
NXP USA Inc. - MC9S08SH8MWJ Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Active

Core Processor S08

Core Size 8-Bit

Speed 40MHz

Connectivity I²C, LINbus, SCI, SPI

Peripherals LVD, POR, PWM, WDT

Number of I/O 17

Program Memory Size 8KB (8K x 8)

Program Memory Type FLASH

EEPROM Size -

RAM Size 512 x 8

Voltage - Supply (Vcc/Vdd) 2.7V ~ 5.5V

Data Converters A/D 12x10b

Oscillator Type Internal

Operating Temperature -40°C ~ 125°C (TA)

Mounting Type Surface Mount

Package / Case 20-SOIC (0.295", 7.50mm Width)

Supplier Device Package 20-SOIC

Purchase URL https://www.e-xfl.com/product-detail/nxp-semiconductors/mc9s08sh8mwj

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/mc9s08sh8mwj-4419482
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

Freescale Semiconductor
Datasheet Addendum

MC9S08SH8AD
Rev. 1, 05/2012

Table of Contents

MC9S08SH8 Datasheet Addendum

Addendum for Revision 3.0. 2
Revision History . 2
This addendum describes corrections or updates to the
MC9S08SH8 Datasheet, file named as MC9S08SH8.
Please check our website at http://www.freescale.com/,
for the latest updates.

The current version available of the MC9S08SH8
Datasheet is Revision 3.0.

1
2

© Freescale Semiconductor, Inc., 2012. All rights reserved.

How to Reach Us:

Home Page:
www.freescale.com

Web Support:
http://www.freescale.com/support

USA/Europe or Locations Not Listed:
Freescale Semiconductor, Inc.
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
+1-800-521-6274 or +1-480-768-2130
www.freescale.com/support

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
www.freescale.com/support

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064
Japan
0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor China Ltd.
Exchange Building 23F
No. 118 Jianguo Road
Chaoyang District
Beijing 100022
China
+86 10 5879 8000
support.asia@freescale.com

For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
1-800-441-2447 or 303-675-2140
Fax: 303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com

Information in this document is provided solely to enable system and
software implementers to use Freescale Semiconductor products. There are
no express or implied copyright licenses granted hereunder to design or
fabricate any integrated circuits or integrated circuits based on the
information in this document.

Freescale Semiconductor reserves the right to make changes without further
notice to any products herein. Freescale Semiconductor makes no warranty,
representation or guarantee regarding the suitability of its products for any
particular purpose, nor does Freescale Semiconductor assume any liability
arising out of the application or use of any product or circuit, and specifically
disclaims any and all liability, including without limitation consequential or
incidental damages. “Typical” parameters that may be provided in Freescale
Semiconductor data sheets and/or specifications can and do vary in different
applications and actual performance may vary over time. All operating
parameters, including “Typicals”, must be validated for each customer
application by customer’s technical experts. Freescale Semiconductor does
not convey any license under its patent rights nor the rights of others.
Freescale Semiconductor products are not designed, intended, or authorized
for use as components in systems intended for surgical implant into the body,
or other applications intended to support or sustain life, or for any other
application in which the failure of the Freescale Semiconductor product could
create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended
or unauthorized application, Buyer shall indemnify and hold Freescale
Semiconductor and its officers, employees, subsidiaries, affiliates, and
distributors harmless against all claims, costs, damages, and expenses, and
reasonable attorney fees arising out of, directly or indirectly, any claim of
personal injury or death associated with such unintended or unauthorized
use, even if such claim alleges that Freescale Semiconductor was negligent
regarding the design or manufacture of the part.

Freescale™ and the
Freescale logo are trademarks of Freescale Semiconductor, Inc. All other
product or service names are the property
of their respective owners.© Freescale Semiconductor, Inc. 2012. All rights
reserved.

MC9S08SH8AD
Rev. 1

05/2012

MC9S08SH8 MCU Series Data Sheet, Rev. 3

6 Freescale Semiconductor

Revision History

To provide the most up-to-date information, the revision of our documents on the World Wide Web will be
the most current. Your printed copy may be an earlier revision. To verify you have the latest information
available, refer to:

http://freescale.com/

The following revision history table summarizes changes contained in this document.

Revision
Number

Revision
Date Description of Changes

0.01 3/08/2006 Initial review copy

1 11/2007
Updated Electricals and incorporated revisions from Project sync issues: 2394,
2600, 2601, and 2764.

2 3/2008

Corrected SPI module to be version 3. Incorporated fixes for Project Sync
issues: 2394, 2600, 2601, 2764, 3237, and 3279; as well as, ADC Temperature
Sensor issues 3331 and 3335. Adjusted Features page leading and fixed minor
grammatical errors. Added 20-SOIC package option for the C temp only. Cor-
rected package drawing number for 24-QFN.

3 6/2008 Added ICS over Termperature graph to Electricals. Resolved final TBDs.

© Freescale Semiconductor, Inc., 2007-2008. All rights reserved.

This product incorporates SuperFlash® Technology licensed from SST.

Chapter 1 Device Overview

MC9S08SH8 MCU Series Data Sheet, Rev. 3

22 Freescale Semiconductor

1.3 System Clock Distribution
Figure 1-2 shows a simplified clock connection diagram. Some modules in the MCU have selectable clock
inputs as shown. The clock inputs to the modules indicate the clock(s) that are used to drive the module
function.

The following defines the clocks used in this MCU:

• BUSCLK — The frequency of the bus is always half of ICSOUT.

• ICSOUT — Primary output of the ICS and is twice the bus frequency.

• ICSLCLK — Development tools can select this clock source to speed up BDC communications in
systems where the bus clock is configured to run at a very slow frequency.

• ICSERCLK — External reference clock can be selected as the RTC clock source and as the
alternate clock for the ADC module.

• ICSIRCLK — Internal reference clock can be selected as the RTC clock source.

• ICSFFCLK — Fixed frequency clock can be selected as clock source for the TPM1, TPM2 and
MTIM modules.

• LPOCLK — Independent 1-kHz clock source that can be selected as the clock source for the COP
and RTC modules.

• TCLK — External input clock source for TPM1, TPM2 and MTIM and is referenced as TPMCLK
in TPM chapters.

Figure 1-2. System Clock Distribution Diagram

TPM1 TPM2 MTIM SCI

BDCCPU ADC IIC FLASH

ICS

ICSOUT ÷2
BUSCLK

ICSLCLK

ICSERCLK

COP

* The fixed frequency clock (FFCLK) is internally
synchronized to the bus clock and must not exceed one half
of the bus clock frequency.

FLASH has frequency
requirements for program
and erase operation. See
the electricals appendix
for details.

ADC has min and max
frequency requirements.
See the ADC chapter
and electricals appendix
for details.

XOSC

EXTAL XTAL

SPI

FFCLK*ICSFFCLK

RTC1 kHZ
LPO

TCLK

ICSIRCLK

÷2 SYNC*

LPOCLK

Chapter 3 Modes of Operation

MC9S08SH8 MCU Series Data Sheet, Rev. 3

32 Freescale Semiconductor

Background commands are of two types:

• Non-intrusive commands, defined as commands that can be issued while the user program is
running. Non-intrusive commands can be issued through the BKGD/MS pin while the MCU is in
run mode; non-intrusive commands can also be executed when the MCU is in the active
background mode. Non-intrusive commands include:

— Memory access commands

— Memory-access-with-status commands

— BDC register access commands

— The BACKGROUND command

• Active background commands, which can only be executed while the MCU is in active background
mode. Active background commands include commands to:

— Read or write CPU registers

— Trace one user program instruction at a time

— Leave active background mode to return to the user application program (GO)

The active background mode is used to program a bootloader or user application program into the FLASH
program memory before the MCU is operated in run mode for the first time. When the MC9S08SH8 is
shipped from the Freescale Semiconductor factory, the FLASH program memory is erased by default
unless specifically noted so there is no program that could be executed in run mode until the FLASH
memory is initially programmed. The active background mode can also be used to erase and reprogram
the FLASH memory after it has been previously programmed.

For additional information about the active background mode, refer to the Development Support chapter.

3.5 Wait Mode
Wait mode is entered by executing a WAIT instruction. Upon execution of the WAIT instruction, the CPU
enters a low-power state in which it is not clocked. The I bit in CCR is cleared when the CPU enters the
wait mode, enabling interrupts. When an interrupt request occurs, the CPU exits the wait mode and
resumes processing, beginning with the stacking operations leading to the interrupt service routine.

While the MCU is in wait mode, there are some restrictions on which background debug commands can
be used. Only the BACKGROUND command and memory-access-with-status commands are available
when the MCU is in wait mode. The memory-access-with-status commands do not allow memory access,
but they report an error indicating that the MCU is in either stop or wait mode. The BACKGROUND
command can be used to wake the MCU from wait mode and enter active background mode.

3.6 Stop Modes
One of two stop modes is entered upon execution of a STOP instruction when STOPE in SOPT1. In any
stop mode, the bus and CPU clocks are halted. The ICS module can be configured to leave the reference
clocks running. See Chapter 10, “Internal Clock Source (S08ICSV2),” for more information.

Chapter 3 Modes of Operation

MC9S08SH8 MCU Series Data Sheet, Rev. 3

Freescale Semiconductor 33

Table 3-1 shows all of the control bits that affect stop mode selection and the mode selected under various
conditions. The selected mode is entered following the execution of a STOP instruction.

3.6.1 Stop3 Mode

Stop3 mode is entered by executing a STOP instruction under the conditions as shown in Table 3-1. The
states of all of the internal registers and logic, RAM contents, and I/O pin states are maintained.

Stop3 can be exited by asserting RESET if enabled, or by an interrupt from one of the following sources:
the real-time counter (RTC), LVD system, ACMP, ADC, SCI, IRQ, or any pin interrupts.

If stop3 is exited by means of the RESET pin, then the MCU is reset and operation will resume after taking
the reset vector. Exit by means of one of the internal interrupt sources results in the MCU taking the
appropriate interrupt vector.

3.6.1.1 LVD Enabled in Stop Mode

The LVD system is capable of generating either an interrupt or a reset when the supply voltage drops below
the LVD voltage. For configuring the LVD system for interrupt or reset, refer to 5.6, “Low-Voltage Detect
(LVD) System”. If the LVD is enabled in stop (LVDE and LVDSE bits in SPMSC1 both set) at the time
the CPU executes a STOP instruction, then the voltage regulator remains active during stop mode.

For the ADC to operate in stop mode, the LVD must be enabled when entering stop3.

For the ACMP to operate in stop mode with compare to internal bandgap option, the LVD must be enabled
when entering stop3.

3.6.1.2 Active BDM Enabled in Stop Mode

Entry into the active background mode from run mode is enabled if ENBDM in BDCSCR is set. This
register is described in Chapter 17, “Development Support.” If ENBDM is set when the CPU executes a
STOP instruction, the system clocks to the background debug logic remain active when the MCU enters
stop mode. Because of this, background debug communication remains possible. In addition, the voltage
regulator does not enter its low-power standby state but maintains full internal regulation.

Table 3-1. Stop Mode Selection

STOPE ENBDM 1

1 ENBDM is located in the BDCSCR, which is only accessible through BDC commands, see Section 17.4.1.1, “BDC Status and
Control Register (BDCSCR)”.

LVDE LVDSE PPDC Stop Mode

0 x x x Stop modes disabled; illegal opcode reset if STOP instruction executed

1 1 x x Stop3 with BDM enabled 2

2 When in Stop3 mode with BDM enabled, The SIDD will be near RIDD levels because internal clocks are enabled.

1 0 Both bits must be 1 0 Stop3 with voltage regulator active

1 0 Either bit a 0 0 Stop3

1 0 Either bit a 0 1 Stop2

MC9S08SH8 MCU Series Data Sheet, Rev. 3

Freescale Semiconductor 37

Chapter 4
Memory

4.1 MC9S08SH8 Memory Map
As shown in Figure 4-1, on-chip memory in the MC9S08SH8 series of MCUs consists of RAM, FLASH
program memory for nonvolatile data storage, and I/O and control/status registers. The registers are
divided into three groups:

• Direct-page registers (0x0000 through 0x007F)

• High-page registers (0x1800 through 0x185F)

• Nonvolatile registers (0xFFB0 through 0xFFBF)

Figure 4-1. MC9S08SH8 Memory Map

DIRECT PAGE REGISTERS

RAM

HIGH PAGE REGISTERS

512 BYTES

0x0000

0x007F
0x0080

0x027F

0x1800
0x17FF

0x185F

0xFFFF

0x0280

MC9S08SH8

FLASH

8192 BYTES

0x1860

MC9S08SH4

UNIMPLEMENTED

51,104 BYTES

0xE000
0xDFFF

DIRECT PAGE REGISTERS

RAM

HIGH PAGE REGISTERS

256 BYTES

0x0000

0x007F
0x0080

0x1800
0x17FF

0x185F

0xFFFF

FLASH

4096 BYTES

0x1860

0x017F
0x0180

0xF000
0xEFFF

UNIMPLEMENTED
5504 BYTES

0x027F
0x0280 UNIMPLEMENTED

5504 BYTES

RESERVED
256 BYTES

UNIMPLEMENTED

51,104 BYTES

0xE000
0xDFFF

RESERVED

4096 BYTES

Chapter 4 Memory

MC9S08SH8 MCU Series Data Sheet, Rev. 3

40 Freescale Semiconductor

Table 4-2. Direct-Page Register Summary (Sheet 1 of 3)

Address
Register

Name
Bit 7 6 5 4 3 2 1 Bit 0

0x0000 PTAD 0 0 PTAD5 PTAD4 PTAD3 PTAD2 PTAD1 PTAD0

0x0001 PTADD 0 0 PTADD5 PTADD4 PTADD3 PTADD2 PTADD1 PTADD0

0x0002 PTBD PTBD7 PTBD6 PTBD5 PTBD4 PTBD3 PTBD2 PTBD1 PTBD0

0x0003 PTBDD PTBDD7 PTBDD6 PTBDD5 PTBDD4 PTBDD3 PTBDD2 PTBDD1 PTBDD0

0x0004 PTCD 0 0 0 0 PTCD3 PTCD2 PTCD1 PTCD0

0x0005 PTCDD 0 0 0 0 PTCDD3 PTCDD2 PTCDD1 PTCDD0

0x0006–
0x000D

Reserved —
—

—
—

—
—

—
—

—
—

—
—

—
—

—
—

0x000E ACMPSC ACME ACBGS ACF ACIE ACO ACOPE ACMOD1 ACMOD0

0x000F Reserved — — — — — — — —

0x0010 ADSC1 COCO AIEN ADCO ADCH

0x0011 ADSC2 ADACT ADTRG ACFE ACFGT — — — —

0x0012 ADRH 0 0 0 0 0 0 ADR9 ADR8

0x0013 ADRL ADR7 ADR6 ADR5 ADR4 ADR3 ADR2 ADR1 ADR0

0x0014 ADCVH 0 0 0 0 0 0 ADCV9 ADCV8

0x0015 ADCVL ADCV7 ADCV6 ADCV5 ADCV4 ADCV3 ADCV2 ADCV1 ADCV0

0x0016 ADCFG ADLPC ADIV ADLSMP MODE ADICLK

0x0017 APCTL1 ADPC7 ADPC6 ADPC5 ADPC4 ADPC3 ADPC2 ADPC1 ADPC0

0x0018 APCTL2 0 0 0 0 ADPC11 ADPC10 ADPC9 ADPC8

0x0019 Reserved — — — — — — — —

0x001A IRQSC 0 IRQPDD IRQEDG IRQPE IRQF IRQACK IRQIE IRQMOD

0x001B Reserved — — — — — — — —

0x001C MTIMSC TOF TOIE TRST TSTP 0 0 0 0

0x001D MTIMCLK 0 0 CLKS PS

0x001E MTIMCNT CNT

0x001F MTIMMOD MOD

0x0020 TPM1SC TOF TOIE CPWMS CLKSB CLKSA PS2 PS1 PS0

0x0021 TPM1CNTH Bit 15 14 13 12 11 10 9 Bit 8

0x0022 TPM1CNTL Bit 7 6 5 4 3 2 1 Bit 0

0x0023 TPM1MODH Bit 15 14 13 12 11 10 9 Bit 8

0x0024 TPM1MODL Bit 7 6 5 4 3 2 1 Bit 0

0x0025 TPM1C0SC CH0F CH0IE MS0B MS0A ELS0B ELS0A 0 0

0x0026 TPM1C0VH Bit 15 14 13 12 11 10 9 Bit 8

0x0027 TPM1C0VL Bit 7 6 5 4 3 2 1 Bit 0

0x0028 TPM1C1SC CH1F CH1IE MS1B MS1A ELS1B ELS1A 0 0

0x0029 TPM1C1VH Bit 15 14 13 12 11 10 9 Bit 8

0x002A TPM1C1VL Bit 7 6 5 4 3 2 1 Bit 0

0x002B–
0x0037

Reserved —
—

—
—

—
—

—
—

—
—

—
—

—
—

—
—

Chapter 5 Resets, Interrupts, and General System Control

MC9S08SH8 MCU Series Data Sheet, Rev. 3

Freescale Semiconductor 67

5.7.2 System Reset Status Register (SRS)

This high page register includes read-only status flags to indicate the source of the most recent reset. When
a debug host forces reset by writing 1 to BDFR in the SBDFR register, none of the status bits in SRS will
be set. Writing any value to this register address causes a COP reset when the COP is enabled except the
values 0x55 and 0xAA. Writing a 0x55-0xAA sequence to this address clears the COP watchdog timer
without affecting the contents of this register. The reset state of these bits depends on what caused the
MCU to reset.

Figure 5-3. System Reset Status (SRS)

7 6 5 4 3 2 1 0

R POR PIN COP ILOP ILAD 0 LVD 0

W Writing 0x55, 0xAA to SRS address clears COP watchdog timer.

POR: 1 0 0 0 0 0 1 0

LVR: u(1)

1 u = unaffected

0 0 0 0 0 1 0

Any other
reset:

0 Note(2)

2 Any of these reset sources that are active at the time of reset entry will cause the corresponding bit(s) to be set; bits
corresponding to sources that are not active at the time of reset entry will be cleared.

Note(2) Note(2) Note(2) 0 0 0

Table 5-4. SRS Register Field Descriptions

Field Description

7
POR

Power-On Reset — Reset was caused by the power-on detection logic. Because the internal supply voltage was
ramping up at the time, the low-voltage reset (LVD) status bit is also set to indicate that the reset occurred while
the internal supply was below the LVD threshold.
0 Reset not caused by POR.
1 POR caused reset.

6
PIN

External Reset Pin — Reset was caused by an active-low level on the external reset pin.
0 Reset not caused by external reset pin.
1 Reset came from external reset pin.

5
COP

Computer Operating Properly (COP) Watchdog — Reset was caused by the COP watchdog timer timing out.
This reset source can be blocked by COPT bits = 0:0..
0 Reset not caused by COP timeout.
1 Reset caused by COP timeout.

4
ILOP

Illegal Opcode — Reset was caused by an attempt to execute an unimplemented or illegal opcode. The STOP
instruction is considered illegal if stop is disabled by STOPE = 0 in the SOPT register. The BGND instruction is
considered illegal if active background mode is disabled by ENBDM = 0 in the BDCSC register.
0 Reset not caused by an illegal opcode.
1 Reset caused by an illegal opcode.

Chapter 5 Resets, Interrupts, and General System Control

MC9S08SH8 MCU Series Data Sheet, Rev. 3

68 Freescale Semiconductor

5.7.3 System Background Debug Force Reset Register (SBDFR)

This high page register contains a single write-only control bit. A serial background command such as
WRITE_BYTE must be used to write to SBDFR. Attempts to write this register from a user program are
ignored. Reads always return 0x00.

Figure 5-4. System Background Debug Force Reset Register (SBDFR)

3
ILAD

Illegal Address — Reset was caused by an attempt to access either data or an instruction at an unimplemented
memory address.
0 Reset not caused by an illegal address
1 Reset caused by an illegal address

1
LVD

Low Voltage Detect — If the LVDRE bit is set and the supply drops below the LVD trip voltage, an LVD reset will
occur. This bit is also set by POR.
0 Reset not caused by LVD trip or POR.
1 Reset caused by LVD trip or POR.

7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0

W BDFR1

1 BDFR is writable only through serial background debug commands, not from user programs.

Reset: 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Table 5-5. SBDFR Register Field Descriptions

Field Description

0
BDFR

Background Debug Force Reset — A serial background command such as WRITE_BYTE can be used to allow
an external debug host to force a target system reset. Writing 1 to this bit forces an MCU reset. This bit cannot
be written from a user program.

Table 5-4. SRS Register Field Descriptions

Field Description

Chapter 5 Resets, Interrupts, and General System Control

MC9S08SH8 MCU Series Data Sheet, Rev. 3

Freescale Semiconductor 69

5.7.4 System Options Register 1 (SOPT1)

This high page register is a write-once register so only the first write after reset is honored. It can be read
at any time. Any subsequent attempt to write to SOPT1 (intentionally or unintentionally) is ignored to
avoid accidental changes to these sensitive settings. SOPT1 should be written during the user’s reset
initialization program to set the desired controls even if the desired settings are the same as the reset
settings.

7 6 5 4
1

1 Bit 4 is reserved, writes change the value, but will have no effect on this MCU.

3 2 1 0

R
COPT STOPE

0
IICPS BKGDPE RSTPE

W

Reset: 1 1 0 0 0 0 1 u2

2 u = unaffected

POR: 1 1 0 0 0 0 1 0

LVR: 1 1 0 0 0 0 1 u

= Unimplemented or Reserved

Figure 5-5. System Options Register 1 (SOPT1)

Table 5-6. SOPT1 Register Field Descriptions

Field Description

7:6
COPT[1:0]

COP Watchdog Timeout — These write-once bits select the timeout period of the COP. COPT along with
COPCLKS in SOPT2 defines the COP timeout period. See Table 5-1.

5
STOPE

Stop Mode Enable — This write-once bit is used to enable stop mode. If stop mode is disabled and a user
program attempts to execute a STOP instruction, an illegal opcode reset is forced.
0 Stop mode disabled.
1 Stop mode enabled.

2
IICPS

IIC Pin Select — This bit selects the location of the SDA and SCL pins of the IIC module.
0 SDA on PTA2, SCL on PTA3.
1 SDA on PTB6, SCL on PTB7.

1
BKGDPE

Background Debug Mode Pin Enable — This write-once bit when set enables the PTA4/ACMPO/BKGD/MS
pin to function as BKGD/MS. When clear, the pin functions as one of its output-only alternative functions. This
pin defaults to the BKGD/MS function following any MCU reset.
0 PTA4/ACMPO/BKGD/MS pin functions as PTA4 or ACMPO.
1 PTA4/ACMPO/BKGD/MS pin functions as BKGD/MS.

0
RSTPE

RESET Pin Enable — This write-once bit when set enables the PTA5/IRQ/TCLK/RESET pin to function as
RESET. When clear, the pin functions as one of its alternative functions. This pin defaults to a general-purpose
input port function following a POR reset. When configured as RESET, the pin will be unaffected by LVR or other
internal resets. When RSTPE is set, an internal pullup device is enabled on RESET.
0 PTA5/IRQ/TCLK/RESET pin functions as PTA5, IRQ or TCLK.
1 PTA5/IRQ/TCLK/RESET pin functions as RESET.

Chapter 7 Central Processor Unit (S08CPUV2)

MC9S08SH8 MCU Series Data Sheet, Rev. 3

Freescale Semiconductor 99

7.3.6.7 SP-Relative, 16-Bit Offset (SP2)

This variation of indexed addressing uses the 16-bit value in the stack pointer (SP) plus a 16-bit offset
included in the instruction as the address of the operand needed to complete the instruction.

7.4 Special Operations
The CPU performs a few special operations that are similar to instructions but do not have opcodes like
other CPU instructions. In addition, a few instructions such as STOP and WAIT directly affect other MCU
circuitry. This section provides additional information about these operations.

7.4.1 Reset Sequence

Reset can be caused by a power-on-reset (POR) event, internal conditions such as the COP (computer
operating properly) watchdog, or by assertion of an external active-low reset pin. When a reset event
occurs, the CPU immediately stops whatever it is doing (the MCU does not wait for an instruction
boundary before responding to a reset event). For a more detailed discussion about how the MCU
recognizes resets and determines the source, refer to the Resets, Interrupts, and System Configuration
chapter.

The reset event is considered concluded when the sequence to determine whether the reset came from an
internal source is done and when the reset pin is no longer asserted. At the conclusion of a reset event, the
CPU performs a 6-cycle sequence to fetch the reset vector from 0xFFFE and 0xFFFF and to fill the
instruction queue in preparation for execution of the first program instruction.

7.4.2 Interrupt Sequence

When an interrupt is requested, the CPU completes the current instruction before responding to the
interrupt. At this point, the program counter is pointing at the start of the next instruction, which is where
the CPU should return after servicing the interrupt. The CPU responds to an interrupt by performing the
same sequence of operations as for a software interrupt (SWI) instruction, except the address used for the
vector fetch is determined by the highest priority interrupt that is pending when the interrupt sequence
started.

The CPU sequence for an interrupt is:

1. Store the contents of PCL, PCH, X, A, and CCR on the stack, in that order.

2. Set the I bit in the CCR.

3. Fetch the high-order half of the interrupt vector.

4. Fetch the low-order half of the interrupt vector.

5. Delay for one free bus cycle.

6. Fetch three bytes of program information starting at the address indicated by the interrupt vector
to fill the instruction queue in preparation for execution of the first instruction in the interrupt
service routine.

After the CCR contents are pushed onto the stack, the I bit in the CCR is set to prevent other interrupts
while in the interrupt service routine. Although it is possible to clear the I bit with an instruction in the

Chapter 10 Internal Clock Source (S08ICSV2)

MC9S08SH8 MCU Series Data Sheet, Rev. 3

162 Freescale Semiconductor

Chapter 11 Inter-Integrated Circuit (S08IICV2)

MC9S08SH8 MCU Series Data Sheet, Rev. 3

Freescale Semiconductor 173

11.4 Functional Description
This section provides a complete functional description of the IIC module.

11.4.1 IIC Protocol

The IIC bus system uses a serial data line (SDA) and a serial clock line (SCL) for data transfer. All devices
connected to it must have open drain or open collector outputs. A logic AND function is exercised on both
lines with external pull-up resistors. The value of these resistors is system dependent.

Normally, a standard communication is composed of four parts:

• Start signal

• Slave address transmission

• Data transfer

• Stop signal

The stop signal should not be confused with the CPU stop instruction. The IIC bus system communication
is described briefly in the following sections and illustrated in Figure 11-9.

Table 11-9. IICC2 Field Descriptions

Field Description

7
GCAEN

General Call Address Enable. The GCAEN bit enables or disables general call address.
0 General call address is disabled
1 General call address is enabled

6
ADEXT

Address Extension. The ADEXT bit controls the number of bits used for the slave address.
0 7-bit address scheme
1 10-bit address scheme

2–0
AD[10:8]

Slave Address. The AD[10:8] field contains the upper three bits of the slave address in the 10-bit address
scheme. This field is only valid when the ADEXT bit is set.

Chapter 11 Inter-Integrated Circuit (S08IICV2)

MC9S08SH8 MCU Series Data Sheet, Rev. 3

Freescale Semiconductor 177

11.4.2 10-bit Address

For 10-bit addressing, 0x11110 is used for the first 5 bits of the first address byte. Various combinations of
read/write formats are possible within a transfer that includes 10-bit addressing.

11.4.2.1 Master-Transmitter Addresses a Slave-Receiver

The transfer direction is not changed (see Table 11-10). When a 10-bit address follows a start condition,
each slave compares the first seven bits of the first byte of the slave address (11110XX) with its own
address and tests whether the eighth bit (R/W direction bit) is 0. More than one device can find a match
and generate an acknowledge (A1). Then, each slave that finds a match compares the eight bits of the
second byte of the slave address with its own address. Only one slave finds a match and generates an
acknowledge (A2). The matching slave remains addressed by the master until it receives a stop condition
(P) or a repeated start condition (Sr) followed by a different slave address.

After the master-transmitter has sent the first byte of the 10-bit address, the slave-receiver sees an IIC
interrupt. Software must ensure the contents of IICD are ignored and not treated as valid data for this
interrupt.

11.4.2.2 Master-Receiver Addresses a Slave-Transmitter

The transfer direction is changed after the second R/W bit (see Table 11-11). Up to and including
acknowledge bit A2, the procedure is the same as that described for a master-transmitter addressing a
slave-receiver. After the repeated start condition (Sr), a matching slave remembers that it was addressed
before. This slave then checks whether the first seven bits of the first byte of the slave address following
Sr are the same as they were after the start condition (S) and tests whether the eighth (R/W) bit is 1. If there
is a match, the slave considers that it has been addressed as a transmitter and generates acknowledge A3.
The slave-transmitter remains addressed until it receives a stop condition (P) or a repeated start condition
(Sr) followed by a different slave address.

After a repeated start condition (Sr), all other slave devices also compare the first seven bits of the first byte
of the slave address with their own addresses and test the eighth (R/W) bit. However, none of them are
addressed because R/W = 1 (for 10-bit devices) or the 11110XX slave address (for 7-bit devices) does not
match.

After the master-receiver has sent the first byte of the 10-bit address, the slave-transmitter sees an IIC
interrupt. Software must ensure the contents of IICD are ignored and not treated as valid data for this
interrupt.

S
Slave Address 1st 7 bits R/W

A1
Slave Address 2nd byte

A2 Data A ... Data A/A P
11110 + AD10 + AD9 0 AD[8:1]

Table 11-10. Master-Transmitter Addresses Slave-Receiver with a 10-bit Address

S

Slave Address
1st 7 bits

R/W
A1

Slave Address
2nd byte A2 Sr

Slave Address
1st 7 bits

R/W
A3 Data A ... Data A P

11110 + AD10 + AD9 0 AD[8:1] 11110 + AD10 + AD9 1

Table 11-11. Master-Receiver Addresses a Slave-Transmitter with a 10-bit Address

Chapter 12 Modulo Timer (S08MTIMV1)

MC9S08SH8 MCU Series Data Sheet, Rev. 3

Freescale Semiconductor 189

12.3.2 MTIM Clock Configuration Register (MTIMCLK

MTIMCLK contains the clock select bits (CLKS) and the prescaler select bits (PS).

7 6 5 4 3 2 1 0

R 0 0
CLKS PS

W

Reset: 0 0 0 0 0 0 0 0

Figure 12-5. MTIM Clock Configuration Registe

Table 12-3. MTIM Clock Configuration Register Field Descriptio

Field Description

7:6 Unused register bits, always read 0.

5:4
CLKS

Clock Source Select — These two read/write bits select one of four different clock sources as the input to the
MTIM prescaler. Changing the clock source while the counter is active does not clear the counter. The count
continues with the new clock source. Reset clears CLKS to 000.
00 Encoding 0. Bus clock (BUSCLK)
01 Encoding 1. Fixed-frequency clock (XCLK)
10 Encoding 3. External source (TCLK pin), falling edge
11 Encoding 4. External source (TCLK pin), rising edge
All other encodings default to the bus clock (BUSCLK).

3:0
PS

Clock Source Prescaler — These four read/write bits select one of nine outputs from the 8-bit prescaler.
Changing the prescaler value while the counter is active does not clear the counter. The count continues with the
new prescaler value. Reset clears PS to 0000.
0000 Encoding 0. MTIM clock source ÷ 1
0001 Encoding 1. MTIM clock source ÷ 2
0010 Encoding 2. MTIM clock source ÷ 4
0011 Encoding 3. MTIM clock source ÷ 8
0100 Encoding 4. MTIM clock source ÷ 16
0101 Encoding 5. MTIM clock source ÷ 32
0110 Encoding 6. MTIM clock source ÷ 64
0111 Encoding 7. MTIM clock source ÷ 128
1000 Encoding 8. MTIM clock source ÷ 256
All other encodings default to MTIM clock source ÷ 256.

Chapter 16 Timer Pulse-Width Modulator (S08TPMV3)

MC9S08SH8 MCU Series Data Sheet, Rev. 3

240 Freescale Semiconductor

Figure 16-1. MC9S08SH8 Block Diagram Highlighting the TPM Modules

PTB7/SCL/EXTAL

PO
RT

 B

PTB6/SDA/XTAL

PTB5/TPM1CH1/SS
PTB4/TPM2CH1/MISO
PTB3/PIB3/MOSI/ADP7
PTB2/PIB2/SPSCK/ADP6

PO
RT

 A

PTA1/PIA1/TPM2CH0/ADP1/ACMP–

PTB1/PIB1/TxD/ADP5
PTB0/PIB0/RxD/ADP4

PO
RT

 C
PTC3/ADP11
PTC2/ADP10
PTC1/TPM1CH1/ADP9
PTC0/TPM1CH0/ADP8

PTA3/PAI3/SCL/ADP3

PTA2/PAI2/SDA/ADP2

PTA0/PIA0/TPM1CH0/ADP0/ACMP+

Pin can be enabled as part of the ganged output drive feature

PTA4/ACMPO/BKGD/MS

PTA5/IRQ/TCLK/RESET

NOTE 1: Port B not available on 8-pin packages

SEE NOTE 1

SEE NOTE 1, 2

NOTE 2: Port C not available on 8-pin or 16-pin packages

IIC MODULE (IIC)

SERIAL PERIPHERAL
 INTERFACE MODULE (SPI)USER FLASH

USER RAM

HCS08 CORE

CPU BDC

HCS08 SYSTEM CONTROL

RESETS AND INTERRUPTS
MODES OF OPERATION
POWER MANAGEMENT

COP LVD

INTERFACE MODULE (SCI)
SERIAL COMMUNICATIONS

8-BIT MODULO TIMER
MODULE (MTIM)

VOLTAGE REGULATOR

DEBUG MODULE (DBG)

MISO

SCL

SDA

MOSI

SPSCK

RxD

TxD

LOW-POWER OSCILLATOR

40-MHz INTERNAL CLOCK
SOURCE (ICS)

31.25 kHz to 38.4 kHz
1 MHz to 16 MHz

(XOSC)

EXTAL

XTAL

VSS

VDD

VSSA

VDDA

VREFL

VREFH

ANALOG-TO-DIGITAL
CONVERTER (ADC)

10-BIT

SS

TCLK

BKGD/MS

16-BIT TIMER/PWM
MODULE (TPM2)

TCLK
REAL-TIME COUNTER (RTC)

(MC9S08SH8 = 8,192 BYTES)
(MC9S08SH4 = 4096 BYTES)

(MC9S08SH8 = 512 BYTES)

ANALOG COMPARATOR
(ACMP)

ACMPO
ACMP–
ACMP+

TPM2CH0

TPM2CH1

ADP11-ADP0

16-BIT TIMER/PWM
MODULE (TPM1)

TCLK
TPM1CH0

TPM1CH1

IRQ

IRQ

(MC9S08SH4 = 256 BYTES)

NOTE 3: VDDA/VREFH and VSSA/VREFL, are double bonded to VDD and VSS respectively.

NOTES

=

SEE NOTE 3

Chapter 16 Timer/PWM Module (S08TPMV3)

MC9S08SH8 MCU Series Data Sheet, Rev. 3

Freescale Semiconductor 265

Figure 0-2. Generation of low-true EPWM signal by TPM v2 and v3 after the reset

The following procedure can be used in TPM v3 (when the channel pin is also a port pin) to emulate
the high-true EPWM generated by TPM v2 after the reset.

...

configure the channel pin as output port pin and set the output pin;

configure the channel to generate the EPWM signal but keep ELSnB:ELSnA as 00;

configure the other registers (TPMxMODH, TPMxMODL, TPMxCnVH, TPMxCnVL, ...);

configure CLKSB:CLKSA bits (TPM v3 starts to generate the high-true EPWM signal, however
TPM does not control the channel pin, so the EPWM signal is not available);

wait until the TOF is set (or use the TOF interrupt);

enable the channel output by configuring ELSnB:ELSnA bits (now EPWM signal is available);

...

ELSnB:ELSnA BITS

CLKSB:CLKSA BITS

0

TPMxMODH:TPMxMODL = 0x0007
TPMxCnVH:TPMxCnVL = 0x0005

TPMxCNTH:TPMxCNTL

TPMv2 TPMxCHn

EPWM mode

00

00 01

BUS CLOCK

01

1 2 3 4 5 6 7 0 1 2

CHnF BIT

MSnB:MSnA BITS 00 10

(in TPMv2 and TPMv3)

TPMv3 TPMxCHn

...

RESET (active low)

Chapter 17 Development Support

MC9S08SH8 MCU Series Data Sheet, Rev. 3

Freescale Semiconductor 279

A force-type breakpoint waits for the current instruction to finish and then acts upon the breakpoint
request. The usual action in response to a breakpoint is to go to active background mode rather than
continuing to the next instruction in the user application program.

The tag vs. force terminology is used in two contexts within the debug module. The first context refers to
breakpoint requests from the debug module to the CPU. The second refers to match signals from the
comparators to the debugger control logic. When a tag-type break request is sent to the CPU, a signal is
entered into the instruction queue along with the opcode so that if/when this opcode ever executes, the CPU
will effectively replace the tagged opcode with a BGND opcode so the CPU goes to active background
mode rather than executing the tagged instruction. When the TRGSEL control bit in the DBGT register is
set to select tag-type operation, the output from comparator A or B is qualified by a block of logic in the
debug module that tracks opcodes and only produces a trigger to the debugger if the opcode at the compare
address is actually executed. There is separate opcode tracking logic for each comparator so more than one
compare event can be tracked through the instruction queue at a time.

17.3.5 Trigger Modes

The trigger mode controls the overall behavior of a debug run. The 4-bit TRG field in the DBGT register
selects one of nine trigger modes. When TRGSEL = 1 in the DBGT register, the output of the comparator
must propagate through an opcode tracking circuit before triggering FIFO actions. The BEGIN bit in
DBGT chooses whether the FIFO begins storing data when the qualified trigger is detected (begin trace),
or the FIFO stores data in a circular fashion from the time it is armed until the qualified trigger is detected
(end trigger).

A debug run is started by writing a 1 to the ARM bit in the DBGC register, which sets the ARMF flag and
clears the AF and BF flags and the CNT bits in DBGS. A begin-trace debug run ends when the FIFO gets
full. An end-trace run ends when the selected trigger event occurs. Any debug run can be stopped manually
by writing a 0 to ARM or DBGEN in DBGC.

In all trigger modes except event-only modes, the FIFO stores change-of-flow addresses. In event-only
trigger modes, the FIFO stores data in the low-order eight bits of the FIFO.

The BEGIN control bit is ignored in event-only trigger modes and all such debug runs are begin type
traces. When TRGSEL = 1 to select opcode fetch triggers, it is not necessary to use R/W in comparisons
because opcode tags would only apply to opcode fetches that are always read cycles. It would also be
unusual to specify TRGSEL = 1 while using a full mode trigger because the opcode value is normally
known at a particular address.

The following trigger mode descriptions only state the primary comparator conditions that lead to a trigger.
Either comparator can usually be further qualified with R/W by setting RWAEN (RWBEN) and the
corresponding RWA (RWB) value to be matched against R/W. The signal from the comparator with
optional R/W qualification is used to request a CPU breakpoint if BRKEN = 1 and TAG determines
whether the CPU request will be a tag request or a force request.

