

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	12V1
Core Size	16-Bit
Speed	25MHz
Connectivity	CANbus, IrDA, LINbus, SCI, SPI
Peripherals	LVD, POR, PWM, WDT
Number of I/O	40
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	3.13V ~ 5.5V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	48-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=s9s12g128f0clf

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

	Function Int <lowestpriorityhighest> Power Power Power</lowestpriorityhighest>						Internal Pull Resistor			
Package Pin	Pin	2nd Func.	3rd Func.	4th Func	5th Func	Supply	CTRL	Reset State		
1	PJ6	KWJ6	SCK2	—	_	V _{DDX}	PERJ/PPSJ	Up		
2	PJ5	KWJ5	MOSI2	_	_	V _{DDX}	PERJ/PPSJ	Up		
3	PJ4	KWJ4	MISO2	—	_	V _{DDX}	PERJ/PPSJ	Up		
4	RESET	_	—	—	_	V _{DDX}	PULLUF	D		
5	VDDX	_	—	—	_	—	_	—		
6	VDDR	_	—	—	_	—	_	—		
7	VSSX	_	—	—	_	—	_	—		
8	PE0 ¹	EXTAL	—	—	_	V _{DDX}	PUCR/PDPEE	Down		
9	VSS	_	—	—	_	—	_	—		
10	PE1 ¹	XTAL	_	—	_	V _{DDX}	PUCR/PDPEE	Down		
11	TEST	_	—	_	_	N.A.	RESET pin	Down		
12	PJ0	KWJ0	MISO1	—	_	V _{DDX}	PERJ/PPSJ	Up		
13	PJ1	KWJ1	MOSI1	—	_	V _{DDX}	PERJ/PPSJ	Up		
14	PJ2	KWJ2	SCK1	—	_	V _{DDX}	PERJ/PPSJ	Up		
15	PJ3	KWJ3	SS1	—	_	V _{DDX}	PERJ/PPSJ	Up		
16	BKGD	MODC	—	—	_	V _{DDX}	PUCR/BKPUE	Up		
17	PP0	KWP0	ETRIG0	API_EXTC LK	PWM0	V _{DDX}	PERP/PPSP	Disabled		
18	PP1	KWP1	ETRIG1	ECLKX2	PWM1	V _{DDX}	PERP/PPSP	Disabled		
19	PP2	KWP2	ETRIG2	PWM2	_	V _{DDX}	PERP/PPSP	Disabled		
20	PP3	KWP3	ETRIG3	PWM3	_	V _{DDX}	PERP/PPSP	Disabled		
21	PP4	KWP4	PWM4	_	_	V _{DDX}	PERP/PPSP	Disabled		
22	PP5	KWP5	PWM5	_	_	V _{DDX}	PERP/PPSP	Disabled		
23	PP6	KWP6	PWM6	—	_	V _{DDX}	PERP/PPSP	Disabled		
24	PP7	KWP7	PWM7	—	_	V _{DDX}	PERP/PPSP	Disabled		
25	PT7	IOC7	—	—	_	V _{DDX}	PERT/PPST	Disabled		
26	PT6	IOC6	—	—	_	V _{DDX}	PERT/PPST	Disabled		
27	PT5	IOC5	_	—		V _{DDX}	PERT/PPST	Disabled		

Table 1-21. 64-Pin LQFP Pinout for S12G96 and S12G128

		<lowest< th=""><th>Function PRIORITY</th><th>highest></th><th>></th><th>Power</th><th colspan="3">Internal Pull Resistor</th></lowest<>	Function PRIORITY	highest>	>	Power	Internal Pull Resistor		
Package Pin	Pin	2nd Func.	3rd Func.	4th Func	5th Func	Supply	CTRL	Reset State	
2	VDDXR	_	—	_	_	—	_	_	
3	VSSX	_	—	—	_	—	_	_	
4	PE0 ¹	EXTAL	—	_	_	V _{DDX}	PUCR/PDPEE	Down	
5	VSS		_	_			_	_	
6	PE1 ¹	XTAL	_	_		V _{DDX}	PUCR/PDPEE	Down	
7	TEST	_	—		_	N.A.	RESET pin	Down	
8	PJ0	KWJ0	PWM6	MISO1	_	V _{DDX}	PERJ/PPSJ	Up	
9	PJ1	KWJ1	IOC6	MOSI1		V _{DDX}	PERJ/PPSJ	Up	
10	PJ2	KWJ2	IOC7	SCK1	_	V _{DDX}	PERJ/PPSJ	Up	
11	PJ3	KWJ3	PWM7	SS1	_	V _{DDX}	PERJ/PPSJ	Up	
12	BKGD	MODC	—		_	V _{DDX}	PUCR/BKPUE	Up	
13	PP0	KWP0	ETRIG0	API_EXTC LK	PWM0	V _{DDX}	PERP/PPSP	Disabled	
14	PP1	KWP1	ETRIG1	ECLKX2	PWM1	V _{DDX}	PERP/PPSP	Disabled	
15	PP2	KWP2	ETRIG2	PWM2	_	V _{DDX}	PERP/PPSP	Disabled	
16	PP3	KWP3	ETRIG3	PWM3	_	V _{DDX}	PERP/PPSP	Disabled	
17	PP4	KWP4	PWM4	—	_	V _{DDX}	PERP/PPSP	Disabled	
18	PP5	KWP5	PWM5	_	_	V _{DDX}	PERP/PPSP	Disabled	
19	PT5	IOC5	—	_	_	V _{DDX}	PERT/PPST	Disabled	
20	PT4	IOC4	—	—	_	V _{DDX}	PERT/PPST	Disabled	
21	PT3	IOC3	_			V _{DDX}	PERT/PPST	Disabled	
22	PT2	IOC2	_	_		V _{DDX}	PERT/PPST	Disabled	
23	PT1	IOC1	IRQ			V _{DDX}	PERT/PPST	Disabled	
24	PT0	IOC0	XIRQ		_	V _{DDX}	PERT/PPST	Disabled	
25	PAD0	KWAD0	AN0		_	V _{DDA}	PER1AD/PPS1AD	Disabled	
26	PAD8	KWAD8	AN8	_	_	V _{DDA}	PER0AD/PPS0AD	Disabled	
27	PAD1	KWAD1	AN1	—	—	V _{DDA}	PER1AD/PPS1AD	Disabled	
28	PAD9	KWAD9	AN9		—	V _{DDA}	PER0AD/PPS0AD	Disabled	
29	PAD2	KWAD2	AN2	—	—	V _{DDA}	PER1AD/PPS1AD	Disabled	

Table 1-29. 48-Pin LQFP Pinout for S12GA192 and S12GA240

PT4	 48/64/100 LQFP: The TIM channel 4 signal is mapped to this pin when used with the timer function. The TIM forces the I/O state to be an output for a timer port associated with an enabled output compare. Signal priority: 48/64/100 LQFP: IOC4 > GPO
PT3-PT2	 Except 20 TSSOP: The TIM channels 3 and 2 signal are mapped to these pins when used with the timer function. The TIM forces the I/O state to be an output for a timer port associated with an enabled output compare. Signal priority: Except 20 TSSOP: IOC3-2 > GPO
PT1	 Except 100 LQFP: The IRQ signal is mapped to this pin when used with the IRQ interrupt function. If enabled (IRQCR[IRQEN]=1) the I/O state of the pin is forced to be an input. The TIM channel 1 signal is mapped to this pin when used with the timer function. The TIM forces the I/O state to be an output for a timer port associated with an enabled output compare. Signal priority: 100 LQFP: IOC1 > GPO Others: IRQ > IOC1 > GPO
РТО	 Except 100 LQFP: The XIRQ signal is mapped to this pin when used with the XIRQ interrupt function. The interrupt is enabled by clearing the X mask bit in the CPU Condition Code register. The I/O state of the pin is forced to input level upon the first clearing of the X bit and held in this state even if the bit is set again. A STOP or WAIT recovery with the X bit set (refer to CPU12/CPU12X Reference Manual) is not available. The TIM channel 0 signal is mapped to this pin when used with the timer function. The TIM forces the I/O state to be an output for a timer port associated with an enabled output compare. Signal priority: 100 LQFP: IOC0 > GPO Others: XIRQ > IOC0 > GPO

Table 2-11. Port T Pins PT7-0 (continued)

Port Integration Module (S12GPIMV1)

Global Address Register Name		Bit 7	6	5	4	3	2	1	Bit 0
0x026C PERJ	R W	PERJ7	PERJ6	PERJ5	PERJ4	PERJ3	PERJ2	PERJ1	PERJ0
0x026D PPSJ	R W	PPSJ7	PPSJ6	PPSJ5	PPSJ4	PPSJ3	PPSJ2	PPSJ1	PPSJ0
0x026E PIEJ	R W	PIEJ7	PIEJ6	PIEJ5	PIEJ4	PIEJ3	PIEJ2	PIEJ1	PIEJ0
0x026F PIFJ	R W	PIFJ7	PIFJ6	PIFJ5	PIFJ4	PIFJ3	PIFJ2	PIFJ1	PIFJ0
0x0270 PT0AD	R W	PT0AD7	PT0AD6	PT0AD5	PT0AD4	PT0AD3	PT0AD2	PT0AD1	PT0AD0
0x0271 PT1AD	R W	PT1AD7	PT1AD6	PT1AD5	PT1AD4	PT1AD3	PT1AD2	PT1AD1	PT1AD0
0x0272 PTI0AD	R	PTI0AD7	PTI0AD6	PTI0AD5	PTI0AD4	PTI0AD3	PTI0AD2	PTI0AD1	PTI0AD0
1 HONE	vv								
0x0273	R	PTI1AD7	PTI1AD6	PTI1AD5	PTI1AD4	PTI1AD3	PTI1AD2	PTI1AD1	PTI1AD0
PITIAD	W								
0x0274 DDR0AD	R W	DDR0AD7	DDR0AD6	DDR0AD5	DDR0AD4	DDR0AD3	DDR0AD2	DDR0AD1	DDR0AD0
0x0275 DDR1AD	R W	DDR1AD7	DDR1AD6	DDR1AD5	DDR1AD4	DDR1AD3	DDR1AD2	DDR1AD1	DDR1AD0
0x0276	R	0	0	0	0	0	0	0	0
Reserved	W								
0x0277	R	0	0	0	0	0	0	0	0
Reserved	W								
0x0278 PER0AD	R W	PER0AD7	PER0AD6	PER0AD5	PER0AD4	PER0AD3	PER0AD2	PER0AD1	PER0AD0
0x0279 PER1AD	R W	PER1AD7	PER1AD6	PER1AD5	PER1AD4	PER1AD3	PER1AD2	PER1AD1	PER1AD0
0x027A PPS0AD	R W	PPS0AD7	PPS0AD6	PPS0AD5	PPS0AD4	PPS0AD3	PPS0AD2	PPS0AD1	PPS0AD0
	ĺ		= Unimplem	nented or Re	served				

Table 2-20. Block Register Map (G2) (continued)

Port Integration Module (S12GPIMV1)

Global Address Register Name		Bit 7	6	5	4	3	2	1	Bit 0
0x0258 PTP	R W	0	0	PTP5	PTP4	PTP3	PTP2	PTP1	PTP0
0x0259 PTIP	R W	0	0	PTIP5	PTIP4	PTIP3	PTIP2	PTIP1	PTIP0
0x025A DDRP	R W	0	0	DDRP5	DDRP4	DDRP3	DDRP2	DDRP1	DDRP0
0x025B Reserved	R W	0	0	0	0	0	0	0	0
0x025C PERP	R W	0	0	PERP5	PERP4	PERP3	PERP2	PERP1	PERP0
0x025D PPSP	R W	0	0	PPSP5	PPSP4	PPSP3	PPSP2	PPSP1	PPSP0
0x025E PIEP	R W	0	0	PIEP5	PIEP4	PIEP3	PIEP2	PIEP1	PIEP0
0x025F PIFP	R W	0	0	PIFP5	PIFP4	PIFP3	PIFP2	PIFP1	PIFP0
0x0260–0x0261 Reserved	R W				Reserved	for ACMP			
0x0262–0x0267 Reserved	R W	0	0	0	0	0	0	0	0
0x0268 PTJ	R W	0	0	0	0	PTJ3	PTJ2	PTJ1	PTJ0
0x0269 PTIJ	R W	0	0	0	0	PTIJ3	PTIJ2	PTIJ1	PTIJ0
0x026A DDRJ	R W	0	0	0	0	DDRJ3	DDRJ2	DDRJ1	DDRJ0
0x026B Reserved	R W	0	0	0	0	0	0	0	0
0x026C PERJ	R W	0	0	0	0	PERJ3	PERJ2	PERJ1	PERJ0
			= Unimplem	nented or Re	served				

Table 2-21. Block Register Map (G3) (continued)

Field	Description
7-0	Port AD input data —
PTI1AD	A read always returns the buffered input state of the associated pin. It can be used to detect overload or short circuit conditions on output pins.

Table 2-78. PTI1AD Register Field Descriptions

2.4.3.53 Port AD Data Direction Register (DDR0AD)

Figure 2-53. Port AD Data Direction Register (DDR0AD)

¹ Read: Anytime

Write: Anytime

Table 2-79. DDR0AD Register Field Descriptions

Field	Description
7-0 DDR0AD	Port AD data direction — This bit determines whether the associated pin is an input or output.
	1 Associated pin configured as output 0 Associated pin configured as input

2.4.3.54 Port AD Data Direction Register (DDR1AD)

Figure 4-1. RVA Module Block Diagram

4.4 External Signals

The RVA has two external input signals, VRH and VSSA.

4.5 Modes of Operation

1. Attenuation Mode

The RVA is attenuating the reference voltage when enabled by the register control bit and the MCU not being in STOP mode.

2. Bypass Mode

The RVA is in bypass mode either when disabled or during STOP mode. In these cases the resistor ladder of the RVA is disconnected for power saving.

Figure 5-1. S12GMMC Block Diagram

5.2 External Signal Description

The S12GMMC uses two external pins to determine the devices operating mode: RESET and MODC (Figure 5-3) See Device User Guide (DUG) for the mapping of these signals to device pins.

Table 5-3	. External	System	Pins	Associated	With	S12GMMC
-----------	------------	--------	------	------------	------	---------

Pin Name	Pin Functions	Description
RESET (See Section Device Overview)	RESET	The $\overline{\text{RESET}}$ pin is used the select the MCU's operating mode.
MODC (See Section Device Overview)	MODC	The MODC pin is captured at the rising edge of the RESET pin. The captured value determines the MCU's operating mode.

5.3 Memory Map and Registers

5.3.1 Module Memory Map

A summary of the registers associated with the S12GMMC block is shown in Figure 5-2. Detailed descriptions of the registers and bits are given in the subsections that follow.

- 4-stage state sequencer for trace buffer control
 - Tracing session trigger linked to Final State of state sequencer
 - Begin and End alignment of tracing to trigger

8.1.4 Modes of Operation

The DBG module can be used in all MCU functional modes.

During BDM hardware accesses and whilst the BDM module is active, CPU monitoring is disabled. When the CPU enters active BDM Mode through a BACKGROUND command, the DBG module, if already armed, remains armed.

The DBG module tracing is disabled if the MCU is secure, however, breakpoints can still be generated.

BDM Enable	BDM Active	MCU Secure	Comparator Matches Enabled	Breakpoints Possible	Tagging Possible	Tracing Possible
Х	х	1	Yes	Yes	Yes	No
0	0	0	Yes	Only SWI	Yes	Yes
0	1	0		Active BDM not possib	le when not enable	d
1	0	0	Yes	Yes	Yes	Yes
1	1	0	No	No	No	No

Table 8-2. Mode Dependent Restriction Summary

8.1.5 Block Diagram

Figure 8-1. Debug Module Block Diagram

11.2 Signal Description

This section lists all inputs to the ADC10B8C block.

11.2.1 Detailed Signal Descriptions

11.2.1.1 ANx (x = 7, 6, 5, 4, 3, 2, 1, 0)

This pin serves as the analog input Channel *x*. It can also be configured as digital port or external trigger for the ATD conversion.

11.2.1.2 ETRIG3, ETRIG2, ETRIG1, ETRIG0

These inputs can be configured to serve as an external trigger for the ATD conversion.

Refer to device specification for availability and connectivity of these inputs!

11.2.1.3 VRH, VRL

VRH is the high reference voltage, VRL is the low reference voltage for ATD conversion.

11.2.1.4 VDDA, VSSA

These pins are the power supplies for the analog circuitry of the ADC10B8C block.

11.3 Memory Map and Register Definition

This section provides a detailed description of all registers accessible in the ADC10B8C.

11.3.1 Module Memory Map

Figure 11-2 gives an overview on all ADC10B8C registers.

NOTE

Register Address = Base Address + Address Offset, where the Base Address is defined at the MCU level and the Address Offset is defined at the module level.

Address	Name		Bit 7	6	5	4	3	2	1	Bit 0
0x0000		R	Reserved	0	0	0	WRAP3	WRAP2	WRAP1	WRAP0
0,0000	0X0000 AIDCILU	W	Received						VII	
0x0001	ATDCTL1	R	ETRIGSEL	SRES1	SRES0	SMP DIS	ETRIGCH3	ETRIGCH2	ETRIGCH1	ETRIGCH0
		VV				_				
0x0002	ATDCTI 2	R	0	AFEC	Reserved	ETRIGI E	FTRIGP	FTRIGE	ASCIE	ACMPIE
000002	ALDOTE2	W		7410	Received	EINIGEE	Ention	EIRIOE	ABOIL	

= Unimplemented or Reserved

Figure 11-2. ADC10B8C Register Summary (Sheet 1 of 2)

Analog-to-Digital Converter (ADC10B8CV2)

11.3.2.9 ATD Status Register 2 (ATDSTAT2)

This read-only register contains the Conversion Complete Flags CCF[7:0].

Module Base + 0x000A

Read: Anytime

Write: Anytime (for details see Table 11-18 below)

Table 11-18. ATDSTAT2 Field Descriptions

Field	Description
7–0 CCF[7:0]	Conversion Complete Flag <i>n</i> (<i>n</i> = 7, 6, 5, 4, 3, 2, 1, 0) (<i>n</i> conversion number, NOT channel number!)— A conversion complete flag is set at the end of each conversion in a sequence. The flags are associated with the conversion position in a sequence (and also the result register number). Therefore in non-fifo mode, CCF[4] is set when the fifth conversion in a sequence is complete and the result is available in result register ATDDR4; CCF[5] is set when the sixth conversion in a sequence is complete and the result is available in ATDDR5, and so forth.
	If automatic compare of conversion results is enabled (CMPE[<i>n</i>]=1 in ATDCMPE), the conversion complete flag is only set if comparison with ATDDR <i>n</i> is true. If ACMPIE=1 a compare interrupt will be requested. In this case, as the ATDDR <i>n</i> result register is used to hold the compare value, the result will not be stored there at the end of the conversion but is lost. A flag CCF[<i>n</i>] is cleared when one of the following occurs: A) Write to ATDCTL5 (a new conversion sequence is started) B) If AFFC=0, write "1" to CCF[<i>n</i>] C) If AFFC=1 and CMPE[<i>n</i>]=0, read of result register ATDDR <i>n</i> D) If AFFC=1 and CMPE[<i>n</i>]=1, write to result register ATDDR <i>n</i>
	 In case of a concurrent set and clear on CCF[<i>n</i>]: The clearing by method A) will overwrite the set. The clearing by methods B) or C) or D) will be overwritten by the set. Conversion number <i>n</i> not completed or successfully compared If (CMPE[<i>n</i>]=0): Conversion number <i>n</i> has completed. Result is ready in ATDDR<i>n</i>. If (CMPE[<i>n</i>]=1): Compare for conversion result number <i>n</i> with compare value in ATDDR<i>n</i>, using compare operator CMPGT[<i>n</i>] is true. (No result available in ATDDR<i>n</i>)

15.4 Functional Description

The ADC10B16C consists of an analog sub-block and a digital sub-block.

15.4.1 Analog Sub-Block

The analog sub-block contains all analog electronics required to perform a single conversion. Separate power supplies VDDA and VSSA allow to isolate noise of other MCU circuitry from the analog sub-block.

15.4.1.1 Sample and Hold Machine

The Sample and Hold Machine controls the storage and charge of the sample capacitor to the voltage level of the analog signal at the selected ADC input channel.

During the sample process the analog input connects directly to the storage node.

The input analog signals are unipolar and must be within the potential range of VSSA to VDDA.

During the hold process the analog input is disconnected from the storage node.

15.4.1.2 Analog Input Multiplexer

The analog input multiplexer connects one of the 16 external analog input channels to the sample and hold machine.

15.4.1.3 Analog-to-Digital (A/D) Machine

The A/D Machine performs analog to digital conversions. The resolution is program selectable to be either 8 or 10 bits. The A/D machine uses a successive approximation architecture. It functions by comparing the sampled and stored analog voltage with a series of binary coded discrete voltages.

By following a binary search algorithm, the A/D machine identifies the discrete voltage that is nearest to the sampled and stored voltage.

When not converting the A/D machine is automatically powered down.

Only analog input signals within the potential range of VRL to VRH (A/D reference potentials) will result in a non-railed digital output code.

15.4.2 Digital Sub-Block

This subsection describes some of the digital features in more detail. See Section 15.3.2, "Register Descriptions" for all details.

15.4.2.1 External Trigger Input

The external trigger feature allows the user to synchronize ATD conversions to an external event rather than relying only on software to trigger the ATD module when a conversion is about to take place. The external trigger signal (out of reset ATD channel 15, configurable in ATDCTL1) is programmable to be

Scalable Controller Area Network (S12MSCANV3)

Figure 18-41. 16-bit Maskable Identifier Acceptance Filters

Module Base + 0x00006

Read: Anytime

Write: Anytime

NOTE

Register bits PCLKAB0 to PCLKAB7 can be written anytime. If a clock select is changed while a PWM signal is being generated, a truncated or stretched pulse can occur during the transition.

Table 19-11. PWMCLK Field Descriptions

Note: Bits related to available channels have functional significance. Writing to unavailable bits has no effect. Read from unavailable bits return a zero

Field	Description
7 PCLKAB7	 Pulse Width Channel 7 Clock A/B Select 0 Clock B or SB is the clock source for PWM channel 7, as shown in Table 19-6. 1 Clock A or SA is the clock source for PWM channel 7, as shown in Table 19-6.
6 PCLKAB6	 Pulse Width Channel 6 Clock A/B Select 0 Clock B or SB is the clock source for PWM channel 6, as shown in Table 19-6. 1 Clock A or SA is the clock source for PWM channel 6, as shown in Table 19-6.
5 PCLKAB5	 Pulse Width Channel 5 Clock A/B Select 0 Clock A or SA is the clock source for PWM channel 5, as shown in Table 19-5. 1 Clock B or SB is the clock source for PWM channel 5, as shown in Table 19-5.
4 PCLKAB4	 Pulse Width Channel 4 Clock A/B Select 0 Clock A or SA is the clock source for PWM channel 4, as shown in Table 19-5. 1 Clock B or SB is the clock source for PWM channel 4, as shown in Table 19-5.
3 PCLKAB3	 Pulse Width Channel 3 Clock A/B Select 0 Clock B or SB is the clock source for PWM channel 3, as shown in Table 19-6. 1 Clock A or SA is the clock source for PWM channel 3, as shown in Table 19-6.
2 PCLKAB2	 Pulse Width Channel 2 Clock A/B Select 0 Clock B or SB is the clock source for PWM channel 2, as shown in Table 19-6. 1 Clock A or SA is the clock source for PWM channel 2, as shown in Table 19-6.
1 PCLKAB1	 Pulse Width Channel 1 Clock A/B Select 0 Clock A or SA is the clock source for PWM channel 1, as shown in Table 19-5. 1 Clock B or SB is the clock source for PWM channel 1, as shown in Table 19-5.
0 PCLKAB0	 Pulse Width Channel 0 Clock A/B Select 0 Clock A or SA is the clock source for PWM channel 0, as shown in Table 19-5. 1 Clock B or SB is the clock source for PWM channel 0, as shown in Table 19-5.

Pulse-Width Modulator (S12PWM8B8CV2)

The SCI also sets a flag, the transmit data register empty flag (TDRE), every time it transfers data from the buffer (SCIDRH/L) to the transmitter shift register. The transmit driver routine may respond to this flag by writing another byte to the Transmitter buffer (SCIDRH/SCIDRL), while the shift register is still shifting out the first byte.

To initiate an SCI transmission:

- 1. Configure the SCI:
 - a) Select a baud rate. Write this value to the SCI baud registers (SCIBDH/L) to begin the baud rate generator. Remember that the baud rate generator is disabled when the baud rate is zero. Writing to the SCIBDH has no effect without also writing to SCIBDL.
 - b) Write to SCICR1 to configure word length, parity, and other configuration bits (LOOPS,RSRC,M,WAKE,ILT,PE,PT).
 - c) Enable the transmitter, interrupts, receive, and wake up as required, by writing to the SCICR2 register bits (TIE,TCIE,RIE,ILIE,TE,RE,RWU,SBK). A preamble or idle character will now be shifted out of the transmitter shift register.
- 2. Transmit Procedure for each byte:
 - a) Poll the TDRE flag by reading the SCISR1 or responding to the TDRE interrupt. Keep in mind that the TDRE bit resets to one.
 - b) If the TDRE flag is set, write the data to be transmitted to SCIDRH/L, where the ninth bit is written to the T8 bit in SCIDRH if the SCI is in 9-bit data format. A new transmission will not result until the TDRE flag has been cleared.
- 3. Repeat step 2 for each subsequent transmission.

NOTE

The TDRE flag is set when the shift register is loaded with the next data to be transmitted from SCIDRH/L, which happens, generally speaking, a little over half-way through the stop bit of the previous frame. Specifically, this transfer occurs 9/16ths of a bit time AFTER the start of the stop bit of the previous frame.

Writing the TE bit from 0 to a 1 automatically loads the transmit shift register with a preamble of 10 logic 1s (if M = 0) or 11 logic 1s (if M = 1). After the preamble shifts out, control logic transfers the data from the SCI data register into the transmit shift register. A logic 0 start bit automatically goes into the least significant bit position of the transmit shift register. A logic 1 stop bit goes into the most significant bit position.

Hardware supports odd or even parity. When parity is enabled, the most significant bit (MSB) of the data character is the parity bit.

The transmit data register empty flag, TDRE, in SCI status register 1 (SCISR1) becomes set when the SCI data register transfers a byte to the transmit shift register. The TDRE flag indicates that the SCI data register can accept new data from the internal data bus. If the transmit interrupt enable bit, TIE, in SCI control register 2 (SCICR2) is also set, the TDRE flag generates a transmitter interrupt request.

Figure 27-2. P-Flash Memory Map

Table	27-5.	Program	IFR	Fields

Global Address	Size (Bytes)	Field Description
0x0_4000 - 0x0_4007	8	Reserved
0x0_4008 – 0x0_40B5	174	Reserved
0x0_40B6 - 0x0_40B7	2	Version ID ¹
0x0_40B8 – 0x0_40BF	8	Reserved
0x0_40C0 - 0x0_40FF	64	Program Once Field Refer to Section 27.4.6.6, "Program Once Command"

¹ Used to track firmware patch versions, see Section 27.4.2

The Flash memory may be read as bytes and aligned words. Read access time is one bus cycle for bytes and aligned words. For misaligned words access, the CPU has to perform twice the byte read access command. For Flash memory, an erased bit reads 1 and a programmed bit reads 0.

It is possible to read from P-Flash memory while some commands are executing on EEPROM memory. It is not possible to read from EEPROM memory while a command is executing on P-Flash memory. Simultaneous P-Flash and EEPROM operations are discussed in Section 28.4.5.

Both P-Flash and EEPROM memories are implemented with Error Correction Codes (ECC) that can resolve single bit faults and detect double bit faults. For P-Flash memory, the ECC implementation requires that programming be done on an aligned 8 byte basis (a Flash phrase). Since P-Flash memory is always read by half-phrase, only one single bit fault in an aligned 4 byte half-phrase containing the byte or word accessed will be corrected.

28.1.1 Glossary

Command Write Sequence — An MCU instruction sequence to execute built-in algorithms (including program and erase) on the Flash memory.

EEPROM Memory — The EEPROM memory constitutes the nonvolatile memory store for data.

EEPROM Sector — The EEPROM sector is the smallest portion of the EEPROM memory that can be erased. The EEPROM sector consists of 4 bytes.

NVM Command Mode — An NVM mode using the CPU to setup the FCCOB register to pass parameters required for Flash command execution.

Phrase — An aligned group of four 16-bit words within the P-Flash memory. Each phrase includes two sets of aligned double words with each set including 7 ECC bits for single bit fault correction and double bit fault detection within each double word.

P-Flash Memory — The P-Flash memory constitutes the main nonvolatile memory store for applications.

P-Flash Sector — The P-Flash sector is the smallest portion of the P-Flash memory that can be erased. Each P-Flash sector contains 512 bytes.

Program IFR — Nonvolatile information register located in the P-Flash block that contains the Version ID, and the Program Once field.

28.1.2 Features

28.1.2.1 P-Flash Features

 96 Kbytes of P-Flash memory composed of one 96 Kbyte Flash block divided into 192 sectors of 512 bytes

192 KByte Flash Module (S12FTMRG192K2V1)

.

Global Address	Size (Bytes)	Field Description
0x0_40B8 – 0x0_40BF	8	Reserved
0x0_40C0 - 0x0_40FF	64	Program Once Field Refer to Section 30.4.6.6, "Program Once Command"

Table 30-5. Program IFR Fields

¹ Used to track firmware patch versions, see Section 30.4.2

Table 30-6. Memory	Controller	Resource	Fields	(NVMRES ¹	=1)
--------------------	------------	----------	--------	----------------------	-----

Global Address	Size (Bytes)	Description
0x0_4000 – 0x040FF	256	P-Flash IFR (see Table 30-5)
0x0_4100 – 0x0_41FF	256	Reserved.
0x0_4200 – 0x0_57FF		Reserved
0x0_5800 – 0x0_5AFF	768	Reserved
0x0_5B00 – 0x0_5FFF	1,280	Reserved
0x0_6000 - 0x0_67FF	2,048	Reserved
0x0_6800 – 0x0_7FFF	6,144	Reserved

¹ NVMRES - See Section 30.4.3 for NVMRES (NVM Resource) detail.

Figure 30-3. Memory Controller Resource Memory Map (NVMRES=1)

Upon clearing CCIF to launch the Set User Margin Level command, the Memory Controller will set the user margin level for the targeted block and then set the CCIF flag.

NOTE

When the EEPROM block is targeted, the EEPROM user margin levels are applied only to the EEPROM reads. However, when the P-Flash block is targeted, the P-Flash user margin levels are applied to both P-Flash and EEPROM reads. It is not possible to apply user margin levels to the P-Flash block only.

Valid margin level settings for the Set User Margin Level command are defined in Table 31-55.

CCOB (CCOBIX=001)	Level Description
0x0000	Return to Normal Level
0x0001	User Margin-1 Level ¹
0x0002	User Margin-0 Level ²

Table 31-55. Valid Set User Margin Level Settings

¹ Read margin to the erased state

² Read margin to the programmed state

Table 31-56. Set User Margin Level Command Error Handling

Register	Error Bit	Error Condition
	ACCERR	Set if CCOBIX[2:0] != 001 at command launch.
		Set if command not available in current mode (see Table 31-27).
ESTAT		Set if an invalid margin level setting is supplied.
FSTAT	FPVIOL	None
	MGSTAT1	None
	MGSTAT0	None

NOTE

User margin levels can be used to check that Flash memory contents have adequate margin for normal level read operations. If unexpected results are encountered when checking Flash memory contents at user margin levels, a potential loss of information has been detected.

31.4.6.13 Set Field Margin Level Command

The Set Field Margin Level command, valid in special modes only, causes the Memory Controller to set the margin level specified for future read operations of the P-Flash or EEPROM block.