
Intel - 10CX150YU484I6G Datasheet

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

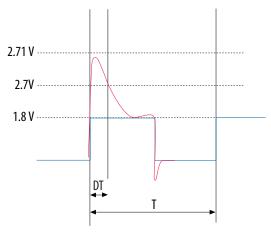
Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Details	
Product Status	Active
Number of LABs/CLBs	54770
Number of Logic Elements/Cells	150000
Total RAM Bits	10907648
Number of I/O	188
Number of Gates	-
Voltage - Supply	0.9V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	484-BFBGA
Supplier Device Package	484-UBGA (19x19)
Purchase URL	https://www.e-xfl.com/product-detail/intel/10cx150yu484i6g


Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Intel[®] Cyclone[®] 10 GX Device Datasheet C10GX51002 | 2018.06.15

Figure 1. Intel Cyclone 10 GX Devices Overshoot Duration

Recommended Operating Conditions

This section lists the functional operation limits for the AC and DC parameters for Intel Cyclone 10 GX devices.

Recommended Operating Conditions

Table 3. Recommended Operating Conditions for Intel Cyclone 10 GX Devices

This table lists the steady-state voltage values expected from Intel Cyclone 10 GX devices. Power supply ramps must all be strictly monotonic, without plateaus.

Symbol	Description	Condition	Minimum ⁽⁸⁾	Typical	Maximum ⁽⁸⁾	Unit
V _{CC}	Core voltage power supply	—	0.87	0.9	0.93	V
V _{CCP}	Periphery circuitry and transceiver fabric interface power supply	_	0.87	0.9	0.93	V
V _{CCPGM}	Configuration pins power supply	1.8 V	1.71	1.8	1.89	V
		1.5 V	1.425	1.5	1.575	V
			•	•	cc	ontinued

⁽⁸⁾ This value describes the budget for the DC (static) power supply tolerance and does not include the dynamic tolerance requirements. Refer to the PDN tool for the additional budget for the dynamic tolerance requirements.

Related Information

- Early Power Estimator User Guide Provides more information about power estimation tools.
- Power Analysis and Optimization User Guide: Intel Quartus Prime Pro Edition Provides more information about power estimation tools.

I/O Pin Leakage Current

Table 5. I/O Pin Leakage Current for Intel Cyclone 10 GX Devices

If V_{O} = V_{CCIO} to $V_{CCIOMAX},$ 300 μA of leakage current per I/O is expected.

	Symbol	Description	Condition	Min	Мах	Unit
\mathbf{I}_{1}	I	Input pin	$V_{\rm I}$ = 0 V to $V_{\rm CCIOMAX}$	-80	80	μA
I	OZ	Tri-stated I/O pin	$V_0 = 0 V$ to $V_{CCIOMAX}$	-80	80	μA

Bus Hold Specifications

The bus-hold trip points are based on calculated input voltages from the JEDEC standard.

Table 6.Bus Hold Parameters for Intel Cyclone 10 GX Devices

Parameter	Symbol	Condition		V _{CCIO} (V)						Unit			
			1.	2	1.	5	1.	8	2	.5	3	.0	
			Min	Мах	Min	Max	Min	Max	Min	Max	Min	Max	
Bus-hold, low, sustaining current	I _{SUSL}	V _{IN} > V _{IL} (max)	8 ⁽¹⁵⁾ , 26 ⁽¹⁶⁾	_	12 ⁽¹⁵⁾ , 32 ⁽¹⁶⁾	-	30 ⁽¹⁵⁾ , 55 ⁽¹⁶⁾	_	60	-	70	-	μA
Bus-hold, high, sustaining current	I _{SUSH}	V _{IN} < V _{IH} (min)	-8 ⁽¹⁵⁾ , -26 ⁽¹⁶⁾	_	-12 ⁽¹⁵⁾ , -32 ⁽¹⁶⁾	_	-30 ⁽¹⁵⁾ , -55 ⁽¹⁶⁾	_	-60	-	-70	-	μA
	continued												

⁽¹⁵⁾ This value is only applicable for LVDS I/O bank.

 $^{(16)}$ This value is only applicable for 3 V I/O bank.

Parameter	Symbol	Condition		V _{CCI0} (V)							Unit		
			1.	2	1.	5	1.	8	2.	5	3.	0	
			Min	Max	Min	Max	Min	Max	Min	Max	Min	Мах	
Bus-hold, low, overdrive current	I _{ODL}	$\begin{array}{c} 0 \ V < V_{\rm IN} < \\ V_{\rm CCIO} \end{array}$	_	125	_	175	_	200	_	300	_	500	μA
Bus-hold, high, overdrive current	I _{ODH}	$\begin{array}{c} 0 \ V < V_{\rm IN} < \\ V_{\rm CCIO} \end{array}$	_	-125	_	-175	_	-200	_	-300	_	-500	μA
Bus-hold trip point	V _{TRIP}	_	0.3	0.9	0.38	1.13	0.68	1.07	0.70	1.7	0.8	2	V

OCT Calibration Accuracy Specifications

If you enable on-chip termination (OCT) calibration, calibration is automatically performed at power up for I/Os connected to the calibration block.

Table 7. OCT Calibration Accuracy Specifications for Intel Cyclone 10 GX Devices

Calibration accuracy for the calibrated on-chip series termination (R_S OCT) and on-chip parallel termination (R_T OCT) are applicable at the moment of calibration. When process, voltage, and temperature (PVT) conditions change after calibration, the tolerance may change.

Symbol	Description	Condition (V)	Resistance	Tolerance	Unit	
			-E5, -I5	-E6, -I6		
25-Ω and 50-Ω R_{S}	Internal series termination with calibration (25- Ω and 50- Ω setting)	V _{CCIO} = 1.8, 1.5, 1.2	± 15	± 15	%	
34- Ω and 40- Ω R _S	Internal series termination with calibration (34-	V _{CCIO} = 1.5, 1.25, 1.2	± 15	± 15	%	
	Ω and 40- Ω setting)	V _{CCIO} = 1.35	± 20	± 20	%	
48-Ω, 60-Ω, 80-Ω, and 120-Ω $R_{\rm S}$	Internal series termination with calibration (48- Ω , 60- Ω , 80- Ω , and 120- Ω setting)	V _{CCIO} = 1.2	± 15	± 15	%	
240-Ω R _S	Internal series termination with calibration (240- Ω setting)	V _{CCI0} = 1.2	± 20	± 20	%	
30-Ω R _T	Internal parallel termination with calibration $(30-\Omega \text{ setting})$	V _{CCIO} = 1.5, 1.35, 1.25	-10 to +40	-10 to +40	%	
34- Ω , 48- Ω , 80- Ω , and 240- Ω R _T	Internal parallel termination with calibration (34- Ω , 48- Ω , 80- Ω , and 240- Ω setting)	V _{CCIO} = 1.2	± 15	± 15	%	
	•	•			continued	

Table 11. Internal Weak Pull-Down Resistor Values for Intel Cyclone 10 GX Devices

Pin Name	Description	Condition (V)	Value ⁽¹⁹⁾	Unit
nIO_PULLUP	Dedicated input pin that determines the internal pull-ups on user I/O pins and dual-purpose I/O pins.	$V_{CC} = 0.9 \pm 3.33\%$	25	kΩ
тск	Dedicated JTAG test clock input pin.	V _{CCPGM} = 1.8 ±5 %	25	kΩ
		V _{CCPGM} = 1.5 ±5%	25	kΩ
		V _{CCPGM} = 1.2 ±5%	25	kΩ
MSEL[0:2]	Configuration input pins that set the configuration scheme	V _{CCPGM} = 1.8 ±5%	25	kΩ
	for the FPGA device.	V _{CCPGM} = 1.5 ±5%	25	kΩ
		V _{CCPGM} = 1.2 ±5%	25	kΩ

Related Information

Intel Cyclone 10 GX Device Family Pin Connection Guidelines

Provides more information about the pins that support internal weak pull-up and internal weak pull-down features.

I/O Standard Specifications

Tables in this section list the input voltage (V_{IH} and V_{IL}), output voltage (V_{OH} and V_{OL}), and current drive characteristics (I_{OH} and I_{OL}) for various I/O standards supported by Intel Cyclone 10 GX devices.

For minimum voltage values, use the minimum V_{CCIO} values. For maximum voltage values, use the maximum V_{CCIO} values.

You must perform timing closure analysis to determine the maximum achievable frequency for general purpose I/O standards.

Related Information

Recommended Operating Conditions on page 7

I/O Standard	V	IL(DC) (V)	VIH(DO	_{c)} (V)	V _{IL(AC)} (V)	V _{IH(AC)} (V)	V _{OL} (V)	V _{он} (V)		I _{OH} ⁽²¹⁾
	Min	Max	Min	Max	Max	Min	Мах	Min	(mA)	(mA)
SSTL-12/ SSTL-12 Class I, II	_	V _{REF} - 0.10	V _{REF} + 0.10	_	V _{REF} - 0.15	V _{REF} + 0.15	0.2 × V _{CCIO}	0.8 × V _{CCIO}	-	-
HSTL-18 Class I	-	V _{REF} -0.1	$V_{REF} + 0.1$	_	V _{REF} - 0.2	V _{REF} + 0.2	0.4	V _{CCIO} – 0.4	8	-8
HSTL-18 Class II	_	V _{REF} - 0.1	V _{REF} + 0.1	_	V _{REF} - 0.2	V _{REF} + 0.2	0.4	V _{CCIO} – 0.4	16	-16
HSTL-15 Class I	-	V _{REF} - 0.1	V _{REF} + 0.1	—	V _{REF} - 0.2	V _{REF} + 0.2	0.4	V _{CCIO} – 0.4	8	-8
HSTL-15 Class II	_	V _{REF} - 0.1	V _{REF} + 0.1	_	V _{REF} - 0.2	V _{REF} + 0.2	0.4	V _{CCIO} -0.4	16	-16
HSTL-12 Class I	-0.15	V _{REF} - 0.08	V _{REF} + 0.08	V _{CCIO} + 0.15	V _{REF} - 0.15	V _{REF} + 0.15	$0.25 \times V_{CCIO}$	$0.75 \times V_{CCIO}$	8	-8
HSTL-12 Class II	-0.15	V _{REF} - 0.08	V _{REF} + 0.08	V _{CCIO} + 0.15	V _{REF} - 0.15	V _{REF} + 0.15	0.25 × V _{CCIO}	0.75 × V _{CCIO}	16	-16
HSUL-12	-	V _{REF} - 0.13	V _{REF} + 0.13	_	V _{REF} - 0.22	V _{REF} + 0.22	$0.1 \times V_{CCIO}$	$0.9 \times V_{CCIO}$	_	_
POD12	-0.15	V _{REF} - 0.08	V _{REF} + 0.08	V _{CCIO} + 0.15	V _{REF} - 0.15	V _{REF} + 0.15	(0.7 – 0.15) × V _{CCIO}	(0.7 + 0.15) × V _{CCIO}	-	-

Differential SSTL I/O Standards Specifications

Table 15. Differential SSTL I/O Standards Specifications for Intel Cyclone 10 GX Devices

I/O Standard		V _{CCIO} (V)		V _{SWI}	_{NG(DC)} (V)	V _{SWING(AC)} (V)		V _{IX(AC)} (V)		
	Min	Тур	Мах	Min	Max	Min	Мах	Min	Тур	Max
SSTL-18 Class I, II	1.71	1.8	1.89	0.25	V _{CCIO} + 0.6	0.5	V _{CCIO} + 0.6	V _{CCIO} /2 - 0.175	_	V _{CCI0} /2 + 0.175
SSTL-15 Class I, II	1.425	1.5	1.575	0.2	(22)	2(V _{IH(AC)} – V _{REF})	2(V _{REF} – V _{IL(AC)})	V _{CCIO} /2 - 0.15	_	V _{CCIO} /2 + 0.15
							•			continued

⁽²¹⁾ To meet the I_{OL} and I_{OH} specifications, you must set the current strength settings accordingly. For example, to meet the SSTL15CI specification (8 mA), you should set the current strength settings to 8 mA. Setting at lower current strength may not meet the I_{OL} and I_{OH} specifications in the datasheet.

Switching Characteristics

This section provides the performance characteristics of Intel Cyclone 10 GX core and periphery blocks for extended grade devices.

Transceiver Performance Specifications

Transceiver Performance for Intel Cyclone 10 GX Devices

Table 18. Transmitter and Receiver Data Rate Performance

Symbol/Description	Condition	Datarate	Unit
	Maximum data rate $V_{CCR_GXB} = V_{CCT_GXB} = 1.03 V$	12.5	Gbps
Chip-to-Chip ⁽²⁹⁾	Maximum data rate $V_{CCR_GXB} = V_{CCT_GXB} = 0.95 V$	11.3	Gbps
	Minimum Data Rate	1.0 (30)	Gbps
Backplane	Maximum data rate $V_{CCR_GXB} = V_{CCT_GXB} = 1.03 V$	6.6	Gbps
	Minimum Data Rate	1.0 (30)	Gbps

Table 19. ATX PLL and Fractional PLL (fPLL) Performance

Symbol/Description	Condition	Frequency	Unit
Supported Output Executors	Maximum Frequency	6.25	GHz
Supported Output Frequency	Minimum Frequency	500	MHz

⁽²⁹⁾ Chip-to-chip links are applications with short reach channels.

⁽³⁰⁾ Intel Cyclone 10 GX transceivers can support data rates down to 125 Mbps with over sampling. You must create your own over sampling logic.

Table 20.CMU PLL Performance

Symbol/Description	Condition	Frequency	Unit
Supported Output Executors	Maximum Frequency	5.15625	GHz
Supported Output Frequency	Minimum Frequency	2450	MHz

Related Information

Transceiver Power Supply Operating Conditions on page 9

High-Speed Serial Transceiver-Fabric Interface Performance for Intel Cyclone 10 GX Devices

Table 21. High-Speed Serial Transceiver-Fabric Interface Performance for Intel Cyclone 10 GX Devices

The frequencies listed are the maximum frequencies.

Symbol/Description	Condition (V)	Core Speed Grade		Unit
		-5	-6	
20-bit interface - FIFO	V _{CC} = 0.9	400	400	MHz
20-bit interface - Registered	V _{CC} = 0.9	400	400	MHz
32-bit interface - FIFO	V _{CC} = 0.9	404	335	MHz
32-bit interface - Registered	V _{CC} = 0.9	404	335	MHz
64-bit interface - FIFO	V _{CC} = 0.9	234	222	MHz
64-bit interface - Registered	V _{CC} = 0.9	234	222	MHz

Transceiver Specifications for Intel Cyclone 10 GX Devices

Table 22. Reference Clock Specifications

Symbol/Description	Condition	Min	Тур	Max	Unit
Supported I/O Standards	Dedicated reference clock pin	CML, Differential LVPECL, LVDS, and HCSL (31)			
	RX pin as a reference clock	CML, Differential LVPECL, and LVDS			
	•	•			continued

⁽³¹⁾ HCSL is only supported for PCIe.

Intel[®] Cyclone[®] 10 GX Device Datasheet C10GX51002 | 2018.06.15

Symbol/Description	Condition	Min	Тур	Мах	Unit
	100-Ω setting	-	100 ± 20%	_	Ω
V (AC coupled)	$V_{CCT_GXB} = 0.95 V$	_	450	_	mV
V _{OCM} (AC coupled)	$V_{CCT_GXB} = 1.03 V$	—	500	—	mV
V _{OCM} (DC coupled)	$V_{CCT_GXB} = 0.95 V$	—	450	—	mV
	$V_{CCT_GXB} = 1.03 V$	—	500	—	mV
Rise time ⁽⁴⁵⁾	20% to 80%	20	_	130	ps
Fall time ⁽⁴⁵⁾	80% to 20%	20	-	130	ps
Intra-differential pair skew	TX V _{CM} = 0.5 V and slew rate setting of SLEW_R5 $^{\rm (46)}$	_	—	15	ps

Table 27.Typical Transmitter Vod Settings

Symbol	V _{OD} Setting	V _{OD} -to-V _{CCT_GXB} Ratio					
	31	1.00					
	30	0.97					
	29	0.93					
	28	0.90					
	27	0.87					
V_{OD} differential value = V_{OD} -to- V_{CCT_GXB} ratio x V_{CCT_GXB}	26	0.83					
	25	0.80					
	24	0.77					
	23	0.73					
	22	0.70					
continued							

⁽⁴⁵⁾ The Intel Quartus Prime software automatically selects the appropriate slew rate depending on the design configurations.

⁽⁴⁶⁾ SLEW_R1 is the slowest and SLEW_R5 is the fastest. SLEW_R6 and SLEW_R7 are not used.

Symbol	V _{OD} Setting	V _{OD} -to-V _{CCT_GXB} Ratio
	21	0.67
	20	0.63
	19	0.60
	18	0.57
	17	0.53
	16	0.50
	15	0.47
	14	0.43
	13	0.40
	12	0.37

Table 28. Transmitter Channel-to-channel Skew Specifications

Mode Channel Span		Maximum Skew	Unit
x6 Clock	Up to 6 channels in one bank	61	ps
xN Clock	Within 2 banks	230	ps
PLL Feedback Compensation ⁽⁴⁷⁾ , ⁽⁴⁸⁾	Side-wide	1600	ps

Related Information

PLLs and Clock Networks

⁽⁴⁷⁾ refclk is set to 125 MHz during the test.

⁽⁴⁸⁾ You can reduce the lane-to-lane skew by increasing the reference clock frequency.

Symbol	Parameter	Condition	Min	Тур	Мах	Unit
t _{LOCK}	Time required to lock from end-of-device configuration or deassertion of pll_powerdown	-	_	_	1	ms
t _{DLOCK}	Time required to lock dynamically (after switchover or reconfiguring any non-post- scale counters/delays)	_	_	_	1	ms
f _{CLBW}	PLL closed-loop bandwidth	—	0.3	-	4	MHz
t _{PLL_PSERR}	Accuracy of PLL phase shift	_	_	-	50	ps
t _{ARESET}	Minimum pulse width on the pll_powerdown signal	_	10	_	_	ns
t _{INCCJ} ⁽⁵⁰⁾⁽⁵¹⁾	Input clock cycle-to-cycle jitter	$F_{REF} \ge 100 \text{ MHz}$	_	_	0.13	UI (p-p)
		F _{REF} < 100 MHz	_	_	650	ps (p-p)
t _{outpj} ⁽⁵²⁾	Period jitter for clock output	$F_{OUT} \ge 100 \text{ MHz}$	_	_	600	ps (p-p)
		F _{OUT} < 100 MHz	_	_	60	mUI (p-p)
t _{outcc} (52)	Cycle-to-cycle jitter for clock output	$F_{OUT} \ge 100 \text{ MHz}$	_	-	600	ps (p-p)
		F _{OUT} < 100 MHz	_	_	60	mUI (p-p)
dK _{BIT}	Bit number of Delta Sigma Modulator (DSM)	_	_	32	_	bit

Related Information

Memory Output Clock Jitter Specifications on page 43

Provides more information about the external memory interface clock output jitter specifications.

- ⁽⁵¹⁾ F_{REF} is f_{IN}/N , specification applies when N = 1.
- ⁽⁵²⁾ External memory interface clock output jitter specifications use a different measurement method, which are available in Memory Output Clock Jitter Specification for Intel Cyclone 10 GX Devices table.

⁽⁵⁰⁾ A high input jitter directly affects the PLL output jitter. To have low PLL output clock jitter, you must provide a clean clock source with jitter < 120 ps.

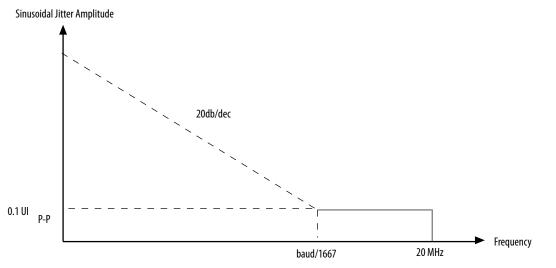
Symbol	Parameter	Condition	Min	Тур	Мах	Unit
t _{DLOCK}	Time required to lock dynamically (after switchover or reconfiguring any non-post-scale counters/delays)	-	_	-	1	ms
t _{PLL_PSERR}	Accuracy of PLL phase shift	_	_	_	±50	ps
t _{ARESET}	Minimum pulse width on the areset signal	_	10	_	_	ns
t _{INCCJ} (54)(55)	Input clock cycle-to-cycle jitter	$F_{REF} \ge 100 \text{ MHz}$	_	_	0.15	UI (p-p)
		F _{REF} < 100 MHz	_	_	750	ps (p-p)
t _{outpj_dc}	Period jitter for dedicated clock output	$F_{OUT} \ge 100 \text{ MHz}$	_	_	175	ps (p-p)
		F _{OUT} < 100 MHz	_	_	17.5	mUI (p-p)
t _{OUTCCJ_DC}	Cycle-to-cycle jitter for dedicated clock output	$F_{OUT} \ge 100 \text{ MHz}$	_	-	175	ps (p-p)
		F _{OUT} < 100 MHz	_	_	17.5	mUI (p-p)
t _{outpj_io} ⁽⁵⁶⁾	Period jitter for clock output on the regular I/O	$F_{OUT} \ge 100 \text{ MHz}$	_	_	600	ps (p-p)
		$F_{OUT} < 100 \text{ MHz}$	_	_	60	mUI (p-p)
t _{OUTCCJ_IO} (56)	Cycle-to-cycle jitter for clock output on the	$F_{OUT} \ge 100 \text{ MHz}$	_	-	600	ps (p-p)
	regular I/O	F _{OUT} < 100 MHz	_	-	60	mUI (p-p)
t _{CASC_OUTPJ_DC}	Period jitter for dedicated clock output in	$F_{OUT} \ge 100 \text{ MHz}$	_	_	175	ps (p-p)
	cascaded PLLs	F _{OUT} < 100 MHz	_	_	17.5	mUI (p-p)

Related Information

Memory Output Clock Jitter Specifications on page 43 Provides more information about the external memory interface clock output jitter specifications.

- ⁽⁵⁵⁾ F_{REF} is f_{IN}/N , specification applies when N = 1.
- ⁽⁵⁶⁾ External memory interface clock output jitter specifications use a different measurement method, which are available in Memory Output Clock Jitter Specification for Intel Cyclone 10 GX Devices table.

⁽⁵⁴⁾ A high input jitter directly affects the PLL output jitter. To have low PLL output clock jitter, you must provide a clean clock source with jitter < 120 ps.


Symbol		Condition		-E5, -I5	5		-E6, -I6	5	Unit
			Min	Тур	Max	Min	Тур	Мах	
	TCCS (64)(59)	True Differential I/O Standards	_	-	150	_	-	150	ps
Receiver	True Differential I/O Standards -	SERDES factor J = 4 to 10 ⁽⁶⁰⁾⁽⁶¹⁾⁽⁶²⁾	150	-	1434	150	-	1250	Mbps
	f _{HSDRDPA} (data rate)	SERDES factor J = 3 (60)(61)(62)	150	-	1076	150	-	938	Mbps
	f _{HSDR} (data rate)	SERDES factor J = 3 to 10	(62)	-	(66)	(62)	_	(66)	Mbps
	(without DPA) ⁽⁵⁹⁾	SERDES factor J = 2, uses DDR registers	(62)	-	(63)	(62)	-	(63)	Mbps
		SERDES factor J = 1, uses DDR registers	(62)	-	(63)	(62)	-	(63)	Mbps
DPA (FIFO mode)	DPA run length	_	_	-	10000	1	_	10000	UI
DPA (soft CDR mode)	DPA run length	SGMII/GbE protocol	_	-	5	_	_	5	UI
		All other protocols	_	-	50 data transition per 208 UI	_	_	50 data transition per 208 UI	_
Soft CDR mode	Soft-CDR ppm tolerance	_	_	-	300	_	-	300	± ppm
Non DPA mode	Sampling Window	-	_	-	300	_	-	300	ps

 $^{^{(65)}}$ This applies to default pre-emphasis and V_{OD} settings only.

⁽⁶⁶⁾ You can estimate the achievable maximum data rate for non-DPA mode by performing link timing closure analysis. You must consider the board skew margin, transmitter delay margin, and receiver sampling margin to determine the maximum data rate supported.

Figure 4. LVDS Soft-CDR/DPA Sinusoidal Jitter Tolerance Specifications for a Data Rate Less than 1.4 Gbps

Memory Standards Supported by the Hard Memory Controller

Table 40. Memory Standards Supported by the Hard Memory Controller for Intel Cyclone 10 GX Devices

This table lists the overall capability of the hard memory controller. For specific details, refer to the External Memory Interface Spec Estimator.

Memory Standard	Rate Support	Speed Grade	Ping Pong PHY	Maximum Fre	quency (MHz)
			Support	I/O Bank	3 V I/O Bank
DDR3 SDRAM	Half rate	-5	Yes	533	225
			-	533	225
		-6	Yes	466	166
			-	466	166
	Quarter rate	-5	Yes	933	450
			-	933	450
		-6	Yes	933	333
					continued

Table 47. DCLK-to-DATA[] Ratio for Intel Cyclone 10 GX Devices

You cannot turn on encryption and compression at the same time for Intel Cyclone 10 GX devices.

Configuration Scheme	Encryption	Compression	DCLK-to-DATA[] Ratio (r)
FPP (8-bit wide)	Off	Off	1
	On	Off	1
	Off	On	2
FPP (16-bit wide)	Off	Off	1
	On	Off	2
	Off	On	4
FPP (32-bit wide)	Off	Off	1
	On	Off	4
	Off	On	8

FPP Configuration Timing when DCLK-to-DATA[] = 1

Note: When you enable decompression or the design security feature, the DCLK-to-DATA[] ratio varies for FPP ×8, FPP ×16, and FPP ×32. For the respective DCLK-to-DATA[] ratio, refer to the DCLK-to-DATA[] Ratio for Intel Cyclone 10 GX Devices table.

Table 48. FPP Timing Parameters When the DCLK-to-DATA[] Ratio is 1 for Intel Cyclone 10 GX Devices

Use these timing parameters when the decompression and design security features are disabled.

Symbol	Parameter	Minimum	Maximum	Unit
t _{CF2CD}	nCONFIG low to CONF_DONE low	480	1,440	ns
t _{CF2ST0}	nCONFIG low to nSTATUS low	320	960	ns
t _{CFG}	nCONFIG low pulse width	2	_	μs
t _{STATUS}	nSTATUS low pulse width	268	3,000 ⁽⁷⁰⁾	μs
t _{CF2ST1}	nCONFIG high to nSTATUS high	-	3,000 ⁽⁷¹⁾	μs
				continued

⁽⁷⁰⁾ This value is applicable if you do not delay configuration by extending the nCONFIG or nSTATUS low pulse width.

Initialization

Table 53. Initialization Clock Source Option and the Maximum Frequency for Intel Cyclone 10 GX Devices

Initialization Clock Source	Configuration Scheme	Maximum Frequency (MHz)	Minimum Number of Clock Cycles
Internal Oscillator	AS, PS, and FPP	12.5	600
CLKUSR (82)(83)	AS, PS, and FPP	100	

Configuration Files

There are two types of configuration bit stream formats for different configuration schemes:

- PS and FPP—Raw Binary File (.rbf)
- AS—Raw Programming Data File (.rpd)

The .rpd file size follows the Intel configuration devices capacity. However, the actual configuration bit stream size for .rpd file is the same as .rbf file.

 ⁽⁸²⁾ To enable CLKUSR as the initialization clock source, in the Intel Quartus Prime software, select Device and Pin Options > General
 > Device initialization clock source > CLKUSR pin.

⁽⁸³⁾ If you use the CLKUSR pin for AS and transceiver calibration simultaneously, the only allowed frequency is 100 MHz.

Table 54. Configuration Bit Stream Sizes for Intel Cyclone 10 GX Devices

Use this table to estimate the file size before design compilation. Different configuration file formats, such as a hexadecimal file (.hex) or tabular text file (.ttf) format, have different file sizes.

For the different types of configuration file and file sizes, refer to the Intel Quartus Prime software. However, for a specific version of the Intel Quartus Prime software, any design targeted for the same device has the same uncompressed configuration file size.

I/O configuration shift register (IOCSR) is a long shift register that facilitates the device I/O peripheral settings. The IOCSR bit stream is part of the uncompressed configuration bit stream, and it is specifically for the Configuration via Protocol (CvP) feature.

Uncompressed configuration bit stream sizes are subject to change for improvements and optimizations in the configuration algorithm.

Variant	Product Line	Uncompressed Configuration Bit Stream Size (bits)	IOCSR Bit Stream Size (bits)	Recommended EPCQ-L Serial Configuration Device
Intel Cyclone 10 GX	GX 085	81,923,582	2,507,264	EPCQ-L256 or higher density
	GX 105	81,923,582	2,507,264	EPCQ-L256 or higher density
	GX 150	81,923,582	2,507,264	EPCQ-L256 or higher density
	GX 220	81,923,582	2,507,264	EPCQ-L256 or higher density

Remote System Upgrades

Table 56. Remote System Upgrade Circuitry Timing Specifications for Intel Cyclone 10 GX Devices

Parameter	Minimum	Maximum	Unit
f _{MAX_RU_CLK} ⁽⁸⁶⁾	—	40	MHz
t _{RU_nCONFIG} ⁽⁸⁷⁾	250	-	ns
t _{RU_nRSTIMER} ⁽⁸⁸⁾	250	—	ns

Related Information

- Remote System Upgrade State Machine Provides more information about configuration reset (RU_CONFIG) signal.
- User Watchdog Timer
 Provides more information about reset_timer (RU_nRSTIMER) signal.

User Watchdog Internal Circuitry Timing Specifications

Table 57. User Watchdog Internal Oscillator Frequency Specifications for Intel Cyclone 10 GX Devices

Parameter	Minimum	Typical	Maximum	Unit
User watchdog internal oscillator frequency	5.3	7.9	12.5	MHz

I/O Timing

I/O timing data is typically used prior to designing the FPGA to get an estimate of the timing budget as part of the timing analysis. You may generate the I/O timing report manually using the Timing Analyzer or using the automated script.

⁽⁸⁶⁾ This clock is user-supplied to the remote system upgrade circuitry. If you are using the Remote Update Intel FPGA IP core, the clock user-supplied to the Remote Update Intel FPGA IP core must meet this specification.

⁽⁸⁷⁾ This is equivalent to strobing the reconfiguration input of the Remote Update Intel FPGA IP core high for the minimum timing specification.

⁽⁸⁸⁾ This is equivalent to strobing the reset_timer input of the Remote Update Intel FPGA IP core high for the minimum timing specification.

The Intel Quartus Prime Timing Analyzer provides a more accurate and precise I/O timing data based on the specifics of the design after you complete place-and-route.

Related Information

AN775: I/O Timing Information Generation Guidelines

Provides the techniques to generate I/O timing information using the Intel Quartus Prime software.

Programmable IOE Delay

Table 58. IOE Programmable Delay for Intel Cyclone 10 GX Devices

For the exact values for each setting, use the latest version of the Intel Quartus Prime software. The values in the table show the delay of programmable IOE delay chain with maximum offset settings after excluding the intrinsic delay (delay at minimum offset settings).

Programmable IOE delay settings are only applicable for I/O buffers and do not apply for any other delay elements in the PHYLite for Parallel Interfaces Intel Cyclone 10 FPGA IP core.

Parameter ⁽⁸⁹⁾	Maximum Offset	Minimum Offset ⁽⁹⁰⁾	Fast Model		Slow Model		Unit
		Unset (00)	Extended	Industrial	-E5, -I5	-E6, -I6	
Input Delay Chain Setting (IO_IN_DLY_CHN)	63	0	2.012	2.003	5.241	6.035	ns
Output Delay Chain Setting (IO_OUT_DLY_CHN)	15	0	0.478	0.475	1.263	1.462	ns

Glossary

Table 59.Glossary

Term	Definition
Differential I/O Standards	Receiver Input Waveforms
	continued

⁽⁹⁰⁾ Minimum offset does not include the intrinsic delay.

⁽⁸⁹⁾ You can set this value in the Intel Quartus Prime software by selecting **Input Delay Chain Setting** or **Output Delay Chain Setting** in the **Assignment Name** column.

Term	Definition
	Single-Ended Waveform Positive Channel (p) = V _{IH} V_{ID} Negative Channel (n) = V _{IL} Ground Ground
	Differential Waveform VID Transmitter Output Waveforms Single-Ended Waveform
	Positive Channel (p) = V _{OH} Negative Channel (n) = V _{OL} Ground
	$\frac{1}{\sqrt{V_{0D}}} p - n = 0 V$
f _{HSCLK}	I/O PLL input clock frequency.
f _{HSDR}	High-speed I/O block—Maximum/minimum LVDS data transfer rate $(f_{HSDR} = 1/TUI)$, non-DPA.
f _{hsdrdpa}	High-speed I/O block—Maximum/minimum LVDS data transfer rate ($f_{HSDRDPA} = 1/TUI$), DPA.
]	High-speed I/O block—Deserialization factor (width of parallel data bus).
JTAG Timing Specifications	JTAG Timing Specifications:
	continued

Intel[®] Cyclone[®] 10 GX Device Datasheet C10GX51002 | 2018.06.15

Date	Version	Changes
November 2017 2017.11.10		Changed the full symbol names for V _{CCR_GXB} and V _{CCT_GXB} , and changed the description for V _{CCH_GXB} in the <i>Transceiver Power Supply Operating Conditions for Intel Cyclone 10 GX Devices</i> table.
		• Removed note from the Transceiver Power Supply Operating Conditions section.
		Added a footnote in the <i>Reference Clock Specifications</i> table.
		• Removed the "Programmable AC Gain at High Gain mode and Data Rate ≤ 12.5 Gbps" parameter from the <i>Receiver Specifications</i> table.
		• Changed the channel span descriptions for the x1 and x6 clock networks in the <i>Transceiver Clock Network Maximum Data Rate Specifications</i> table.
		• Changed the description of the VOD ratio in the Typical Transmitter V _{OD} Settings table.
		• Changed the specifications for CDR PPM deviation limit in the Receiver Specifications table.
		Updated the description for V _{CCT_GXB} , V _{CCR_GXB} , and V _{CCH_GXB} .
		• Added note to V _I in the <i>Recommended Operating Conditions for Intel Cyclone 10 GX Devices</i> table.
		• Updated notes to RSDS and Mini-LVDS in the Differential I/O Standards Specifications for Intel Cyclone 10 GX Devices table.
		• Updated f _{VCO} specifications in the <i>Fractional PLL Specifications for Intel Cyclone 10 GX Devices</i> table.
		 Updated temperature range from "-40 to 125°C" to "-40 to 100°C" in the Internal Temperature Sensing Diode Specifications for Intel Cyclone 10 GX Devices table.
		• Updated the description for the Memory Output Clock Jitter Specifications for Intel Cyclone 10 GX Devices table.
		Updated the following IP cores name:
		 Remote Update Intel FPGA
		 PHYLite for Parallel Interfaces Intel Cyclone 10 FPGA
		Removed automotive-grade information.
		Removed Preliminary tags.
May 2017	2017.05.08	Initial release.