

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Obsolete
Core Processor	S08
Core Size	8-Bit
Speed	40MHz
Connectivity	l²C, LINbus, SCI, SPI
Peripherals	LVD, POR, PWM, WDT
Number of I/O	17
Program Memory Size	4KB (4K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	24-VFQFN Exposed Pad
Supplier Device Package	24-QFN-EP (4x4)
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=mc9s08sh4mfk

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

List of Chapters

Chapter 1	Device Overview19
Chapter 2	Pins and Connections
Chapter 3	Modes of Operation
Chapter 4	Memory
Chapter 5	Resets, Interrupts, and General System Control59
Chapter 6	Parallel Input/Output Control75
Chapter 7	Central Processor Unit (S08CPUV2)93
Chapter 8	Analog Comparator 5-V (S08ACMPV2)113
Chapter 9	Analog-to-Digital Converter (S08ADCV1)121
Chapter 10	Internal Clock Source (S08ICSV2)149
Chapter 11	Inter-Integrated Circuit (S08IICV2)163
Chapter 12	Modulo Timer (S08MTIMV1)183
Chapter 13	Real-Time Counter (S08RTCV1)193
Chapter 14	Serial Communications Interface (S08SCIV4)203
Chapter 15	Serial Peripheral Interface (S08SPIV3)223
Chapter 16	Timer Pulse-Width Modulator (S08TPMV3)239
Chapter 17	Development Support
Appendix A	Electrical Characteristics
Appendix B	Ordering Information and Mechanical Drawings

Section Number

Title

Page

	15.4.3 SPI Baud Rate Register (SPIBR)	231
	15.4.4 SPI Status Register (SPIS)	232
	15.4.5 SPI Data Register (SPID)	233
15.5	Functional Description	234
	15.5.1 SPI Clock Formats	234
	15.5.2 SPI Interrupts	237
	15.5.3 Mode Fault Detection	237

Chapter 16 Timer Pulse-Width Modulator (S08TPMV3)

16.1	Introduction	
	16.1.1 ACMP/TPM Configuration Information	
	16.1.2 TPM Configuration Information	
	16.1.3 Features	241
	16.1.4 Modes of Operation	241
	16.1.5 Block Diagram	
16.2	Signal Description	
	16.2.1 Detailed Signal Descriptions	
16.3	Register Definition	
	16.3.1 TPM Status and Control Register (TPMxSC)	
	16.3.2 TPM-Counter Registers (TPMxCNTH:TPMxCNTL)	
	16.3.3 TPM Counter Modulo Registers (TPMxMODH:TPMxMODL)	
	16.3.4 TPM Channel n Status and Control Register (TPMxCnSC)	
	16.3.5 TPM Channel Value Registers (TPMxCnVH:TPMxCnVL)	
16.4	Functional Description	
	16.4.1 Counter	255
	16.4.2 Channel Mode Selection	
16.5	Reset Overview	
	16.5.1 General	
	16.5.2 Description of Reset Operation	
16.6	Interrupts	
	16.6.1 General	
	16.6.2 Description of Interrupt Operation	
16.7	The Differences from TPM v2 to TPM v3	

Chapter 17 Development Support

17.1	Introduction	267
	17.1.1 Forcing Active Background	267
	17.1.2 Features	268
17.2	Background Debug Controller (BDC)	
	17.2.1 BKGD Pin Description	269
	1	

MC9S08SH8 MCU Series Data Sheet, Rev. 3

Chapter 6 Parallel Input/Output Control

Chapter 7 Central Processor Unit (S08CPUV2)

Source	Operation	dress ode	Object Code	rcles	Cyc-by-Cyc	Affect on CCR	
		βq M		ΰ	Details	V 1 1 H	INZC
RSP	Reset Stack Pointer (Low Byte) SPL ← \$FF (High Byte Not Affected)	INH	9C	1	q	- 1 1 -	
RTI	Return from Interrupt SP \leftarrow (SP) + \$0001; Pull (CCR) SP \leftarrow (SP) + \$0001; Pull (A) SP \leftarrow (SP) + \$0001; Pull (X) SP \leftarrow (SP) + \$0001; Pull (PCH) SP \leftarrow (SP) + \$0001; Pull (PCL)	INH	80	9	uuuuufppp	↓11↓	↓ ↓ ↓ ↓
RTS	Return from Subroutine SP \leftarrow SP + \$0001; Pull (PCH) SP \leftarrow SP + \$0001; Pull (PCL)	INH	81	5	ufppp	- 1 1 -	
SBC #opr8i SBC opr8a SBC opr16a SBC oprx16,X SBC oprx8,X SBC ,X SBC oprx16,SP SBC oprx8,SP	Subtract with Carry A \leftarrow (A) – (M) – (C)	IMM DIR EXT IX2 IX1 IX SP2 SP1	A2 ii B2 dd C2 hh ll D2 ee ff E2 ff F2 9E D2 ee ff 9E E2 ff	2 3 4 3 3 5 4	pp rpp prpp rpp rfp pprpp prpp	↓11-	- ↓ ↓ ↓
SEC	Set Carry Bit $(C \leftarrow 1)$	INH	99	1	p	- 1 1 -	1
SEI	Set Interrupt Mask Bit $(I \leftarrow 1)$	INH	9в	1	q	- 1 1 -	1 – – –
STA opr8a STA opr16a STA oprx16,X STA oprx8,X STA ,X STA oprx16,SP STA oprx8,SP	Store Accumulator in Memory $M \leftarrow (A)$	DIR EXT IX2 IX1 IX SP2 SP1	B7 dd C7 hh ll D7 ee ff E7 ff F7 9E D7 ee ff 9E E7 ff	3 4 3 2 5 4	БмББ ББмББ мБ БмББ БмББ БмББ АмББ	011-	- \$ \$ -
STHX opr8a STHX opr16a STHX oprx8,SP	Store H:X (Index Reg.) (M:M + \$0001) ← (H:X)	DIR EXT SP1	35 dd 96 hh 11 9E FF ff	4 5 5	bambb bambb	011-	- ↓ ↓ -
STOP	Enable Interrupts: Stop Processing Refer to MCU Documentation I bit \leftarrow 0; Stop Processing	INH	8E	2	fp	- 1 1 -	0
STX opr8a STX opr16a STX oprx16,X STX oprx8,X STX ,X STX oprx16,SP STX oprx8,SP	Store X (Low 8 Bits of Index Register) in Memory $M \leftarrow (X)$	DIR EXT IX2 IX1 IX SP2 SP1	BF dd CF hh ll DF ee ff EF ff FF 9E DF ee ff 9E EF ff	3 4 3 2 5 4	БмББ ББмББ мБ БмББ БмББ БмББ	011-	- \$ \$ -

Table 7-2. Instruction Se	t Summary	(Sheet 7 of 9)
---------------------------	-----------	----------------

In application code, the user reads the temperature sensor channel, calculates V_{TEMP} and compares it to V_{TEMP25} . If V_{TEMP} is greater than V_{TEMP25} the cold slope value is applied in Equation 9-1. If V_{TEMP} is less than V_{TEMP25} the hot slope value is applied in Equation 9-1.

Calibrating at 25°C will improve accuracy to ± 4.5 °C.

Calibration at three points, -40°C, 25°C, and 125°C will improve accuracy to ± 2.5 °C. Once calibration has been completed, the user will need to calculate the slope for both hot and cold. In application code, the user would then calculate the temperature using Equation 9-1 as detailed above and then determine if the temperature is above or below 25°C. Once determined if the temperature is above or below 25°C, the user can recalculate the temperature using the hot or cold slope value obtained during calibration.

Figure 9-1 shows the MC9S08SH8 with the ADC module highlighted.

ADCH	Input Select
01000	AD8
01001	AD9
01010	AD10
01011	AD11
01100	AD12
01101	AD13
01110	AD14
01111	AD15

Figure 9-4. Input Channel Select (continue)	I)
---	----

ADCH	Input Select
11000	AD24
11001	AD25
11010	AD26
11011	AD27
11100	Reserved
11101	V _{REFH}
11110	V _{REFL}
11111	Module disabled

9.3.2 Status and Control Register 2 (ADCSC2)

The ADCSC2 register is used to control the compare function, conversion trigger and conversion active of the ADC module.

¹ Bits 1 and 0 are reserved bits that must always be written to 0.

Figure 9-5. Status and Control Register 2 (ADCSC2)

Table 9-4. ADCSC2 Register Field Descriptions

Field	Description
7 ADACT	 Conversion Active — ADACT indicates that a conversion is in progress. ADACT is set when a conversion is initiated and cleared when a conversion is completed or aborted. 0 Conversion not in progress 1 Conversion in progress
6 ADTRG	 Conversion Trigger Select — ADTRG is used to select the type of trigger to be used for initiating a conversion. Two types of trigger are selectable: software trigger and hardware trigger. When software trigger is selected, a conversion is initiated following a write to ADCSC1. When hardware trigger is selected, a conversion is initiated following the assertion of the ADHWT input. O Software trigger selected Hardware trigger selected

10.3.1 ICS Control Register 1 (ICSC1)

Figure 10-3. ICS Control Register 1 (ICSC1)

Table 10-2	. ICS Contro	ol Register 1	1 Field Descriptions
------------	--------------	---------------	----------------------

Field	Description
7:6 CLKS	 Clock Source Select — Selects the clock source that controls the bus frequency. The actual bus frequency depends on the value of the BDIV bits. Output of FLL is selected. Internal reference clock is selected. External reference clock is selected. Reserved, defaults to 00.
5:3 RDIV	Reference Divider — Selects the amount to divide down the FLL reference clock selected by the IREFS bits. Resulting frequency must be in the range 31.25 kHz to 39.0625 kHz. 000 Encoding 0 — Divides reference clock by 1 (reset default) 001 Encoding 1 — Divides reference clock by 2 010 Encoding 2 — Divides reference clock by 4 011 Encoding 3 — Divides reference clock by 8 100 Encoding 4 — Divides reference clock by 16 101 Encoding 5 — Divides reference clock by 32 110 Encoding 6 — Divides reference clock by 64 111 Encoding 7 — Divides reference clock by 128
2 IREFS	Internal Reference Select — The IREFS bit selects the reference clock source for the FLL. 1 Internal reference clock selected 0 External reference clock selected
1 IRCLKEN	Internal Reference Clock Enable — The IRCLKEN bit enables the internal reference clock for use as ICSIRCLK. 1 ICSIRCLK active 0 ICSIRCLK inactive
0 IREFSTEN	 Internal Reference Stop Enable — The IREFSTEN bit controls whether or not the internal reference clock remains enabled when the ICS enters stop mode. 1 Internal reference clock stays enabled in stop if IRCLKEN is set or if ICS is in FEI, FBI, or FBILP mode before entering stop 0 Internal reference clock is disabled in stop

Chapter 11 Inter-Integrated Circuit (S08IICV2)

11.1 Introduction

The inter-integrated circuit (IIC) provides a method of communication between a number of devices. The interface is designed to operate up to 100 kbps with maximum bus loading and timing. The device is capable of operating at higher baud rates, up to a maximum of clock/20, with reduced bus loading. The maximum communication length and the number of devices that can be connected are limited by a maximum bus capacitance of 400 pF.

NOTE

The SDA and SCL should not be driven above V_{DD} . These pins are psuedo open-drain containing a protection diode to V_{DD} .

11.1.1 Module Configuratio

The IIC module pins, SDA and SCL can be repositioned under software control using IICPS in SOPT1 as as shown in Table 11-1. IICPS in SOPT1 selects which general-purpose I/O ports are associated with IIC operation.

IICPS in SOPT1	Port Pin for SDA	Port Pin for SCL
0 (default)	PTA2	PTA3
1	PTB6	PTB7

Table 11-1. IIC Position Options

Figure 11-1 shows the MC9S08SH8 block diagram with the IIC module highlighted.

Chapter 12 Modulo Timer (S08MTIMV1)

12.3.3 MTIM Counter Register (MTIMCNT)

MTIMCNT is the read-only value of the current MTIM count of the 8-bit counter.

Figure 12-6. MTIM Counter Register

Field	Description
7:0 COUNT	MTIM Count — These eight read-only bits contain the current value of the 8-bit counter. Writes have no effect to this register. Reset clears the count to \$00.

12.3.4 MTIM Modulo Register (MTIMMOD)

Figure 12-7. MTIM Modulo Register

Table 12-5. MTIM Modulo Register Field Descriptions

Field	Description
7:0 MOD	MTIM Modulo — These eight read/write bits contain the modulo value used to reset the count and set TOF. A value of \$00 puts the MTIM in free-running mode. Writing to MTIMMOD resets the COUNT to \$00 and clears TOF. Reset sets the modulo to \$00.

Chapter 13 Real-Time Counter (S08RTCV1)

13.1 Introduction

The RTC module consists of one 8-bit counter, one 8-bit comparator, several binary-based and decimal-based prescaler dividers, two clock sources, and one programmable periodic interrupt. This module can be used for time-of-day, calendar or any task scheduling functions. It can also serve as a cyclic wake up from low power modes without the need of external components.

Chapter 14 Serial Communications Interface (S08SCIV4)

Figure 14-12. SCI Baud Rate Generation

SCI communications require the transmitter and receiver (which typically derive baud rates from independent clock sources) to use the same baud rate. Allowed tolerance on this baud frequency depends on the details of how the receiver synchronizes to the leading edge of the start bit and how bit sampling is performed.

The MCU resynchronizes to bit boundaries on every high-to-low transition, but in the worst case, there are no such transitions in the full 10- or 11-bit time character frame so any mismatch in baud rate is accumulated for the whole character time. For a Freescale Semiconductor SCI system whose bus frequency is driven by a crystal, the allowed baud rate mismatch is about 4.5percent for 8-bit data format and about 4 percent for 9-bit data format. Although baud rate modulo divider settings do not always produce baud rates that exactly match standard rates, it is normally possible to get within a few percent, which is acceptable for reliable communications.

14.3.2 Transmitter Functional Description

This section describes the overall block diagram for the SCI transmitter, as well as specialized functions for sending break and idle characters. The transmitter block diagram is shown in Figure 14-2.

The transmitter output (TxD) idle state defaults to logic high (TXINV = 0 following reset). The transmitter output is inverted by setting TXINV = 1. The transmitter is enabled by setting the TE bit in SCIxC2. This queues a preamble character that is one full character frame of the idle state. The transmitter then remains idle until data is available in the transmit data buffer. Programs store data into the transmit data buffer by writing to the SCI data register (SCIxD).

The central element of the SCI transmitter is the transmit shift register that is either 10 or 11 bits long depending on the setting in the M control bit. For the remainder of this section, we will assume M = 0, selecting the normal 8-bit data mode. In 8-bit data mode, the shift register holds a start bit, eight data bits, and a stop bit. When the transmit shift register is available for a new SCI character, the value waiting in the transmit data register is transferred to the shift register (synchronized with the baud rate clock) and the transmit data register empty (TDRE) status flag is set to indicate another character may be written to the transmit data buffer at SCIxD.

If no new character is waiting in the transmit data buffer after a stop bit is shifted out the TxD pin, the transmitter sets the transmit complete flag and enters an idle mode, with TxD high, waiting for more characters to transmit.

Chapter 15 Serial Peripheral Interface (S08SPIV3)

Command Mnemonic	Active BDM/ Non-intrusive	Coding Structure	Description
SYNC	Non-intrusive	n/a ¹	Request a timed reference pulse to determine target BDC communication speed
ACK_ENABLE	Non-intrusive	D5/d	Enable acknowledge protocol. Refer to Freescale document order no. HCS08RMv1/D.
ACK_DISABLE	Non-intrusive	D6/d	Disable acknowledge protocol. Refer to Freescale document order no. HCS08RMv1/D.
BACKGROUND	Non-intrusive	90/d	Enter active background mode if enabled (ignore if ENBDM bit equals 0)
READ_STATUS	Non-intrusive	E4/SS	Read BDC status from BDCSCR
WRITE_CONTROL	Non-intrusive	C4/CC	Write BDC controls in BDCSCR
READ_BYTE	Non-intrusive	E0/AAAA/d/RD	Read a byte from target memory
READ_BYTE_WS	Non-intrusive	E1/AAAA/d/SS/RD	Read a byte and report status
READ_LAST	Non-intrusive	E8/SS/RD	Re-read byte from address just read and report status
WRITE_BYTE	Non-intrusive	C0/AAAA/WD/d	Write a byte to target memory
WRITE_BYTE_WS	Non-intrusive	C1/AAAA/WD/d/SS	Write a byte and report status
READ_BKPT	Non-intrusive	E2/RBKP	Read BDCBKPT breakpoint register
WRITE_BKPT	Non-intrusive	C2/WBKP	Write BDCBKPT breakpoint register
GO	Active BDM	08/d	Go to execute the user application program starting at the address currently in the PC
TRACE1	Active BDM	10/d	Trace 1 user instruction at the address in the PC, then return to active background mode
TAGGO	Active BDM	18/d	Same as GO but enable external tagging (HCS08 devices have no external tagging pin)
READ_A	Active BDM	68/d/RD	Read accumulator (A)
READ_CCR	Active BDM	69/d/RD	Read condition code register (CCR)
READ_PC	Active BDM	6B/d/RD16	Read program counter (PC)
READ_HX	Active BDM	6C/d/RD16	Read H and X register pair (H:X)
READ_SP	Active BDM	6F/d/RD16	Read stack pointer (SP)
READ_NEXT	Active BDM	70/d/RD	Increment H:X by one then read memory byte located at H:X
READ_NEXT_WS	Active BDM	71/d/SS/RD	Increment H:X by one then read memory byte located at H:X. Report status and data.
WRITE_A	Active BDM	48/WD/d	Write accumulator (A)
WRITE_CCR	Active BDM	49/WD/d	Write condition code register (CCR)
WRITE_PC	Active BDM	4B/WD16/d	Write program counter (PC)
WRITE_HX	Active BDM	4C/WD16/d	Write H and X register pair (H:X)
WRITE_SP	Active BDM	4F/WD16/d	Write stack pointer (SP)
WRITE_NEXT	Active BDM	50/WD/d	Increment H:X by one, then write memory byte located at H:X
WRITE_NEXT_WS	Active BDM	51/WD/d/SS	Increment H:X by one, then write memory byte located at H:X. Also report status.

	Table	17-1.	BDC	Command	Summary
--	-------	-------	-----	---------	---------

¹ The SYNC command is a special operation that does not have a command code.

Chapter 17 Development Support

the host must perform ((8 - CNT) - 1) dummy reads of the FIFO to advance it to the first significant entry in the FIFO.

In most trigger modes, the information stored in the FIFO consists of 16-bit change-of-flow addresses. In these cases, read DBGFH then DBGFL to get one coherent word of information out of the FIFO. Reading DBGFL (the low-order byte of the FIFO data port) causes the FIFO to shift so the next word of information is available at the FIFO data port. In the event-only trigger modes (see Section 17.3.5, "Trigger Modes"), 8-bit data information is stored into the FIFO. In these cases, the high-order half of the FIFO (DBGFH) is not used and data is read out of the FIFO by simply reading DBGFL. Each time DBGFL is read, the FIFO is shifted so the next data value is available through the FIFO data port at DBGFL.

In trigger modes where the FIFO is storing change-of-flow addresses, there is a delay between CPU addresses and the input side of the FIFO. Because of this delay, if the trigger event itself is a change-of-flow address or a change-of-flow address appears during the next two bus cycles after a trigger event starts the FIFO, it will not be saved into the FIFO. In the case of an end-trace, if the trigger event is a change-of-flow, it will be saved as the last change-of-flow entry for that debug run.

The FIFO can also be used to generate a profile of executed instruction addresses when the debugger is not armed. When ARM = 0, reading DBGFL causes the address of the most-recently fetched opcode to be saved in the FIFO. To use the profiling feature, a host debugger would read addresses out of the FIFO by reading DBGFH then DBGFL at regular periodic intervals. The first eight values would be discarded because they correspond to the eight DBGFL reads needed to initially fill the FIFO. Additional periodic reads of DBGFH and DBGFL return delayed information about executed instructions so the host debugger can develop a profile of executed instruction addresses.

17.3.3 Change-of-Flow Information

To minimize the amount of information stored in the FIFO, only information related to instructions that cause a change to the normal sequential execution of instructions is stored. With knowledge of the source and object code program stored in the target system, an external debugger system can reconstruct the path of execution through many instructions from the change-of-flow information stored in the FIFO.

For conditional branch instructions where the branch is taken (branch condition was true), the source address is stored (the address of the conditional branch opcode). Because BRA and BRN instructions are not conditional, these events do not cause change-of-flow information to be stored in the FIFO.

Indirect JMP and JSR instructions use the current contents of the H:X index register pair to determine the destination address, so the debug system stores the run-time destination address for any indirect JMP or JSR. For interrupts, RTI, or RTS, the destination address is stored in the FIFO as change-of-flow information.

17.3.4 Tag vs. Force Breakpoints and Triggers

Tagging is a term that refers to identifying an instruction opcode as it is fetched into the instruction queue, but not taking any other action until and unless that instruction is actually executed by the CPU. This distinction is important because any change-of-flow from a jump, branch, subroutine call, or interrupt causes some instructions that have been fetched into the instruction queue to be thrown away without being executed.

Figure A-6. Typical Run I_{DD} vs. Temperature (V_{DD} = 5V; f_{bus} = 8MHz)

Figure A-7. Typical Stop I_{DD} vs. Temperature (V_{DD} = 5V)

A.10 Analog Comparator (ACMP) Electricals

|--|

Num	С	Rating	Symbol	Min	Typical	Max	Unit
1	_	Supply voltage	V _{DD}	2.7	_	5.5	V
2	C/T	Supply current (active)	I _{DDAC}		20	35	μΑ
3	D	Analog input voltage	V _{AIN}	V _{SS} – 0.3	_	V _{DD}	V
4	D	Analog input offset voltage	V _{AIO}		20	40	mV
5	D	Analog Comparator hysteresis	V _H	3.0	6.0	20.0	mV
6	D	Analog input leakage current	I _{ALKG}			1.0	μΑ
7	D	Analog Comparator initialization delay	t _{AINIT}	—	_	1.0	μs

Characteristic	Conditions	С	Symb	Min	Typ ¹	Мах	Unit	Comment	
Supply current	ADLPC=1 ADLSMP=1 ADCO=1	Т	I _{DD} + I _{DDAD}	_	133	_	μA	ADC current only	
Supply current	ADLPC=1 ADLSMP=0 ADCO=1	Т	I _{DD} + I _{DDAD}		218	_	μΑ	ADC current only	
Supply current	ADLPC=0 ADLSMP=1 ADCO=1	Т	I _{DD} + I _{DDAD}	_	327	_	μΑ	ADC current only	
Supply current	ADLPC=0 ADLSMP=0 ADCO=1	Ρ	I _{DD} + I _{DDAD}	_	0.582	1	mA	ADC current only	
ADC	High speed (ADLPC=0)	_		2	3.3	5		tadack =	
asynchronous clock source	Low power (ADLPC=1)	-0) P t _{ADACK} 1.25	1.25	2	3.3	MHz	1/f _{ADACK}		
Conversion time	Short sample (ADLSMP=0)	_	_	_	20	_	ADCK cycles	See ADC Chapter for	
(including sample time)	Long sample (ADLSMP=1)	D	t _{ADC}	_	40	_			
Sample time	Short sample (ADLSMP=0)	6		_	3.5	_	ADCK	conversion time variances	
	Long sample (ADLSMP=1)		^I ADS	_	23.5	_	cycles		
Total unadjusted error (Includes quantization)	10 bit mode		_	-	±1.5	±3.5	LSB ²		
	8 bit mode	Р	E _{TUE}	_	±0.7	±1.5	LSB ²		
Differential	10 bit mode	Ľ		_	±0.5	±1.0			
Non-Linearity	8 bit mode	F		_	±0.3	±0.5			
	Monotonicity and No-Missing-Codes guaranteed								
Integral	10 bit mode	т	INII	_	±0.5	±1.0			
non-linearity	8 bit mode	1		_	±0.3	±0.5			
Zero-scale error	10 bit mode	р	Е		±1.5	±2.5			
	8 bit mode	F	⊏zs	_	±0.5	±0.7	LSB-		
Full-scale error (V _{ADIN} = V _{DD})	10 bit mode	–	F	0	±1.0	±1.5	LSB ²		
	8 bit mode	I	E _{FS}	0	±0.5	±0.5			
Quantization error	10 bit mode	۲	F	_	—	±0.5			
	8 bit mode	U			—	±0.5	LSB		
Input leakage error	10 bit mode		E	0	±0.2	±2.5	1002	Pad leakage ² *	
	8 bit mode			0	±0.1	±1	LSB	R _{AS}	

Table A-12. ADC Characteristics

Appendix A Electrical Characteristics

NOTES:

1. \overline{SS} output mode (MODFEN = 1, SSOE = 1).

2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.

NOTES:

1. \overline{SS} output mode (MODFEN = 1, SSOE = 1).

2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.

MC9S08SH8 MCU Series Data Sheet, Rev. 3

© FREESCALE SEMICONDUCTOR, INC. All RIGHTS RESERVED.	SEMICONDUCTOR, INC. MECHANICA		PRINT VERSION NE	IT TO SCALE
ITLE:		DOCUMENT NE	: 98ASH70169A	RE∨: C
20 LD TSSOP, PITCH	20 LD TSSOP, PITCH 0.65MM		: 948E-02	25 MAY 2005
	STANDARD: JE	DEC		

SECTION A-	A
------------	---

© FREESCALE SEMICONDUCTOR, INC. All Rights reserved.	LOUTLINE	PRINT VERSION NO	DT TO SCALE
TITLE:	DOCUMENT NO): 98ASB42343B	REV: J
20LD SOIC W/B, 1.2/ PIICH	CASE NUMBER	R: 751D-07	23 MAR 2005
CASE-OUTEINE	STANDARD: JE	DEC MS-013AC	