debugger perform ID authentication.

If the IDs match, the security is released and reading the flash memory and using the on-chip debug emulator are enabled.

- Set the 10-byte ID code to 0000070H to 0000079H.
- Bit 7 of 0000079H is the on-chip debug emulator enable flag.
 (0: Disable, 1: Enable)
- When the on-chip debug emulator is started, the debugger requests ID input. When the ID code input to the debugger and the ID code set in 0000070H to 0000079H match, the debugger starts.
- Debugging cannot be performed if the on-chip debug emulator enable flag is 0, even if the ID codes match.

Figure 31-6. Security ID Area

32.6 DC Characteristics

32.6.1 Pin characteristics

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Input voltage, high	VIH1	RESET, FLMD0, P97 to P915	0.8EVDD		EVDD	V
	VIH2	P02 to P06, P30 to P37, P42, P50 to P55, P92 to P96	0.8EVDD		5.5	V
	VIH3	P38, P39, P40, P41, P90, P91	0.7EVDD		5.5	V
	VIH4	PCM0 to PCM3, PCT0, PCT1, PCT4, PCT6, PDH0 to PDH5, PDL0 to PDL15	0.7EVDD		EV _{DD}	V
	VIH5	P70 to P711	0.7AVREF0		AV _{REF0}	V
	VIH6	P10, P11	0.7AVREF1		AV _{REF1}	V
Input voltage, low	VIL1	RESET, FLMD0, P97 to P915	EVss		0.2EV _{DD}	V
	VIL2	P02 to P06, P30 to P37, P42, P50 to P55, P92 to P96	EVss		0.2EV _{DD}	V
	VIL3	P38, P39, P40, P41, P90, P91	EVss		0.3EVDD	V
	VIL4	PCM0 to PCM3, PCT0, PCT1, PCT4, PCT6, PDH0 to PDH5, PDL0 to PDL15	EVss		0.3EV _{DD}	V
	VIL5	P70 to P711	AVss		0.3AVREF0	V
	VIL6	P10, P11	AVss		0.3AVREF1	V
Input leakage current, high	Іцн	$V_1 = V_{DD} = EV_{DD} = AV_{REF0} = AV_{REF1}$			5	μA
Input leakage current, low	Ilil	V1 = 0 V			-5	μA
Output leakage current, high	Ігон	$V_{\text{O}} = V_{\text{DD}} = EV_{\text{DD}} = AV_{\text{REF0}} = AV_{\text{REF1}}$			5	μA
Output leakage current, low	Ilol	Vo = 0 V			-5	μA

(TA = -40 to +85°C, VDD = EVDD = AVREF0 = AVREF1 = 2.2 to 3.6 V, Vss = EVss = AVss = 0 V) (1/2)

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of port pins.

Symbol	Name	Unit	(4/1 Page
DTFR2		DMAC	765
	DMA trigger factor register 2		
DTFR3	DMA trigger factor register 3	DMAC	765
DWC0	Data wait control register 0	BCU	197
ECR	Interrupt source register	CPU	59
EIPC	Interrupt status saving register	CPU	58
EIPSW	Interrupt status saving register	CPU	58
EXIMC	External bus interface mode control register	BCU	187
FEPC	NMI status saving register	CPU	59
FEPSW	NMI status saving register	CPU	59
IIC0	IIC shift register 0	I ² C	700
IIC1	IIC shift register 1	I ² C	700
IIC2	IIC shift register 2	I ² C	700
IICC0	IIC control register 0	I ² C	686
IICC1	IIC control register 1	I ² C	686
IICC2	IIC control register 2	I ² C	686
IICCL0	IIC clock select register 0	l ² C	696
IICCL1	IIC clock select register 1	I ² C	696
IICCL2	IIC clock select register 2	l ² C	696
IICF0	IIC flag register 0	I ² C	694
IICF1	IIC flag register 1	I ² C	694
IICF2	IIC flag register 2	I ² C	694
IICIC0	Interrupt control register	INTC	799
IICIC1	Interrupt control register	INTC	799
IICIC2	Interrupt control register	INTC	799
IICS0	IIC status register 0	I ² C	691
IICS1	IIC status register 1	I ² C	691
IICS2	IIC status register 2	l ² C	691
IICX0	IIC function expansion register 0	l ² C	697
IICX1	IIC function expansion register 1	l ² C	697
IICX2	IIC function expansion register 2	l ² C	697
IMR0	Interrupt mask register 0	INTC	801
IMR0H	Interrupt mask register 0H	INTC	801
IMR0L	Interrupt mask register 0L	INTC	801
IMR1	Interrupt mask register 1	INTC	801
IMR1H	Interrupt mask register 1H	INTC	801
IMR1L	Interrupt mask register 1L	INTC	801
IMR2	Interrupt mask register 2	INTC	801
IMR2H	Interrupt mask register 2H	INTC	801
IMR2L	Interrupt mask register 2L	INTC	801
IMR3	Interrupt mask register 3	INTC	801
IMR3H	Interrupt mask register 3H	INTC	801
IMR3L	Interrupt mask register 3L	INTC	801
INTF0	External interrupt falling edge specification register 0	INTC	815
INTF3	External interrupt falling edge specification register 3 External interrupt falling edge specification register 9H		816 817

Edition	Description	Applied to:	
3rd	 Addition of products μPD70F3737F1-GC-CAH-A, 70F3738F1-CAH-A 	Throughout	
	Modification of Table 1-1. V850ES/Jx3-L Product List	CHAPTER 1 INTRODUCTION	
	Addition of Figure 3-10 Sign Extension in Data Space	CHAPTER 3 CPU FUNCTION	
	Modification of Table 5-3 Pin Statuses When Internal ROM, Internal RAM, or On-Chip Peripheral I/O Is Accessed	CHAPTER 5 BUS CONTROL FUNCTION CHAPTER 6 CLOCK GENERATOR	
	Addition of 5.11 SRAM Connection Examples		
	Addition of 6.4.3 External clock signal input		
	Addition of 6.6 How to Connect a Resonator		
	Addition of 7.2.1 Pins used by TMPn	CHAPTER 7 16-BIT TIMER/EVENT	
	Addition of 7.2.2 Interrupts		
	Addition of 7.4 (1) Basic counter operation	COUNTER P (TMP)	
	Addition of 7.4 (2) Anytime write and batch write		
	Addition of 7.4.1 (3) Operation of interval timer based on input of external event count	-	
	Modification of Figure 7-28 Register Settings in External Trigger Pulse Output Mode	-	
	Modification of Figure 7-40 Register Settings in One-Shot Pulse Output Mode		
	Addition of 8.2.1 Pins used by TMQ0	CHAPTER 8 16-BIT	
	Addition of 8.2.2 Interrupts	TIMER/EVENT	
	Addition of 8.4 (1) Basic counter operation	COUNTER Q (TMQ)	
	Addition of 8.4 (2) Anytime write and batch write		
	Addition of 8.4.1 (3) Operation of interval timer based on input of external event count	-	
	Modification of Figure 8-28 Register Settings in External Trigger Pulse Output Mode	1	
	Modification of Figure 8-40 Register Settings in One-Shot Pulse Output Mode	-	
	Modification of Figure 13-4 Example of Timing in Continuous Select Mode (ADA0S Register = 01H)	CHAPTER 13 A/D CONVERTER	
	Modification of Figure 13-5 Example of Timing in Continuous Scan Mode (ADA0S Register = 03H)		
	Modification of Figure 13-6 Example of Timing in One-Shot Select Mode (ADA0S Register = 01H)		
	Modification of Figure 13-7 Example of Timing in One-Shot Scan Mode (ADA0S Register = 03H)		
	Modification of Figure 13-8 Example of Timing in Continuous Select Mode (When Power-Fail Comparison Is Made: ADA0PFM.ADA0PFC bit = 0, ADA0S Register = 01H)		
	Modification of Figure 13-9 Example of Timing in Continuous Scan Mode (When Power-Fail Comparison Is Made: ADA0PFM.ADA0PFC bit = 0, ADA0S Register = 03H)		
	Modification of Figure 13-10 Example of Timing in One-Shot Select Mode (When Power-Fail Comparison Is Made: ADA0PFM.ADA0PFC bit = 1, ADA0S Register = 01H)		
	Modification of Figure 13-11 Example of Timing in One-Shot Scan Mode (When Power-Fail Comparison Is Made: ADA0PFM.ADA0PFC bit = 0, ADA0S Register = 03H)		