

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

2010	
Product Status	Active
Core Processor	12V1
Core Size	16-Bit
Speed	25MHz
Connectivity	CANbus, IrDA, LINbus, SCI, SPI
Peripherals	LVD, POR, PWM, WDT
Number of I/O	40
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	3.13V ~ 5.5V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	48-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/s9s12g128f0mlf

Email: info@E-XFL.COM

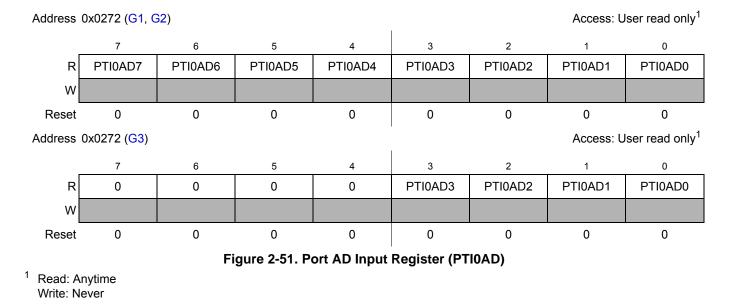
Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

13.2	Signal Description	459
	13.2.1 Detailed Signal Descriptions	459
13.3	Memory Map and Register Definition	459
	13.3.1 Module Memory Map	459
	13.3.2 Register Descriptions	462
13.4	Functional Description	477
	13.4.1 Analog Sub-Block	477
	13.4.2 Digital Sub-Block	477
13.5	Resets	479
13.6	Interrupts	479

Chapter 14 Analog-to-Digital Converter (ADC12B12CV2)

14.1	Introduction	482
	14.1.1 Features	482
	14.1.2 Modes of Operation	483
	14.1.3 Block Diagram	484
14.2	Signal Description	485
	14.2.1 Detailed Signal Descriptions	485
14.3	Memory Map and Register Definition	485
	14.3.1 Module Memory Map	485
	14.3.2 Register Descriptions	
14.4	Functional Description	504
	14.4.1 Analog Sub-Block	
	14.4.2 Digital Sub-Block	
14.5	Resets	506
14.6	Interrupts	506

Chapter 15


Analog-to-Digital Converter (ADC10B16CV2)

Introduction	508
15.1.1 Features	508
15.1.2 Modes of Operation	509
15.1.3 Block Diagram	510
Signal Description	511
Memory Map and Register Definition	511
15.3.1 Module Memory Map	511
15.3.2 Register Descriptions	514
Functional Description	529
15.4.1 Analog Sub-Block	529
15.4.2 Digital Sub-Block	529
Resets	531
Interrupts	531
	15.1.1 Features15.1.2 Modes of Operation15.1.3 Block DiagramSignal Description15.2.1 Detailed Signal DescriptionsMemory Map and Register Definition15.3.1 Module Memory Map15.3.2 Register DescriptionsFunctional Description15.4.1 Analog Sub-Block15.4.2 Digital Sub-BlockResets

Field	Description
	Port AD general-purpose input/output data —Data Register When not used with an alternative signal, the associated pin can be used as general-purpose I/O. In general-purpose output mode the port data register bit value is driven to the pin. If the associated data direction bit is set to 1, a read returns the value of the port data register bit, otherwise the buffered pin input state is read if the digital input buffers are enabled (Section 2.3.12, "Pins AD15-0").

Table 2-76. PT1AD Register Field Descriptions

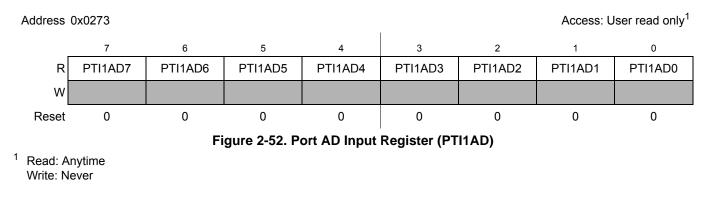

2.4.3.51 Port AD Input Register (PTI0AD)

Table 2-77. PTI0AD Register Field Descriptions

Field	Description
PTI0AD	Port AD input data — A read always returns the buffered input state of the associated pin. It can be used to detect overload or short circuit conditions on output pins.

2.4.3.52 Port AD Input Register (PTI1AD)

MC9S12G Family Reference Manual Rev.1.27

Chapter 6 Interrupt Module (S12SINTV1)

Version Number	Revision Date	Effective Date	Author	Description of Changes
01.02	13 Sep 2007			updates for S12P family devices: - re-added XIRQ and IRQ references since this functionality is used on devices without D2D - added low voltage reset as possible source to the pin reset vector
01.03	21 Nov 2007			added clarification of "Wake-up from STOP or WAIT by XIRQ with X bit set" feature
01.04	20 May 2009			added footnote about availability of "Wake-up from STOP or WAIT by XIRQ with X bit set" feature

6.1 Introduction

The INT module decodes the priority of all system exception requests and provides the applicable vector for processing the exception to the CPU. The INT module supports:

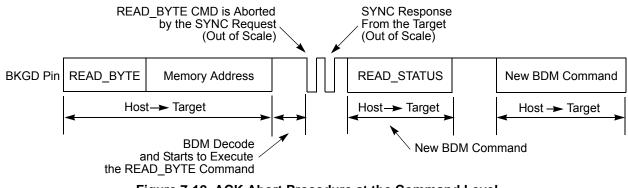
- I bit and X bit maskable interrupt requests
- A non-maskable unimplemented op-code trap
- A non-maskable software interrupt (SWI) or background debug mode request
- Three system reset vector requests
- A spurious interrupt vector

Each of the I bit maskable interrupt requests is assigned to a fixed priority level.

6.1.1 Glossary

Table 6-2 contains terms and abbreviations used in the document.

Table 6-2. Terminology


Term Meaning	
CCR	Condition Code Register (in the CPU)
ISR	Interrupt Service Routine
MCU	Micro-Controller Unit

6.1.2 Features

- Interrupt vector base register (IVBR)
- One spurious interrupt vector (at address vector base $^1 + 0x0080$).

Since the host knows the target serial clock frequency, the SYNC command (used to abort a command) does not need to consider the lower possible target frequency. In this case, the host could issue a SYNC very close to the 128 serial clock cycles length. Providing a small overhead on the pulse length in order to assure the SYNC pulse will not be misinterpreted by the target. See Section 7.4.9, "SYNC — Request Timed Reference Pulse".

Figure 7-12 shows a SYNC command being issued after a READ_BYTE, which aborts the READ_BYTE command. Note that, after the command is aborted a new command could be issued by the host computer.

NOTE

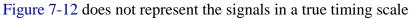
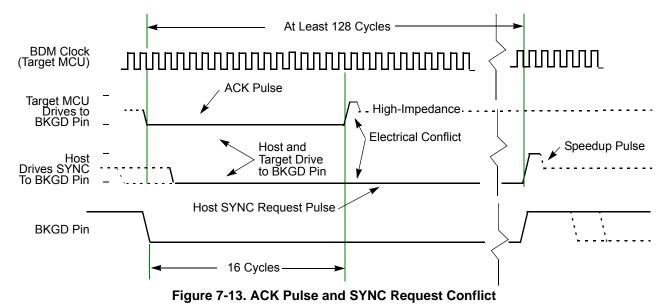



Figure 7-13 shows a conflict between the ACK pulse and the SYNC request pulse. This conflict could occur if a POD device is connected to the target BKGD pin and the target is already in debug active mode. Consider that the target CPU is executing a pending BDM command at the exact moment the POD is being connected to the BKGD pin. In this case, an ACK pulse is issued along with the SYNC command. In this case, there is an electrical conflict between the ACK speedup pulse and the SYNC pulse. Since this is not a probable situation, the protocol does not prevent this conflict from happening.

MC9S12G Family Reference Manual Rev.1.27

S12S Debug Module (S12SDBGV2)

SC[3:0]	Description (Unspecified matches have no effect)			
1010	Reserved			
1011	Reserved			
1100	Reserved			
1101	Either Match0 or Match2 to Final StateMatch1 to State2			
1110	Reserved			
1111	Reserved			

Table 8-16.	State1	Sequencer	Next State	e Selection
-------------	--------	-----------	------------	-------------

The priorities described in Table 8-36 dictate that in the case of simultaneous matches, a match leading to final state has priority followed by the match on the lower channel number (0,1,2). Thus with SC[3:0]=1101 a simultaneous match0/match1 transitions to final state.

8.3.2.7.2 Debug State Control Register 2 (DBGSCR2)

Figure 8-10. Debug State Control Register 2 (DBGSCR2)

Read: If COMRV[1:0] = 01

Write: If COMRV[1:0] = 01 and DBG is not armed.

This register is visible at 0x0027 only with COMRV[1:0] = 01. The state control register 2 selects the targeted next state whilst in State2. The matches refer to the match channels of the comparator match control logic as depicted in Figure 8-1 and described in Section 8.3.2.8.1, "Debug Comparator Control Register (DBGXCTL). Comparators must be enabled by setting the comparator enable bit in the associated DBGXCTL control register.

Table 8-17. DBGSCR2 Field Descriptions

Field	Description
3–0 SC[3:0]	These bits select the targeted next state whilst in State2, based upon the match event.

Table 8-18. State2 — Sequencer Next State Selection

SC[3:0]	Description (Unspecified matches have no effect)			
0000	Match0 to State1 Match2 to State3.			
0001	Match1 to State3			
0010	Match2 to State3			
0011	Match1 to State3 Match0 Final State			
0100	Match1 to State1 Match2 to State3.			

MC9S12G Family Reference Manual Rev.1.27

8.4.5.1.1 Storing with Begin Trigger Alignment

Storing with begin alignment, data is not stored in the Trace Buffer until the Final State is entered. Once the trigger condition is met the DBG module remains armed until 64 lines are stored in the Trace Buffer. If the trigger is at the address of the change-of-flow instruction the change of flow associated with the trigger is stored in the Trace Buffer. Using begin alignment together with tagging, if the tagged instruction is about to be executed then the trace is started. Upon completion of the tracing session the breakpoint is generated, thus the breakpoint does not occur at the tagged instruction boundary.

8.4.5.1.2 Storing with End Trigger Alignment

Storing with end alignment, data is stored in the Trace Buffer until the Final State is entered, at which point the DBG module becomes disarmed and no more data is stored. If the trigger is at the address of a change of flow instruction, the trigger event is not stored in the Trace Buffer. If all trace buffer lines have been used before a trigger event occurrs then the trace continues at the first line, overwriting the oldest entries.

8.4.5.2 Trace Modes

Four trace modes are available. The mode is selected using the TRCMOD bits in the DBGTCR register. Tracing is enabled using the TSOURCE bit in the DBGTCR register. The modes are described in the following subsections.

8.4.5.2.1 Normal Mode

In Normal Mode, change of flow (COF) program counter (PC) addresses are stored.

COF addresses are defined as follows:

- Source address of taken conditional branches (long, short, bit-conditional, and loop primitives)
- Destination address of indexed JMP, JSR, and CALL instruction
- Destination address of RTI, RTS, and RTC instructions
- Vector address of interrupts, except for BDM vectors

LBRA, BRA, BSR, BGND as well as non-indexed JMP, JSR, and CALL instructions are not classified as change of flow and are not stored in the trace buffer.

Stored information includes the full 18-bit address bus and information bits, which contains a source/destination bit to indicate whether the stored address was a source address or destination address.

NOTE

When a COF instruction with destination address is executed, the destination address is stored to the trace buffer on instruction completion, indicating the COF has taken place. If an interrupt occurs simultaneously then the next instruction carried out is actually from the interrupt service routine. The instruction at the destination address of the original program flow gets executed after the interrupt service routine.

Analog-to-Digital Converter (ADC10B8CV2)

Address	Name		Bit 7	6	5	4	3	2	1	Bit 0
0x0003	ATDCTL3	R W	DJM	S8C	S4C	S2C	S1C	FIFO	FRZ1	FRZ0
0x0004	ATDCTL4	R W	SMP2	SMP1	SMP0			PRS[4:0]		
0x0005	ATDCTL5	R W	0	SC	SCAN	MULT	CD	СС	СВ	CA
0x0006	ATDSTAT0	R W	SCF	0	ETORF	FIFOR	CC3	CC2	CC1	CC0
0x0007	Unimple- mented	R W	0	0	0	0	0	0	0	0
0x0008	ATDCMPEH	R W	0	0	0	0	0	0	0	0
0x0009	ATDCMPEL	R W				СМ	PE[7:0]			
0x000A	ATDSTAT2H	R W	0	0	0	0	0	0	0	0
0x000B	ATDSTAT2L	R				CC	CF[7:0]			
0x000C	ATDDIENH	W R W	1	1	1	1	1	1	1	1
0x000D	ATDDIENL	R W				IIE	N[7:0]			
0x000E	ATDCMPHTH	R W	0	0	0	0	0	0	0	0
0x000F	ATDCMPHTL	R W	CMPHT[7:0]							
0x0010	ATDDR0	R W		See Section 11.3.2.12.1, "Left Justified Result Data (DJM=0)" and Section 11.3.2.12.2, "Right Justified Result Data (DJM=1)"						
0x0012	ATDDR1	R W		See S	Section 11.3	.2.12.1, "Let	ft Justified Re	esult Data (D esult Data (D	JM=0)"	
0x0014	ATDDR2	R W		See S	Section 11.3	.2.12.1, "Let	ft Justified Re	esult Data (D esult Data (D	JM=0)"	
0x0016	ATDDR3	R W		See S	Section 11.3	.2.12.1, "Let	ft Justified Re	esult Data (D esult Data (D	JM=0)"	
0x0018	ATDDR4	R W		See S	Section 11.3	.2.12.1, "Let	ft Justified Re	esult Data (D esult Data (D	JM=0)"	
0x001A	ATDDR5	R W		See S	Section 11.3	.2.12.1, "Let	ft Justified Re	esult Data (D esult Data (D	JM=0)"	
0x001C	ATDDR6	R W	See Section 11 and Section 11.3			.2.12.1, "Let	ft Justified Re	esult Data (D	JM=0)"	
0x001E	ATDDR7	R W	See Section 11.3.2.12.2, "Left Justified Result Data (DJM=0)" and Section 11.3.2.12.2, "Right Justified Result Data (DJM=1)"							
0x0020-	Unimple-	R	0	0	0	0	0	0	0	0
0x002F	mented	W			mented or R					

= Unimplemented or Reserved

Figure 11-2. ADC10B8C Register Summary (Sheet 2 of 2)

12.1.1 Features

- 8-, 10-, or 12-bit resolution.
- Automatic return to low power after conversion sequence
- Automatic compare with interrupt for higher than or less/equal than programmable value
- Programmable sample time.
- Left/right justified result data.
- External trigger control.
- Sequence complete interrupt.
- Analog input multiplexer for 8 analog input channels.
- Special conversions for VRH, VRL, (VRL+VRH)/2.
- 1-to-8 conversion sequence lengths.
- Continuous conversion mode.
- Multiple channel scans.
- Configurable external trigger functionality on any AD channel or any of four additional trigger inputs. The four additional trigger inputs can be chip external or internal. Refer to device specification for availability and connectivity.
- Configurable location for channel wrap around (when converting multiple channels in a sequence).

20.1.2 Features

The SCI includes these distinctive features:

- Full-duplex or single-wire operation
- Standard mark/space non-return-to-zero (NRZ) format
- Selectable IrDA 1.4 return-to-zero-inverted (RZI) format with programmable pulse widths
- 13-bit baud rate selection
- Programmable 8-bit or 9-bit data format
- Separately enabled transmitter and receiver
- Programmable polarity for transmitter and receiver
- Programmable transmitter output parity
- Two receiver wakeup methods:
 - Idle line wakeup
 - Address mark wakeup
- Interrupt-driven operation with eight flags:
 - Transmitter empty
 - Transmission complete
 - Receiver full
 - Idle receiver input
 - Receiver overrun
 - Noise error
 - Framing error
 - Parity error
 - Receive wakeup on active edge
 - Transmit collision detect supporting LIN
 - Break Detect supporting LIN
- Receiver framing error detection
- Hardware parity checking
- 1/16 bit-time noise detection

20.1.3 Modes of Operation

The SCI functions the same in normal, special, and emulation modes. It has two low power modes, wait and stop modes.

- Run mode
- Wait mode
- Stop mode

Table 24-34. Erase Verify P-Flash Section Command FCCOB Requirements

CCOBIX[2:0]	FCCOB Parameters		
000	0x03 Global address [17:16] a P-Flash block		
001	Global address [15:0] of the first phrase to be verified		
010	Number of phrases to be verified		

Upon clearing CCIF to launch the Erase Verify P-Flash Section command, the Memory Controller will verify the selected section of Flash memory is erased. The CCIF flag will set after the Erase Verify P-Flash Section operation has completed. If the section is not erased, it means blank check failed, both MGSTAT bits will be set.

Table 24-35. Erase Verify P-Flash Section Command Error Handling

Register	Error Bit	Error Condition
		Set if CCOBIX[2:0] != 010 at command launch
		Set if command not available in current mode (see Table 24-25)
	ACCERR Set if an invalid	Set if an invalid global address [17:0] is supplied see Table 24-3) ¹
		Set if a misaligned phrase address is supplied (global address [2:0] != 000)
FSTAT		Set if the requested section crosses a the P-Flash address boundary
	FPVIOL	None
	MGSTAT1	Set if any errors have been encountered during the read ² or if blank check failed.
	MGSTAT0	Set if any non-correctable errors have been encountered during the read ² or if blank check failed.

¹ As defined by the memory map for FTMRG32K1.

 2 As found in the memory map for FTMRG32K1.

24.4.6.4 Read Once Command

The Read Once command provides read access to a reserved 64 byte field (8 phrases) located in the nonvolatile information register of P-Flash. The Read Once field is programmed using the Program Once command described in Section 24.4.6.6. The Read Once command must not be executed from the Flash block containing the Program Once reserved field to avoid code runaway.

Table 24-3	5. Read Once Command FCCOB Requirements

CCOBIX[2:0]	FCCOB Parameters		
000	0x04 Not Required		
001	Read Once phrase index (0x0000 - 0x0007)		
010	Read Once word 0 value		
011	Read Once word 1 value		
100	Read Once word 2 value		

32 KByte Flash Module (S12FTMRG32K1V1)

Register	Error Bit	Error Condition
		Set if CCOBIX[2:0] != 010 at command launch
		Set if command not available in current mode (see Table 25-27)
	ACCERR	Set if an invalid global address [17:0] is supplied
		Set if a misaligned word address is supplied (global address [0] != 0)
FSTAT		Set if the requested section breaches the end of the EEPROM block
	FPVIOL	None
	MGSTAT1	Set if any errors have been encountered during the read or if blank check failed.
	MGSTAT0	Set if any non-correctable errors have been encountered during the read or if blank check failed.

Table 25-61. Erase Verify EEPROM Section Command Error Handling

25.4.6.15 Program EEPROM Command

The Program EEPROM operation programs one to four previously erased words in the EEPROM block. The Program EEPROM operation will confirm that the targeted location(s) were successfully programmed upon completion.

CAUTION

A Flash word must be in the erased state before being programmed. Cumulative programming of bits within a Flash word is not allowed.

 Table 25-62. Program EEPROM Command FCCOB Requirements

CCOBIX[2:0]	FCCOB Parameters		
000	0x11	0x11 Global address [17:16] to identify the EEPROM block	
001	Global address [15:0] of word to be programmed		
010	Word 0 program value		
011	Word 1 program value, if desired		
100	Word 2 program value, if desired		
101	Word 3 program value, if desired		

Upon clearing CCIF to launch the Program EEPROM command, the user-supplied words will be transferred to the Memory Controller and be programmed if the area is unprotected. The CCOBIX index value at Program EEPROM command launch determines how many words will be programmed in the EEPROM block. The CCIF flag is set when the operation has completed.

During the reset sequence, fields DPOPEN and DPS of the EEPROT register are loaded with the contents of the EEPROM protection byte in the Flash configuration field at global address 0x3_FF0D located in P-Flash memory (see Table 26-4) as indicated by reset condition F in Table 26-23. To change the EEPROM protection that will be loaded during the reset sequence, the P-Flash sector containing the EEPROM protection byte must be unprotected, then the EEPROM protection byte must be programmed. If a double bit fault is detected while reading the P-Flash phrase containing the EEPROM protection byte must be to leave the EEPROM protection byte must be programmed. If a double bit fault is detected while reading the P-Flash phrase containing the EEPROM protection byte must be memory fully protected.

Trying to alter data in any protected area in the EEPROM memory will result in a protection violation error and the FPVIOL bit will be set in the FSTAT register. Block erase of the EEPROM memory is not possible if any of the EEPROM sectors are protected.

Table 26-22. EEPROT	Field Descriptions
---------------------	---------------------------

Field	Description
7 DPOPEN	 EEPROM Protection Control Enables EEPROM memory protection from program and erase with protected address range defined by DPS bits Disables EEPROM memory protection from program and erase
5–0 DPS[5:0]	EEPROM Protection Size — The DPS[5:0] bits determine the size of the protected area in the EEPROM memory as shown in Table 26-23.

DPS[5:0]	Global Address Range	Protected Size		
000000	0x0_0400 – 0x0_041F	32 bytes		
000001	0x0_0400 - 0x0_043F	64 bytes		
000010	0x0_0400 – 0x0_045F	96 bytes		
000011	0x0_0400 – 0x0_047F	128 bytes		
000100	0x0_0400 - 0x0_049F	160 bytes		
000101	0x0_0400 – 0x0_04BF	192 bytes		
The Protection Size goes on enlarging in step of 32 bytes, for each DPS value increasing of one.				
101111 - to - 111111	0x0_0400 – 0x0_09FF	1,536 bytes		

Table 26-23. EEPROM Protection Address Range

CCOBIX[2:0]	FCCOB Parameters		
000	0x03	Global address [17:16] of a P-Flash block	
001	Global address [15:0] of the first phrase to be verified		
010	Number of phrases to be verified		

 Table 27-36. Erase Verify P-Flash Section Command FCCOB Requirements

Upon clearing CCIF to launch the Erase Verify P-Flash Section command, the Memory Controller will verify the selected section of Flash memory is erased. The CCIF flag will set after the Erase Verify P-Flash Section operation has completed. If the section is not erased, it means blank check failed, both MGSTAT bits will be set.

Table 27-37. Erase Verify P-Flash Section Command Error Handling

Register	Error Bit Error Condition			
		Set if CCOBIX[2:0] != 010 at command launch		
		Set if command not available in current mode (see Table 27-27)		
	ACCERR	Set if an invalid global address [17:0] is supplied see Table 27-3)		
		Set if a misaligned phrase address is supplied (global address [2:0] != 000)		
FSTAT		Set if the requested section crosses a the P-Flash address boundary		
	FPVIOL	None		
	MGSTAT1	Set if any errors have been encountered during the read or if blank check fa		
	MGSTAT0	Set if any non-correctable errors have been encountered during the read or if blank check failed.		

27.4.6.4 Read Once Command

The Read Once command provides read access to a reserved 64 byte field (8 phrases) located in the nonvolatile information register of P-Flash. The Read Once field is programmed using the Program Once command described in Section 27.4.6.6. The Read Once command must not be executed from the Flash block containing the Program Once reserved field to avoid code runaway.

CCOBIX[2:0]	FCCOB Parameters	
000	0x04	Not Required
001	Read Once phrase inc	dex (0x0000 - 0x0007)
010	Read Once	word 0 value
011	Read Once	word 1 value
100	Read Once	word 2 value
101	Read Once	word 3 value

96 KByte Flash Module (S12FTMRG96K1V1)

FCMD	Command	Function on P-Flash Memory
0x02	Erase Verify Block	Verify that a P-Flash block is erased.
0x03	Erase Verify P-Flash Section	Verify that a given number of words starting at the address provided are erased.
0x04	Read Once	Read a dedicated 64 byte field in the nonvolatile information register in P-Flash block that was previously programmed using the Program Once command.
0x06	Program P-Flash	Program a phrase in a P-Flash block.
0x07	Program Once	Program a dedicated 64 byte field in the nonvolatile information register in P-Flash block that is allowed to be programmed only once.
0x08	Erase All Blocks	Erase all P-Flash (and EEPROM) blocks. An erase of all Flash blocks is only possible when the FPLDIS, FPHDIS, and FPOPEN bits in the FPROT register and the DPOPEN bit in the EEPROT register are set prior to launching the command.
0x09	Erase Flash Block	Erase a P-Flash (or EEPROM) block. An erase of the full P-Flash block is only possible when FPLDIS, FPHDIS and FPOPEN bits in the FPROT register are set prior to launching the command.
0x0A	Erase P-Flash Sector	Erase all bytes in a P-Flash sector.
0x0B	Unsecure Flash	Supports a method of releasing MCU security by erasing all P-Flash (and EEPROM) blocks and verifying that all P-Flash (and EEPROM) blocks are erased.
0x0C	Verify Backdoor Access Key	Supports a method of releasing MCU security by verifying a set of security keys.
0x0D	Set User Margin Level	Specifies a user margin read level for all P-Flash blocks.
0x0E	Set Field Margin Level	Specifies a field margin read level for all P-Flash blocks (special modes only).

Table 28-28. P-Flash Commands

28.4.4.5 EEPROM Commands

Table 28-29 summarizes the valid EEPROM commands along with the effects of the commands on the EEPROM block.

Table 28-29	. EEPROM	Commands
-------------	----------	----------

FCMD	Command	Function on EEPROM Memory
0x01	Erase Verify All Blocks	Verify that all EEPROM (and P-Flash) blocks are erased.
0x02	Erase Verify Block	Verify that the EEPROM block is erased.

28.4.6 Flash Command Description

This section provides details of all available Flash commands launched by a command write sequence. The ACCERR bit in the FSTAT register will be set during the command write sequence if any of the following illegal steps are performed, causing the command not to be processed by the Memory Controller:

- Starting any command write sequence that programs or erases Flash memory before initializing the FCLKDIV register
- Writing an invalid command as part of the command write sequence
- For additional possible errors, refer to the error handling table provided for each command

If a Flash block is read during execution of an algorithm (CCIF = 0) on that same block, the read operation will return invalid data if both flags SFDIF and DFDIF are set. If the SFDIF or DFDIF flags were not previously set when the invalid read operation occurred, both the SFDIF and DFDIF flags will be set.

If the ACCERR or FPVIOL bits are set in the FSTAT register, the user must clear these bits before starting any command write sequence (see Section 28.3.2.7).

CAUTION

A Flash word or phrase must be in the erased state before being programmed. Cumulative programming of bits within a Flash word or phrase is not allowed.

28.4.6.1 Erase Verify All Blocks Command

The Erase Verify All Blocks command will verify that all P-Flash and EEPROM blocks have been erased.

Table 28-31. Erase Verify All Blocks Command FCCOB Requirements

CCOBIX[2:0]	FCCOB Parameters	
000	0x01	Not required

Upon clearing CCIF to launch the Erase Verify All Blocks command, the Memory Controller will verify that the entire Flash memory space is erased. The CCIF flag will set after the Erase Verify All Blocks operation has completed. If all blocks are not erased, it means blank check failed, both MGSTAT bits will be set.

 Table 28-32. Erase Verify All Blocks Command Error Handling

Register	Error Bit	Error Condition
	ACCERR	Set if CCOBIX[2:0] != 000 at command launch
	FPVIOL	None
FSTAT	MGSTAT1	Set if any errors have been encountered during the read ¹ or if blank check failed .
	MGSTAT0	Set if any non-correctable errors have been encountered during the read ¹ or if blank check failed.

¹ As found in the memory map for FTMRG96K1.

29.4.6.13 Set Field Margin Level Command

The Set Field Margin Level command, valid in special modes only, causes the Memory Controller to set the margin level specified for future read operations of the P-Flash or EEPROM block.

Upon clearing CCIF to launch the Set Field Margin Level command, the Memory Controller will set the Table 29-57. Set Field Margin Level Command FCCOB Requirements

CCOBIX[2:0]	FCCOB Parameters	
000	0x0E	Flash block selection code [1:0]. See Table 29-34
001	Ма	rgin level setting.

field margin level for the targeted block and then set the CCIF flag.

NOTE

When the EEPROM block is targeted, the EEPROM field margin levels are applied only to the EEPROM reads. However, when the P-Flash block is targeted, the P-Flash field margin levels are applied to both P-Flash and EEPROM reads. It is not possible to apply field margin levels to the P-Flash block only.

Valid margin level settings for the Set Field Margin Level command are defined in Table 29-58.

CCOB (CCOBIX=001)	Level Description
0x0000	Return to Normal Level
0x0001	User Margin-1 Level ¹
0x0002	User Margin-0 Level ²
0x0003	Field Margin-1 Level ¹
0x0004	Field Margin-0 Level ²

Table 29-58. Valid Set Field Margin Level Settings

¹ Read margin to the erased state

² Read margin to the programmed state

192 KByte Flash Module (S12FTMRG192K2V1)

31.4.6.15 Program EEPROM Command

The Program EEPROM operation programs one to four previously erased words in the EEPROM block. The Program EEPROM operation will confirm that the targeted location(s) were successfully programmed upon completion.

CAUTION

A Flash word must be in the erased state before being programmed. Cumulative programming of bits within a Flash word is not allowed.

CCOBIX[2:0]	FCCOB Parameters	
000	0x11	Global address [17:16] to identify the EEPROM block
001	Global address [15:0] of	word to be programmed
010	Word 0 pro	gram value
011	Word 1 program	value, if desired
100	Word 2 program	value, if desired
101	Word 3 program	value, if desired

 Table 31-62. Program EEPROM Command FCCOB Requirements

Upon clearing CCIF to launch the Program EEPROM command, the user-supplied words will be transferred to the Memory Controller and be programmed if the area is unprotected. The CCOBIX index value at Program EEPROM command launch determines how many words will be programmed in the EEPROM block. The CCIF flag is set when the operation has completed.

Register	Error Bit	Error Condition
	ACCERR	Set if CCOBIX[2:0] < 010 at command launch
		Set if CCOBIX[2:0] > 101 at command launch
		Set if command not available in current mode (see Table 31-27)
		Set if an invalid global address [17:0] is supplied
FSTAT		Set if a misaligned word address is supplied (global address [0] != 0)
		Set if the requested group of words breaches the end of the EEPROM block
	FPVIOL	Set if the selected area of the EEPROM memory is protected
٦	MGSTAT1	Set if any errors have been encountered during the verify operation
	MGSTAT0	Set if any non-correctable errors have been encountered during the verify operation

31.4.6.16 Erase EEPROM Sector Command

The Erase EEPROM Sector operation will erase all addresses in a sector of the EEPROM block.

Table A-24. ADC Conversion Performance 5V range (Junction Temperature From +150°C To +160°C)

S12GI	N16	, S12GN32						
Supply The va	/ vo alue	ltage 4.5V < V _{DDA} < 5.5 V, 15 s are tested to be valid with n	50°C < T _J < 160°C to port AD output o	c, V _{REF} = V _{RH} - V drivers switching	r _{RL} = V _{DDA} , f simultaneous	_{ADCCLK} = 8.0M s with conversi	lHz ons.	
Num	С	Rating	1	Symbol	Min	Тур	Max	Unit
1	М	Resolution	10-Bit	LSB		5		mV
2	М	Differential Nonlinearity	10-Bit	DNL		±0.5		counts
3	М	Integral Nonlinearity	10-Bit	INL		±1		counts
4	М	Absolute Error ²	10-Bit ³ 10-Bit ⁴	AE		±2 ±2		counts
5	С	Resolution	8-Bit	LSB		20		mV
6	С	Differential Nonlinearity	8-Bit	DNL		±0.3		counts
7	С	Integral Nonlinearity	8-Bit	INL		±0.5		counts
8	С	Absolute Error ²	8-Bit	AE		±1		counts

¹ The 8-bit mode operation is structurally tested in production test. Absolute values are tested in 10-bit mode.

² These values include the quantization error which is inherently 1/2 count for any A/D converter.

³ LQFP 48 and bigger

⁴ LQFP 32 and smaller

S12GNA16, S12GNA32, S12GAS48, S12GA64, S12GA96, S12GA128, S12GA192 and S12GA240 Supply voltage $3.13V < V_{DDA} < 4.5 V$, $-40^{\circ}C < T_{J} < 150^{\circ}C$, $V_{REF} = V_{RH} - V_{RL} = V_{DDA}$, $f_{ADCCLK} = 8.0MHz$ The values are tested to be valid with no port AD output drivers switching simultaneous with conversions. Rating¹ С Num Symbol Min Max Unit Typ P Resolution 12-Bit LSB 0.80 mV 1 **Differential Nonlinearity** 2 Ρ 12-Bit DNL -6 ±3 6 counts Ρ Integral Nonlinearity 12-Bit -7 7 3 INL ±3 counts Absolute Error² 4 Р 12-Bit AE -8 ±4 8 counts 5 С Resolution 10-Bit 3.22 LSB mV С **Differential Nonlinearity** 10-Bit DNL 6 -1.5 ±1 1.5 counts 7 -2 С Integral Nonlinearity 10-Bit INL 2 ±1 counts С Absolute Error² 8 10-Bit AE -3 ±2 3 counts С Resolution 8-Bit LSB 12.89 mV 9 **Differential Nonlinearity** 10 С 8-Bit DNL -0.5 ±0.3 0.5 counts Integral Nonlinearity 11 С 8-Bit INL -1 ± 0.5 1 counts Absolute Error² 12 С 8-Bit AE -1.5 ±1 1.5 counts

Table A-25. ADC Conversion Performance 3.3V range (Junction Temperature From –40°C To +150°C)

The 8-bit and 10-bit mode operation is structurally tested in production test. Absolute values are tested in 12-bit mode.

NOTES:

1. ALL DIMENSIONS ARE IN MILLIMETERS.

2. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M-1994.

3. DATUMS B, C AND D TO BE DETERMINED AT DATUM PLANE H.

 $\overline{4}$. The top package body size may be smaller than the bottom package size by a maximum of 0.1 mm.

5. DIMENSIONS D1 AND E1 DO NOT INCLUDE MOLD PROTRUSIONS. THE MAXIMUM ALLOWABLE PROTRUSION IS 0.25 mm PER SIDE. D1 AND E1 ARE MAXIMUM BODY SIZE DIMENSIONS INCLUDING MOLD MISMATCH.

6. DIMENSION & DOES NOT INCLUDE DAM BAR PROTRUSION. PROTRUSIONS SHALL NOT CAUSE THE LEAD WIDTH TO EXCEED 0.35. MINIMUM SPACE BETWEEN PROTRUSION AND AN ADJACENT LEAD SHALL BE 0.07 MM.

/7. DIMENSIONS D AND E ARE DETERMINED AT THE SEATING PLANE, DATUM A.

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICA	LOUTLINE	PRINT VERSION NOT TO SCALE		
TITLE:		DOCUMENT NO: 98ASS23308W		REV: H	
100 LEAD LQFP 14 X 14, 0.5 PITCH, 1.4	LTHICK	CASE NUMBER: 983-02		25 MAY 2005	
		STANDARD: NO	DN-JEDEC		