

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

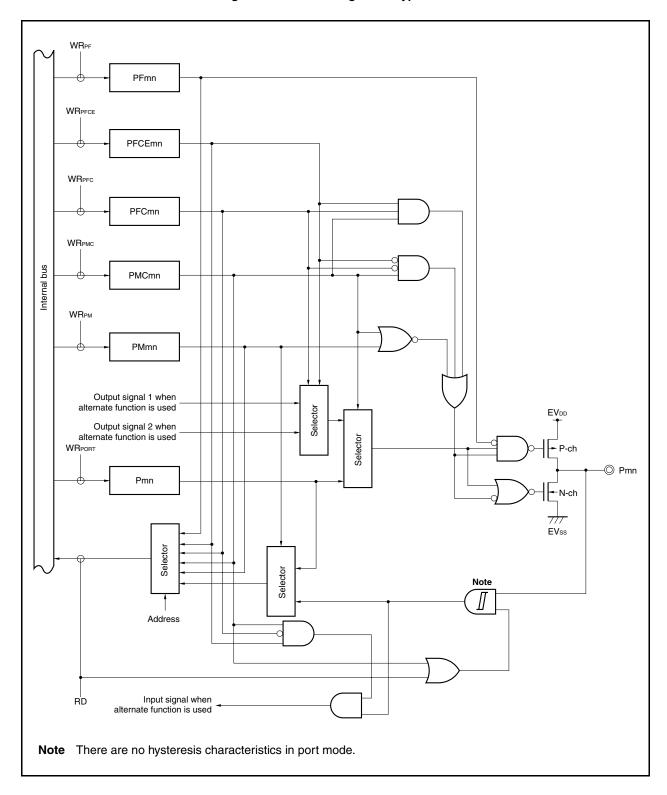
"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	V850ES
Core Size	32-Bit Single-Core
Speed	20MHz
Connectivity	CSI, EBI/EMI, I ² C, UART/USART
Peripherals	DMA, LVD, PWM, WDT
Number of I/O	83
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	40K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 12x10b; D/A 2x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	100-LFQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/upd70f3793gc-ueu-ax

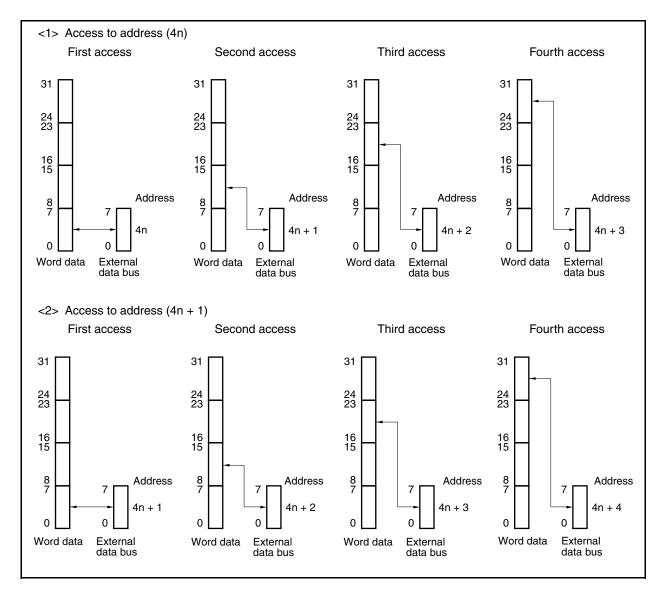
Email: info@E-XFL.COM


Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

(7) Port 0 function register (PF0)

		6	5	4	3	2	1	0
PF0	0	PF06	PF05	PF04	PF03	PF02	0	0
	PF0n	Specificatio	n of normal	output (CMC	S output) or	r N-ch open-	drain output	(n = 2 to 6)
Γ	0	Normal ou	utput (CMO	S output)				
	1	N-ch oper	n-drain outp	out				

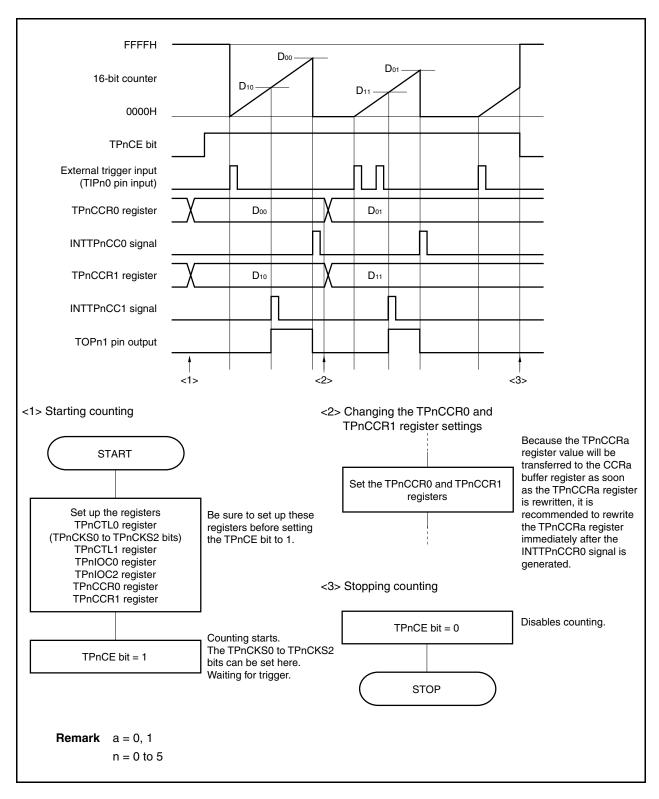
(7) Port 3 function register (PF3)


After re	set: 0000H	H R/W	Address	PF3 FFFI PF3L FFI	FC66H, FFC66H,	PF3H FFF	FFC67H	
	15	14	13	12	11	10	9	8
PF3 (PF3H)	0	0	0	0	0	0	PF39	PF38
	7	6	5	4	3	2	1	0
(PF3L)	PF37	PF36	PF35	PF34	PF33	PF32	PF31	PF30
	PF3n	Specificatio	n of normal	output (CMC	S output) or	N-ch open-	drain output	t (n = 0 to 9)
				• •	S output) or	N-ch open-	drain output	t (n = 0 to 9)
	0	Normal ou	itput (CMO	S output)				
	1	N-ch oper	i-drain outp	out				
Remarks 1. The How	PF3 regis ever, whe	ter can be	read or w higher 8	ritten in 10 bits of the	6-bit units PF3 reg	ister as th	ne PF3H r	F3n bit to 1. register and t its.
0 614								

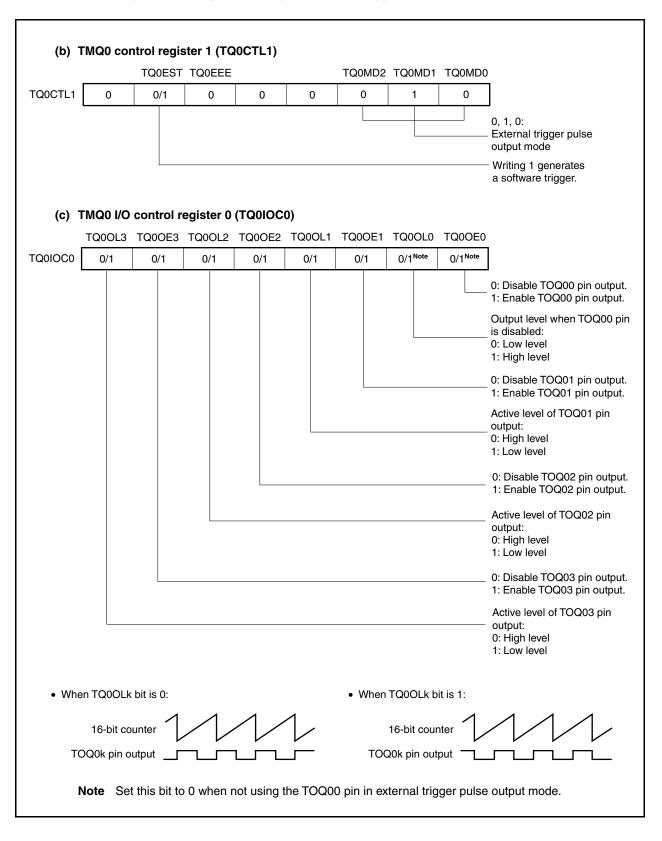
(b) 8-bit data bus width (1/2)

32-bit data is transmitted/received via an 8-bit bus. Therefore, the data is transmitted/received in four accesses. The data is transmitted/received to/from the specified even/odd address of the external data bus.

7.3 Registers


The registers that control TMPn are as follows.

- TMPn control register 0 (TPnCTL0)
- TMPn control register 1 (TPnCTL1)
- TMPn I/O control register 0 (TPnIOC0)
- TMPn I/O control register 1 (TPnIOC1)
- TMPn I/O control register 2 (TPnIOC2)
- TMPn option register 0 (TPnOPT0)
- TMPn capture/compare register 0 (TPnCCR0)
- TMPn capture/compare register 1 (TPnCCR1)
- TMPn counter read buffer register (TPnCNT)


Remarks 1. When using the functions of the TIPn0, TIPn1, TOPn0, and TOPn1 pins, see Table 4-15 Settings When Pins Are Used for Alternate Functions.

2. n = 0 to 5

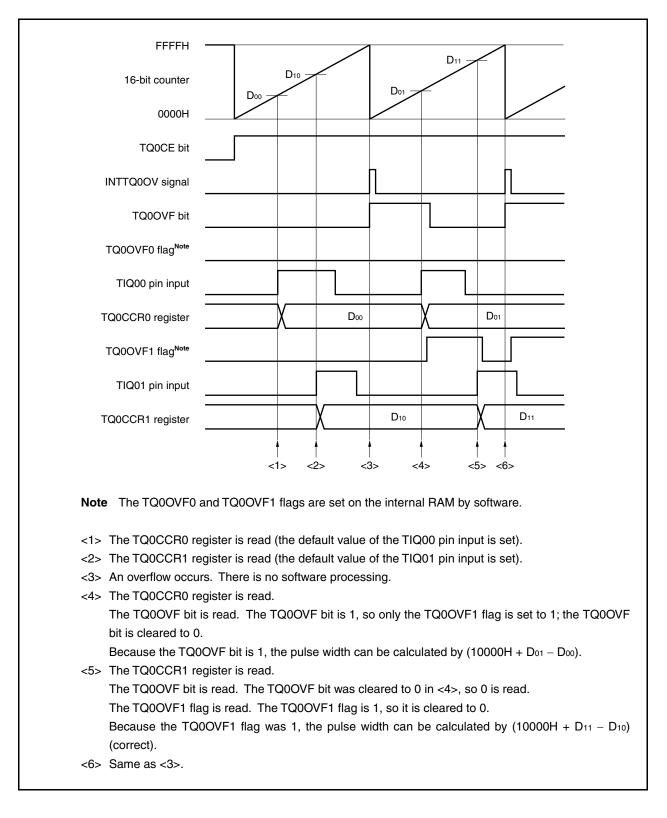

(1) Operations in one-shot pulse output mode

Figure 7-41. Timing and Processing of Operations in One-Shot Pulse Output Mode

Figure 8-28. Register Settings in External Trigger Pulse Output Mode (2/3)

Figure 8-62. Example of Resolving Problem When Two or More Capture Registers Are Used Without Using Overflow Interrupt

11.2 Configuration

The real-time counter includes the following hardware.

Item	Configuration
Control registers	Real-time counter control register 0 (RC1CC0)
	Real-time counter control register 1 (RC1CC1)
	Real-time counter control register 2 (RC1CC2)
	Real-time counter control register 3 (RC1CC3)
	Sub-count register (RC1SUBC)
	Second count register (RC1SEC)
	Minute count register (RC1MIN)
	Hour count register (RC1HOUR)
	Day count register (RC1DAY)
	Day-of-week count register (RC1WEEK)
	Month count register (RC1MONTH)
	Year count register (RC1YEAR)
	Watch error correction register (RC1SUBU)
	Alarm minute register (RC1ALM)
	Alarm hour register (RC1ALH)
	Alarm week register (RC1ALW)
	Prescaler mode register 0 (PRSM0)
	Prescaler compare register 0 (PRSCM0)

Table 11-1. Con	figuration of	Real-Time	Counter
-----------------	---------------	-----------	---------

(13) Watch error correction register (RC1SUBU)

The RC1SUBU register can be used to correct the watch with high accuracy when the watch is early or late, by changing the value (reference value: 7FFFH) overflowing from the sub-count register (RSUBC) to the second counter register.

This register can be read or written in 8-bit or 1-bit units. Reset sets this register to 00H.

- **Remarks 1.** The RC1SUBU register can be rewritten only when the real-time counter is set to its initial values. Be sure to see **11.4.1 Initial settings**.
 - 2. See 11.4.9 Watch error correction example of real-time counter for details of watch error correction.

	7	6	5	4	3	2	1	0
RC1SUBU	DEV	F6	F5	F4	F3	F2	F1	F0
	DEV		Se	tting of wat	ch error co	rrection tin	ning	
	0		watch error ds (every 2		ISEC (sec	ond counte	er) is at 00	, 20, or
	1		watch error seconds).	s when RC	1SEC (sec	ond counte	er) is at 00	seconds
		1						
	F6		Se	etting of wa	tch error co	prrection va	lue	
	0	F0 bits (p Expression	ositive corr on for calcu	ection). lating incre	nt value by ment value F0 bits – 1	:	et using th	ne F5 to
	1	F0 bits (n Expressio	egative cor on for calcu	rection). lating decre	int value by ement value ng value of	e:	Ū	
	If the F6 performe	to F0 bit val	ues are {1/	0, 0, 0, 0, 0), 0, 1/0}, w	atch error	correction	is not

If the ADA0M0, ADA0M2, ADA0S, ADA0PFM, or ADA0PFT register is written during conversion, the conversion is aborted, and the A/D converter waits for the trigger again. However, writing to these registers is prohibited in the one-shot select mode/one-shot scan mode (n = 0 to 11).

Caution When selecting the external trigger mode, set the high-speed conversion mode. Do not input a trigger during the stabilization time that is inserted once after A/D conversion is enabled (ADA0M0.ADA0CE bit = 1).

Remark The trigger standby status means the status after the stabilization time has passed.

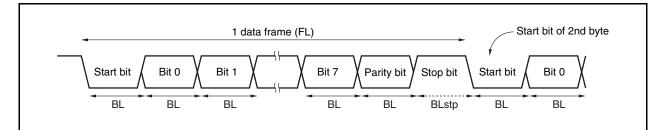
(3) Timer trigger mode

In this mode, converting the signal of the analog input pin (ANI0 to ANI11) specified by the ADA0S register is started by the compare match interrupt request signal (INTTP2CC0 or INTTP2CC1) of the capture/compare register connected to the timer. The INTTP2CC0 or INTTP2CC1 signal is selected by the ADA0TMD1 and ADA0TMD0 bits, and conversion is started at the rising edge of the specified compare match interrupt request signal. When the ADA0CE bit is set to 1, the A/D converter waits for a trigger, and starts conversion when the compare match interrupt request signal of the timer is input.

When conversion is completed, regardless of whether the continuous select, continuous scan, one-shot select, or one-shot scan mode is set as the operation mode by the ADA0MD1 and ADA0MD0 bits, the result of the conversion is stored in the ADA0CRn register. At the same time, the INTAD signal is generated, and the A/D converter waits for the trigger again.

When conversion is started, the ADA0EF bit is set to 1 (indicating that conversion is in progress). While the A/D converter is waiting for the trigger, however, the ADA0EF bit is cleared to 0 (indicating that conversion is stopped). If a valid trigger is input during conversion, the conversion is aborted and started again from the beginning.

If the ADA0M0, ADA0M2, ADA0S, ADA0PFM, or ADA0PFT register is written during conversion, the conversion is stopped and the A/D converter waits for the trigger again. However, writing to these registers is prohibited in the one-shot select mode/one-shot scan mode.


Caution When selecting the timer trigger mode, set the high-speed conversion mode. Do not input a trigger during the stabilization time that is inserted once after A/D conversion is enabled (ADA0M0.ADA0CE bit = 1).

Remark The trigger standby status means the status after the stabilization time has passed.

(6) Data frame length during continuous transmission

In continuous transmission, the data frame length from the stop bit to the next start bit is 2 base clock cycles longer than usual. However, timing initialization is performed via start bit detection by the receiving side, so this has no influence on the transfer result.

Assuming a 1 bit data length of BL; a stop bit length of BLstp; and a base clock frequency of fuclk, we obtain the following equation.

BLstp = BL + 2/fuclk

Therefore, the transfer rate during continuous transmission is as follows.

Data frame length = $11 \times BL + (2/fuclk)$

(3/3)

0	Communication start trigger invalid
1	
	Communication start trigger valid
This bit e	nables or disables the communication start trigger in reception mode.
 In mast 	
(a) In s	single transmission or transmission/reception mode, or continuous
. ,	nsmission or continuous transmission/reception mode:
	e setting of the CBnSCE bit has no effect on communication.
(b) In ៖	single reception mode:
Cle	ar the CBnSCE bit to 0 before reading the last receive data to disable the
sta	rt of reception because reception is started by reading the receive data
(CE	BnRX register) ^{Note 1} .
	continuous reception mode
Cle	ar the CBnSCE bit to 0 one communication clock cycle before reception of
the	last data is completed to disable the start of reception after the last data is
rec	eived ^{Note 2} .
• In slave	e mode
Set the	CBnSCE bit to 1.
	f CBnSCE bit]
-	e reception mode
	en reception of the last data is completed by INTCBnR interrupt
	vicing, clear the CBnSCE bit to 0 before reading the CBnRX register.
	er confirming that the CBnSTR.CBnTSF bit is 0, clear the CBnPWR and
	nRXE bits to 0 to disable reception.
	receive data again, set the CBnSCE bit to 1 to start the next reception
•	dummy-reading the CBnRX register.
	nuous reception mode
	ear the CBnSCE bit to 0 in the INTCBnR interrupt servicing for the receive
	a immediately before the last one.
	ad the CBnRX register. ad the last reception data by reading the CBnRX register after
	mowledging the CBnTIR interrupt.
	er confirming that the CBnSTR.CBnTSF bit is 0, clear the CBnPWR and
	nRXE bits to 0 to disable reception.
	receive data again, set the CBnSCE bit to 1 to wait for the next reception
	dummy-reading the CBnRX register.
Notes 1.	If the CBnRX register is read with the CBnSCE bit set to 1, the
	next communication is started.
2.	If the CBnSCE bit is not cleared to 0, one communication close
	cycle before reception of the last data is completed, the ne
	communication is automatically started.
	sommanioution to automationly started.

After reset: ()0H	R/W ^{Note}	Addres	s: IICF0 FFF	FFD8AH	, IICF1 FFFFE	09AH, IICF2 F	FFFDAAH				
	<7>	<6>	5	4	3	2	<1>	<0>				
llCFn	STCFn	llCBSYn	0	0	0	0	STCENn	IICRSVn				
= 0 to 2)												
	STCFn		STTn bit clear									
	0	Start condit	tion issued									
	1	Start condit	tion cannot	be issued, S	TTn bit cl	eared						
	Condition	for clearing (S	clearing (STCFn bit = 0) Condition for setting (STCFn bit = 1)									
		by IICCn.STT e IICCn.IICEr et				cleared to 0		t issued and STTn flag is inication reservation is				
	llCBSYn				l ² C	COn bus status						
	0	Bus release	ed status (d	efault comm	unication	status when S	FCENn bit = 1)					
	1		,			cation status w	,					
	Condition	for clearing (I	ICBSYn bit	= 0)		Condition for	setting (IICBS)	Yn bit = 1)				
		op condition i e IICEn bit = et					condition is de ne IICEn bit wh	tected en the STCENn bit = 0				
	STCENn				Initial	al start enable trigger						
	0	Start condit (IICEn bit =		t be generate	ed until a	stop condition i	s detected foll	owing operation enable				
	1	Start condit (IICEn bit =		e generated o	even if a s	en if a stop condition is not detected following operation						
	Condition	for clearing (S	STCENn bit	= 0)		Condition for setting (STCENn bit = 1)						
	When stateAfter res		ondition is detected Setting by instruction									
	llCRSVn			Commu	inication r	eservation func	tion disable bi	t				
	0	Communic	ation reserv	ation enable	ed							
	1	Communic	ation reserv	ation disable	əd							
	Condition	for clearing (I	ICRSVn bit	= 0)		Condition for	setting (IICRS	Vn bit = 1)				
			n			 Setting by ir 	nstruction					
	Condition for clearing (IICRSVn bit = 0) Condition for setting (IICRSVn bit = 1) • Clearing by instruction • Setting by instruction • After reset • Setting by instruction Note Bits 6 and 7 are read-only bits. Cautions 1. Write the STCENn bit only when operation is stopped (IICEn bit = 0).											
		regardl enableo to con	ess of th d. Theref	e actual b ore, to issu t the bus	ous state ue the fi	us immediat rst start con	ely after the dition (STTr	'n bit = 0) is recogni e I ² Cn bus operation n bit = 1), it is necess to not disturb of				

3. Write the IICRSVn bit only when operation is stopped (IICEn bit = 0).

Table 19-2.	Clock Settings	\$ (2/2)
-------------	----------------	----------

IICXm		IICCLm		Selection Clock	Transfer	Settable Main Clock	Operating
Bit 0	Bit 3	Bit 1	Bit 0		Clock	Frequency (fxx) Range	Mode
CLXm	SMCm	CLm1	CLm0				
0	0	0	0	fxx (when OCKS1 = 18H set)	fxx/44	$2.50 \text{ MHz} \leq \text{fxx} \leq 4.19 \text{ MHz}$	Standard
				fxx/2 (when OCKS1 = 10H set)	fxx/88	$4.00 \text{ MHz} \le \text{fxx} \le 8.38 \text{ MHz}$	mode
				fxx/3 (when OCKS1 = 11H set)	fxx/132	6.00 MHz ≤ fxx ≤ 12.57 MHz	(SMCm bit = 0)
				fxx/4 (when OCKS1 = 12H set)	fxx/176	8.00 MHz ≤ fxx ≤ 16.76 MHz	
				fxx/5 (when OCKS1 = 13H set)	fxx/220	10.00 MHz ≤ fxx ≤ 20.00 MHz	
0	0	0	1	fxx (when OCKS1 = 18H set)	fxx/86	$4.19 \text{ MHz} \le \text{fxx} \le 8.38 \text{ MHz}$	
				fxx/2 (when OCKS1 = 10H set)	fxx/172	8.38 MHz ≤ fxx ≤ 16.76 MHz	
				fxx/3 (when OCKS1 = 11H set)	fxx/258	12.57 MHz \leq fxx \leq 20.00 MHz	
				fxx/4 (when OCKS1 = 12H set)	fxx/344	16.76 MHz ≤ fxx ≤ 20.00 MHz	
0	0	1	0	fxx ^{Note}	fxx/86	$4.19 \text{ MHz} \le \text{fxx} \le 8.38 \text{ MHz}$	
0	0	1	1	fxx (when OCKS1 = 18H set)	fxx/66	fxx = 6.40 MHz	
				fxx/2 (when OCKS1 = 10H set) fxx/132 fxx = 12.80 MHz fxx/3 (when OCKS1 = 11H set) fxx/198 fxx = 19.20 MHz			
						fxx = 19.20 MHz	
0	1	0	×	fxx (when OCKS1 = 18H set)	fxx/24	$4.19 \text{ MHz} \le \text{fxx} \le 8.38 \text{ MHz}$	High-speed
				fxx/2 (when OCKS1 = 10H set)	fxx/48	8.00 MHz \leq fxx \leq 16.76 MHz	mode
				fxx/3 (when OCKS1 = 11H set)	fxx/72	12.00 MHz \leq fxx \leq 20.00 MHz	- (SMCm bit = 1
				fxx/4 (when OCKS1 = 12H set)	fxx/96	16.00 MHz \leq fxx \leq 20.00 MHz	
0	1	1	0	fxx ^{Note}	fxx/24	$4.00 \text{ MHz} \le \text{fxx} \le 8.38 \text{ MHz}$	
0	1	1	1	fxx (when OCKS1 = 18H set)	fxx/18	fxx = 6.40 MHz	
				fxx/2 (when OCKS1 = 10H set)	fxx/36	fxx = 12.80 MHz	
				fxx/3 (when OCKS1 = 11H set)	fxx/54	fxx = 19.20 MHz	
1	1	0	×	fxx (when OCKS1 = 18H set)	fxx/12	$4.00 \text{ MHz} \le f_{XX} \le 4.19 \text{ MHz}$	
				fxx/2 (when OCKS1 = 10H set)	fxx/24	$8.00 \text{ MHz} \le \text{fxx} \le 8.38 \text{ MHz}$	
				fxx/3 (when OCKS1 = 11H set)	fxx/36	12.00 MHz \leq fxx \leq 12.57 MHz	
				fxx/4 (when OCKS1 = 12H set)	fxx/48	16.00 MHz ≤ fxx ≤ 16.67 MHz]
				fxx/5 (when OCKS1 = 13H set)	fxx/60	fxx = 20.00 MHz	1
1	1	1	0	fxx ^{Note}	fxx/12	$4.00 \text{ MHz} \le \text{fxx} \le 4.19 \text{ MHz}$	1
	Other that	an above	9	Setting prohibited	-	-	-

Note Since the selection clock is fxx regardless of the value set to the OCKS1 register, clear the OCKS1 register to 00H (I²C division clock stopped status).

Remarks 1. m = 1, 2

2. \times : don't care

30.4 Rewriting by Dedicated Flash Memory Programmer

The flash memory can be rewritten by using a dedicated flash memory programmer after the V850ES/JG3-L is mounted on the target system (on-board programming). By combining the dedicated flash memory programmer with a dedicated program adapter (FA series), the flash memory can also be rewritten before the device is mounted on the target system (off-board programming).

30.4.1 Programming environment

The following shows the environment required for writing programs to the flash memory of the V850ES/JG3-L.

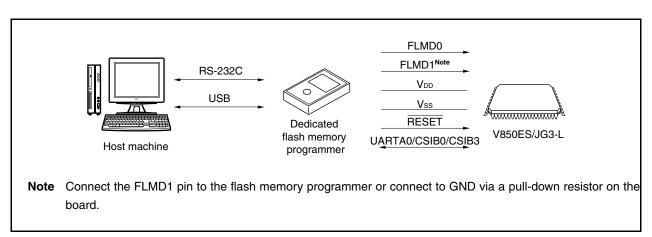


Figure 30-2. Environment Required for Writing Programs to Flash Memory

A host machine is required for controlling the dedicated flash memory programmer. In some cases, however, it can be used stand-alone. For details, see the user's manual of the dedicated flash memory programmer.

UARTA0, CSIB0, or CSIB3 is used for the interface between the dedicated flash memory programmer and the V850ES/JG3-L to perform writing, erasing, etc. A dedicated program adapter (FA series) is required for off-board writing.

The following products are recommended:

- FA-70F3738GC-UEU-RX (GC-UEU type) (already wired)
- FA-70F3738GF-GAS-RX (GF-GAS type) (already wired)
- FA-70F3738F1-CAH-RX (F1-CAH type) (already wired)
- <R> <R>
- FA-70F3793GC-UEU-RX (GC-UEU type) (already wired) (Tentative name : Under development)
- FA-70F3793F1-CAH-RX (F1-CAH type) (already wired) (Tentative name : Under development)
 - FA-100GC-UEU-B (GC-UEU type) (not wired: wiring required)
 - FA-100GF-GAS-B (GF-GAS type) (not wired: wiring required)

Remark The FA series is a product of Naito Densei Machida Mfg. Co., Ltd.

(a) Seiko Instruments Inc.: Crystal resonator ($T_A = -40$ to +85°C) Oscillation frequency: fxt = 32.768 kHz

Туре	Circuit Example	Part Number	Load Capacitance of Crystal		nmended C Constant	ircuit		n Voltage nge
	Resonato		Resonator (pF)	C1 (pF)	C2 (pF)	Rd (Ω)	MIN. (V)	MAX. (V)
Surface	XT1 XT2	SP-T2A	6	5	5	0	2.2	3.6
mounting	Rd		12.5	18	18	0	2.2	3.6
		SSP-T7	7	8	8	0	2.2	3.6
Lead		VT-200	6	6	6	0	2.2	3.6
			12.5	18	18	0	2.2	3.6

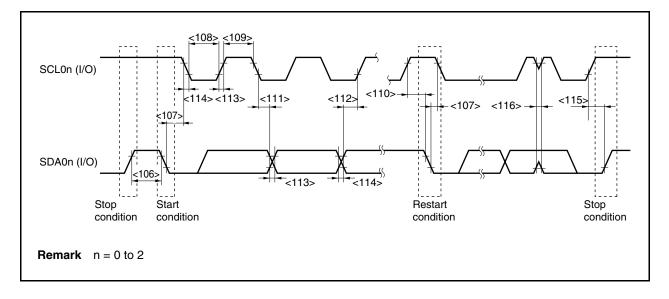
Caution This oscillator constant is a reference value based on evaluation under a specific environment by the resonator manufacturer.

If optimization of oscillator characteristics is necessary in the actual application, apply to the resonator manufacturer for evaluation on the implementation circuit.

The oscillation voltage and oscillation frequency indicate only oscillator characteristics. Use the V850ES/JG3-L so that the internal operating conditions are within the specifications of the AC characteristics, DC characteristics, and operating conditions.

(b) Citizen Miyota Co., Ltd.: Crystal resonator ($T_A = -40$ to +85°C)

Туре	Circuit Example	Part Number	Load Capacitance of Crystal		imended C Constant	ircuit		n Voltage nge
	Re		Resonator (pF)	C1 (pF)	C2 (pF)	Rd (Ω)	MIN. (V)	MAX. (V)
Surface	XT1 XT2	CM200S	9	12	12	100	2.2	3.6
mounting	≷Rd	CMR200T	9	12	12	100	2.2	3.6
		CM519	9	12	12	100	2.2	3.6
Lead		CM315	9	12	12	100	2.2	3.6
		CFS-206	9	12	12	100	2.2	3.6


Oscillation frequency: fxT = 32.768 kHz

Caution This oscillator constant is a reference value based on evaluation under a specific environment by the resonator manufacturer.

If optimization of oscillator characteristics is necessary in the actual application, apply to the resonator manufacturer for evaluation on the implementation circuit.

The oscillation voltage and oscillation frequency indicate only oscillator characteristics. Use the V850ES/JG3-L so that the internal operating conditions are within the specifications of the AC characteristics, DC characteristics, and operating conditions.

I²C Bus Timing

32.8.7 A/D converter

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Resolution					10	bit
Overall error ^{Note}		$2.7~V \leq AV_{\text{REF0}} \leq 3.6~V$			±0.6	%FSR
A/D conversion time	t CONV	$3.0~V \leq AV_{\text{REF0}} \leq 3.6~V$	2.6		24	μs
		$2.7~V \leq AV_{\text{REF0}} \leq 3.0~V$	3.9		24	μs
Zero scale error					±0.5	%FSR
Full scale error					±0.5	%FSR
Non-linearity error					±4.0	LSB
Differential linearity error					±4.0	LSB
Analog input voltage	VIAN		AVss		AV _{REF0}	V
Reference voltage	AV _{REF0}		2.7		3.6	V
AVREF0 current	AIREFO	Normal conversion mode		3	6.5	mA
		High-speed conversion mode		4	10	mA
		When A/D converter unused			5	μA

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, \text{V}_{DD} = \text{EV}_{DD} = \text{AV}_{\text{REF0}} = \text{AV}_{\text{REF1}}, 2.7 \text{ V} \le \text{AV}_{\text{REF0}} = \text{AV}_{\text{REF1}} \le 3.6 \text{ V}, \text{V}_{\text{SS}} = \text{EV}_{\text{SS}} = \text{AV}_{\text{SS}} = 0 \text{ V}, \text{CL} = 50 \text{ V}, \text$
pF)

Note Excluding quantization error (±0.05 %FSR).

Caution Do not set (read/write) alternate-function ports during A/D conversion; otherwise the conversion resolution may be degraded.

Remark LSB: Least Significant Bit FSR: Full Scale Range

33.8.10 RTC back-up mode characteristics

(1) VDD Power-down timing

(TA = -40 to +85°C, VDD = EVDD = AVREF0 = AVREF1 = 2.0 V to 3.6 V, RVDD = 1.8 V to 3.6 V, Vss = EVss = AVss = 0V,

C∟ = 50 pF)

	Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
<r></r>	V _{DD} negative slew rate	VDDNSR1	When using RTC backup mode, and setting the LVI detection level to 2.80 \pm 0.10 V			0.2	V/ms
<r></r>		VDDNSR2	When using RTC backup mode, and setting the LVI detection level to 2.30 \pm 0.10 V			0.07	V/ms

(2) VDD Power-up timing

(TA = -40 to +85°C, VDD = EVDD = AVREF0 = AVREF1 = 2.0 V to 3.6 V, RVDD = 1.8 V to 3.6 V, Vss = EVss = AVss = 0V,

C∟ = 50 pF)

	Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
<r></r>	VDD positive slew rate	RVDDPSR		3.0			V/s

(3) Regulator output voltage for RTC backup area (VCH)

(TA = -40 to +85°C, VDD = EVDD = AVREF0 = AVREF1 = 2.0 V to 3.6 V, RVDD = 1.8 V to 3.6 V, Vss = EVss = AVss = 0V,

C∟ = 50 pF)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Regulator output voltage for RTC	VCH		0.8		1.8	V
backup area (VCH)						

(4) VCH setup time

(TA = -40 to +85°C, VDD = EVDD = AVREF0 = AVREF1 = 2.0 V to 3.6 V, RVDD = 2.0 V to 3.6 V, VSS = EVSS = AVSS = 0V,

C∟ = 50 pF)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
VCH setup time	t SPOR	The time from when RVDD reaches the			4.5	ms
		maximum amplitude ($V_{DD} = 2.0$ to 3.6				
		V) until VCH is stable				

(4/0)

Mnemonic	Operand	Opcode	Operation		ecut			I	Flage	6	
				i	Clocl r	K I	СҮ	ov	S	Z	SAT
OR	reg1,reg2	rrrrr001000RRRRR	GR[reg2]←GR[reg2]OR GR[reg1]	1	1	1		0	×	×	
ORI	imm16,reg1,reg2	rrrr110100RRRRR	GR[reg2]←GR[reg1]OR zero-extend(imm16)	1	1	1		0	×	×	
PREPARE	list12,imm5	0000011110iiiiiL LLLLLLLLL00001	Store-memory(sp–4,GR[reg in list12],Word) sp←sp–4 repeat 1 step above until all regs in list12 is stored sp←sp-zero-extend(imm5)		n+1 Note4						
	list12,imm5, sp/imm ^{Note 15}	0000011110iiiiiL LLLLLLLLLff011 imm16/imm32 Note 16	Store-memory(sp-4,GR[reg in list12],Word) $sp \leftarrow sp+4$ repeat 1 step above until all regs in list12 is stored $sp \leftarrow sp$ -zero-extend (imm5) $ep \leftarrow sp/imm$	Note 4	Note 4	Note 4					
RETI		0000011111100000	if PSW.EP=1 then PC \leftarrow EIPC PSW \leftarrow EIPSW else if PSW.NP=1 then PC \leftarrow FEPC PSW \leftarrow FEPSW else PC \leftarrow EIPC PSW \leftarrow EIPSW	3	3	3	R	R	R	R	R
SAR	reg1,reg2	rrrr111111RRRRR 0000000010100000	GR[reg2]←GR[reg2]arithmetically shift right by GR[reg1]	1	1	1	×	0	×	×	
	imm5,reg2	rrrr010101iiiii	GR[reg2]←GR[reg2]arithmetically shift right by zero-extend (imm5)	1	1	1	×	0	×	×	
SASF	cccc,reg2	rrrrr1111110cccc 0000001000000000	if conditions are satisfied then GR[reg2] (GR[reg2]Logically shift left by 1) OR 0000001H else GR[reg2] (GR[reg2]Logically shift left by 1) OR 00000000H	1	1	1					
SATADD	reg1,reg2	rrrr000110RRRRR	GR[reg2]←saturated(GR[reg2]+GR[reg1])	1	1	1	×	×	×	×	×
	imm5,reg2	rrrrr010001iiiii	GR[reg2]←saturated(GR[reg2]+sign-extend(imm5)	1	1	1	×	×	×	×	×
SATSUB	reg1,reg2	rrrr000101RRRRR	GR[reg2]←saturated(GR[reg2]–GR[reg1])	1	1	1	×	×	×	×	×
SATSUBI	imm16,reg1,reg2	rrrr110011RRRRR	GR[reg2]←saturated(GR[reg1]–sign-extend(imm16)	1	1	1	×	×	×	×	×
SATSUBR	reg1,reg2	rrrr000100RRRRR	GR[reg2]←saturated(GR[reg1]–GR[reg2])	1	1	1	×	×	×	×	×
SETF	cccc,reg2	rrrr1111110cccc 00000000000000000000	If conditions are satisfied then GR[reg2]←00000001H else GR[reg2]←00000000H	1	1	1					