

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	12V1
Core Size	16-Bit
Speed	25MHz
Connectivity	CANbus, IrDA, LINbus, SCI, SPI
Peripherals	LVD, POR, PWM, WDT
Number of I/O	40
Program Memory Size	128KB (128K × 8)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	3.13V ~ 5.5V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	48-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/s9s12g128f0vlf

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

	Function <lowestpriorityhighest></lowestpriorityhighest>						Internal P Resisto	Pull r
Package Pin	Pin	2nd Func.	3rd Func.	4th Func	5th Func	Supply	CTRL	Reset State
57	PS5	MOSI0	—	—	—	V _{DDX}	PERS/PPSS	Up
58	PS6	SCK0	—	—	—	V _{DDX}	PERS/PPSS	Up
59	PS7	API_EXTC LK	ECLK	SS0	—	V _{DDX}	PERS/PPSS	Up
60	PM0	RXCAN	—	—	—	V _{DDX}	PERM/PPSM	Disabled
61	PM1	TXCAN	—	—	—	V _{DDX}	PERM/PPSM	Disabled
62	PM2	—	—	—	—	V _{DDX}	PERM/PPSM	Disabled
63	PM3	—	—		—	V _{DDX}	PERM/PPSM	Disabled
64	PJ7	KWJ7	_	_	_	V _{DDX}	PERJ/PPSJ	Up

¹ The regular I/O characteristics (see Section A.2, "I/O Characteristics") apply if the EXTAL/XTAL function is disabled

	Function <lowestpriorityhighest></lowestpriorityhighest>					Power	Internal Pull Resistor	
Package Pin	Pin	2nd Func.	3rd Func.	4th Func	5th Func	Supply	CTRL	Reset State
1	PJ6	KWJ6	—		_	V _{DDX}	PERJ/PPSJ	Up
2	PJ5	KWJ5	—	_	_	V _{DDX}	PERJ/PPSJ	Up
3	PJ4	KWJ4	—	_	_	V _{DDX}	PERJ/PPSJ	Up
4	RESET		—	_	_	V _{DDX}	PULLUF	0
5	VDDX	_	—		_	_	_	
6	VDDR	_	—		_	_	_	_
7	VSSX	_	—		_	_	_	_
8	PE0 ¹	EXTAL	—	_		V _{DDX}	PUCR/PDPEE	Down
9	VSS	_	—	_		_	_	_
10	PE1 ¹	XTAL	—			V _{DDX}	PUCR/PDPEE	Down
11	TEST	_	—	_	_	N.A.	RESET pin	Down
12	PJ0	KWJ0	MISO1	_		V _{DDX}	PERJ/PPSJ	Up
13	PJ1	KWJ1	MOSI1			V _{DDX}	PERJ/PPSJ	Up
14	PJ2	KWJ2	SCK1			V _{DDX}	PERJ/PPSJ	Up
15	PJ3	KWJ3	SS1	_		V _{DDX}	PERJ/PPSJ	Up
16	BKGD	MODC	—	_		V _{DDX}	PUCR/BKPUE	Up
17	PP0	KWP0	ETRIG0	API_EXTC LK	PWM0	V _{DDX}	PERP/PPSP	Disabled
18	PP1	KWP1	ETRIG1	ECLKX2	PWM1	V _{DDX}	PERP/PPSP	Disabled
19	PP2	KWP2	ETRIG2	PWM2	_	V _{DDX}	PERP/PPSP	Disabled
20	PP3	KWP3	ETRIG3	PWM3	_	V _{DDX}	PERP/PPSP	Disabled
21	PP4	KWP4	PWM4			V _{DDX}	PERP/PPSP	Disabled
22	PP5	KWP5	PWM5			V _{DDX}	PERP/PPSP	Disabled
23	PP6	KWP6	—	_	_	V _{DDX}	PERP/PPSP	Disabled
24	PP7	KWP7	—	_	_	V _{DDX}	PERP/PPSP	Disabled
25	PT7	_	—	_	_	V _{DDX}	PERT/PPST	Disabled
26	PT6	_	—	_	_	V _{DDX}	PERT/PPST	Disabled
27	PT5	IOC5	—	—	_	V _{DDX}	PERT/PPST	Disabled

Table 1-19. 64-Pin LQFP Pinout for S12GA48 and S12GA64

MC9S12G Family Reference Manual Rev.1.27

1.8.9.4 Known Good Die Option (KGD)

	<	Fund owestPRIO	c tion RITYhighe	Power	Internal Pull Resistor		
Wire Bond Die Pad	Pin	2nd Func.	3rd Func.	4th Func.	Supply	CTRL	Reset State
1	PJ6	KWJ6	SCK2	—	V _{DDX}	PERJ/PPSJ	Up
2	PJ5	KWJ5	MOSI2	—	V _{DDX}	PERJ/PPSJ	Up
3	PJ4	KWJ4	MISO2	—	V _{DDX}	PERJ/PPSJ	Up
4	PA0	—	_	—	V _{DDX}	PUCR/PUPAE	Disabled
5	PA1	—	_	—	V _{DDX}	PUCR/PUPAE	Disabled
6	PA2	—	_	_	V _{DDX}	PUCR/PUPAE	Disabled
7	PA3	—	_	—	V _{DDX}	PUCR/PUPAE	Disabled
8	RESET	—	_	—	V _{DDX}	PULLUF	D
9	VDDX1	—	_	—	_	_	—
10	VDDR	—	_	—	_	_	—
11	VSSX1	—	_	_	—		_
12	PE0 ¹	EXTAL	_	_	V _{DDX}	PUCR/PDPEE	Down
13	VSS	—	_	—	_	_	—
14	PE1 ¹	XTAL	_	—	V _{DDX}	PUCR/PDPEE	Down
15	TEST	—	_	—	N.A.	RESET pin	Down
16	PA4	—	_	—	V _{DDX}	PUCR/PUPAE	Disabled
17	PA5	—	_	—	V _{DDX}	PUCR/PUPAE	Disabled
18	PA6	—	_	—	V _{DDX}	PUCR/PUPAE	Disabled
19	PA7	—	_	—	V _{DDX}	PUCR/PUPAE	Disabled
20	PJ0	KWJ0	MISO1	—	V _{DDX}	PERJ/PPSJ	Up
21	PJ1	KWJ1	MOSI1	—	V _{DDX}	PERJ/PPSJ	Up
22	PJ2	KWJ2	SCK1	—	V _{DDX}	PERJ/PPSJ	Up
23	PJ3	KWJ3	SS1	—	V _{DDX}	PERJ/PPSJ	Up
24	BKGD	MODC	_	—	V _{DDX}	PUCR/BKPUE	Up
25	PB0	ECLK	_		V _{DDX}	PUCR/PUPBE	Disabled
26	PB1	API_EXTC LK		_	V _{DDX}	PUCR/PUPBE	Disabled

Table 1-32. KGD Option for S12GA192 and S12GA240

SC	CD	сс	СВ	CA	Analog Input Channel
0	0	0	0	0	ANO
	0	0	0	1	AN1
	0	0	1	0	AN2
	0	0	1	1	AN3
	0	1	0	0	AN4
	0	1	0	1	AN5
	0	1	1	0	AN6
	0	1	1	1	AN7
	1	0	0	0	AN7
	1	0	0	1	AN7
	1	0	1	0	AN7
	1	0	1	1	AN7
	1	1	0	0	AN7
	1	1	0	1	AN7
	1	1	1	0	AN7
	1	1	1	1	AN7
1	0	0	0	0	Internal_6,
	0	0	0	1	Internal_7
	0	0	1	0	Internal_0
	0	0	1	1	Internal_1
	0	1	0	0	VRH
	0	1	0	1	VRL
	0	1	1	0	(VRH+VRL) / 2
	0	1	1	1	Reserved
	1	0	0	0	Internal_2
	1	0	0	1	Internal_3
	1	0	1	0	Internal_4
	1	0	1	1	Internal_5
	1	1	Х	Х	Reserved

Table 11-15. Analog Input Channel Select Coding

Analog-to-Digital Converter (ADC10B12CV2)

13.3.2.6 ATD Control Register 5 (ATDCTL5)

Writes to this register will abort current conversion sequence and start a new conversion sequence. If the external trigger function is enabled (ETRIGE=1) an initial write to ATDCTL5 is required to allow starting of a conversion sequence which will then occur on each trigger event. Start of conversion means the beginning of the sampling phase.

Module Base + 0x0005

Figure 13-8. ATD Control Register 5 (ATDCTL5)

Read: Anytime

Write: Anytime

Field	Description
6 SC	 Special Channel Conversion Bit — If this bit is set, then special channel conversion can be selected using CD, CC, CB and CA of ATDCTL5. Table 13-15 lists the coding. 0 Special channel conversions disabled 1 Special channel conversions enabled
5 SCAN	 Continuous Conversion Sequence Mode — This bit selects whether conversion sequences are performed continuously or only once. If the external trigger function is enabled (ETRIGE=1) setting this bit has no effect, thus the external trigger always starts a single conversion sequence. 0 Single conversion sequence 1 Continuous conversion sequences (scan mode)
4 MULT	Multi-Channel Sample Mode — When MULT is 0, the ATD sequence controller samples only from the specified analog input channel for an entire conversion sequence. The analog channel is selected by channel selection code (control bits CD/CC/CB/CA located in ATDCTL5). When MULT is 1, the ATD sequence controller samples across channels. The number of channels sampled is determined by the sequence length value (S8C, S4C, S2C, S1C). The first analog channel examined is determined by channel selection code (CD, CC, CB, CA control bits); subsequent channels sampled in the sequence are determined by incrementing the channel selection code or wrapping around to AN0 (channel 0). 0 Sample only one channel 1 Sample across several channels
3–0 CD, CC,	Analog Input Channel Select Code — These bits select the analog input channel(s). Table 13-15 lists the coding used to select the various analog input channels.
CB, CA	In the case of single channel conversions (MULT=0), this selection code specifies the channel to be examined.
	In the case of multiple channel conversions (MULT=1), this selection code specifies the first channel to be examined in the conversion sequence. Subsequent channels are determined by incrementing the channel selection code or wrapping around to AN0 (after converting the channel defined by the Wrap Around Channel Select Bits WRAP3-0 in ATDCTL0). When starting with a channel number higher than the one defined by WRAP3-0 the first wrap around will be AN11 to AN0.

14.3.2.12 ATD Conversion Result Registers (ATDDR*n*)

The A/D conversion results are stored in 12 result registers. Results are always in unsigned data representation. Left and right justification is selected using the DJM control bit in ATDCTL3.

If automatic compare of conversions results is enabled (CMPE[n]=1 in ATDCMPE), these registers must be written with the compare values in left or right justified format depending on the actual value of the DJM bit. In this case, as the ATDDRn register is used to hold the compare value, the result will not be stored there at the end of the conversion but is lost.

Attention, n is the conversion number, NOT the channel number!

Read: Anytime

Write: Anytime

NOTE

For conversions not using automatic compare, results are stored in the result registers after each conversion. In this case avoid writing to ATDDRn except for initial values, because an A/D result might be overwritten.

14.3.2.12.1 Left Justified Result Data (DJM=0)

Table 14-21 shows how depending on the A/D resolution the conversion result is transferred to the ATD result registers for left justified data. Compare is always done using all 12 bits of both the conversion result and the compare value in ATDDRn.

A/D resolution	DJM	conversion result mapping to ATDDR <i>n</i>
8-bit data	0	Result-Bit[11:4] = conversion result, Result-Bit[3:0]=0000
10-bit data	0	Result-Bit[11:2] = conversion result, Result-Bit[1:0]=00
12-bit data	0	Result-Bit[11:0] = result

Table 14-21. Conversion result mapping to ATDDRn

15.1.2 Modes of Operation

15.1.2.1 Conversion Modes

There is software programmable selection between performing **single** or **continuous conversion** on a **single channel** or **multiple channels**.

15.1.2.2 MCU Operating Modes

• Stop Mode

Entering Stop Mode aborts any conversion sequence in progress and if a sequence was aborted restarts it after exiting stop mode. This has the same effect/consequences as starting a conversion sequence with write to ATDCTL5. So after exiting from stop mode with a previously aborted sequence all flags are cleared etc.

• Wait Mode

ADC10B16C behaves same in Run and Wait Mode. For reduced power consumption continuous conversions should be aborted before entering Wait mode.

• Freeze Mode

In Freeze Mode the ADC10B16C will either continue or finish or stop converting according to the FRZ1 and FRZ0 bits. This is useful for debugging and emulation.

Analog-to-Digital Converter (ADC12B16CV2)

FRZ1	FRZ0	Behavior in Freeze Mode		
0	0	Continue conversion		
0	1	Reserved		
1	0	Finish current conversion, then freeze		
1	1	Freeze Immediately		

Table 16-11. ATD Behavior in Freeze Mode (Breakpoint)

16.3.2.5 ATD Control Register 4 (ATDCTL4)

Writes to this register will abort current conversion sequence.

Module Base + 0x0004

Read: Anytime

Write: Anytime

Table 16-12. ATDCTL4 Field Descriptions

Field	Description
7–5 SMP[2:0]	Sample Time Select — These three bits select the length of the sample time in units of ATD conversion clock cycles. Note that the ATD conversion clock period is itself a function of the prescaler value (bits PRS4-0). Table 16-13 lists the available sample time lengths.
4–0 PRS[4:0]	ATD Clock Prescaler — These 5 bits are the binary prescaler value PRS. The ATD conversion clock frequency is calculated as follows:
	$f_{ATDCLK} = \frac{f_{BUS}}{2 \times (PRS + 1)}$
	Refer to Device Specification for allowed frequency range of f _{ATDCLK} .

Table 16-13. Sample Time Select

SMP2	SMP1	SMP0	Sample Time in Number of ATD Clock Cycles
0	0	0	4
0	0	1	6
0	1	0	8
0	1	1	10
1	0	0	12
1	0	1	16
1	1	0	20

MC9S12G Family Reference Manual Rev.1.27

16.3.2.9 ATD Status Register 2 (ATDSTAT2)

This read-only register contains the Conversion Complete Flags CCF[15:0].

Module Base + 0x000A

Read: Anytime

Write: Anytime (for details see Table 16-18 below)

Table 16-18. ATDSTAT2 Field Descriptions

Field	Description
15–0 CCF[15:0]	Conversion Complete Flag n (n= 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0) (<i>n</i> conversion number, NOT channel number!) — A conversion complete flag is set at the end of each conversion in a sequence. The flags are associated with the conversion position in a sequence (and also the result register number). Therefore in non-fifo mode, CCF[4] is set when the fifth conversion in a sequence is complete and the result is available in result register ATDDR4; CCF[5] is set when the sixth conversion in a sequence is complete and the result is available in ATDDR5, and so forth.
	If automatic compare of conversion results is enabled (CMPE[<i>n</i>]=1 in ATDCMPE), the conversion complete flag is only set if comparison with ATDDR <i>n</i> is true. If ACMPIE=1 a compare interrupt will be requested. In this case, as the ATDDR <i>n</i> result register is used to hold the compare value, the result will not be stored there at the end of the conversion but is lost. A flag CCF[<i>n</i>] is cleared when one of the following occurs: A) Write to ATDCTL5 (a new conversion sequence is started) B) If AFFC=0, write "1" to CCF[<i>n</i>] C) If AFFC=1 and CMPE[<i>n</i>]=0, read of result register ATDDR <i>n</i> D) If AFFC=1 and CMPE[<i>n</i>]=1, write to result register ATDDR <i>n</i>
	 In case of a concurrent set and clear on CCF[<i>n</i>]: The clearing by method A) will overwrite the set. The clearing by methods B) or C) or D) will be overwritten by the set. Conversion number <i>n</i> not completed or successfully compared If (CMPE[<i>n</i>]=0): Conversion number <i>n</i> has completed. Result is ready in ATDDR<i>n</i>. If (CMPE[<i>n</i>]=1): Compare for conversion result number <i>n</i> with compare value in ATDDR<i>n</i>, using compare operator CMPGT[<i>n</i>] is true. (No result available in ATDDR<i>n</i>)

Field	Description
1 FE	 Framing Error Flag — FE is set when a logic 0 is accepted as the stop bit. FE bit is set during the same cycle as the RDRF flag but does not get set in the case of an overrun. FE inhibits further data reception until it is cleared. Clear FE by reading SCI status register 1 (SCISR1) with FE set and then reading the SCI data register low (SCIDRL). 0 No framing error 1 Framing error
0 PF	 Parity Error Flag — PF is set when the parity enable bit (PE) is set and the parity of the received data does not match the parity type bit (PT). PF bit is set during the same cycle as the RDRF flag but does not get set in the case of an overrun. Clear PF by reading SCI status register 1 (SCISR1), and then reading SCI data register low (SCIDRL). 0 No parity error 1 Parity error

20.3.2.8 SCI Status Register 2 (SCISR2)

Module Base + 0x0005

Figure 20-11. SCI Status Register 2 (SCISR2)

Read: Anytime

Write: Anytime

Table 20-12. SCISR2 Field Descriptions

Field	Description
7 AMAP	Alternative Map — This bit controls which registers sharing the same address space are accessible. In the reset condition the SCI behaves as previous versions. Setting AMAP=1 allows the access to another set of control and status registers and hides the baud rate and SCI control Register 1. 0 The registers labelled SCIBDH (0x0000),SCIBDL (0x0001), SCICR1 (0x0002) are accessible 1 The registers labelled SCIASR1 (0x0000),SCIACR1 (0x0001), SCIACR2 (0x00002) are accessible
4 TXPOL	 Transmit Polarity — This bit control the polarity of the transmitted data. In NRZ format, a one is represented by a mark and a zero is represented by a space for normal polarity, and the opposite for inverted polarity. In IrDA format, a zero is represented by short high pulse in the middle of a bit time remaining idle low for a one for normal polarity, and a zero is represented by short low pulse in the middle of a bit time remaining idle high for a one for inverted polarity. 0 Normal polarity 1 Inverted polarity

Serial Communication Interface (S12SCIV5)

When the transmit shift register is not transmitting a frame, the TXD pin goes to the idle condition, logic 1. If at any time software clears the TE bit in SCI control register 2 (SCICR2), the transmitter enable signal goes low and the transmit signal goes idle.

If software clears TE while a transmission is in progress (TC = 0), the frame in the transmit shift register continues to shift out. To avoid accidentally cutting off the last frame in a message, always wait for TDRE to go high after the last frame before clearing TE.

To separate messages with preambles with minimum idle line time, use this sequence between messages:

- 1. Write the last byte of the first message to SCIDRH/L.
- 2. Wait for the TDRE flag to go high, indicating the transfer of the last frame to the transmit shift register.
- 3. Queue a preamble by clearing and then setting the TE bit.
- 4. Write the first byte of the second message to SCIDRH/L.

20.4.5.3 Break Characters

Writing a logic 1 to the send break bit, SBK, in SCI control register 2 (SCICR2) loads the transmit shift register with a break character. A break character contains all logic 0s and has no start, stop, or parity bit. Break character length depends on the M bit in SCI control register 1 (SCICR1). As long as SBK is at logic 1, transmitter logic continuously loads break characters into the transmit shift register. After software clears the SBK bit, the shift register finishes transmitting the last break character and then transmits at least one logic 1. The automatic logic 1 at the end of a break character guarantees the recognition of the start bit of the next frame.

The SCI recognizes a break character when there are 10 or 11(M = 0 or M = 1) consecutive zero received. Depending if the break detect feature is enabled or not receiving a break character has these effects on SCI registers.

If the break detect feature is disabled (BKDFE = 0):

- Sets the framing error flag, FE
- Sets the receive data register full flag, RDRF
- Clears the SCI data registers (SCIDRH/L)
- May set the overrun flag, OR, noise flag, NF, parity error flag, PE, or the receiver active flag, RAF (see 3.4.4 and 3.4.5 SCI Status Register 1 and 2)

If the break detect feature is enabled (BKDFE = 1) there are two scenarios¹

The break is detected right from a start bit or is detected during a byte reception.

- Sets the break detect interrupt flag, BKDIF
- Does not change the data register full flag, RDRF or overrun flag OR
- Does not change the framing error flag FE, parity error flag PE.
- Does not clear the SCI data registers (SCIDRH/L)
- May set noise flag NF, or receiver active flag RAF.

^{1.} A Break character in this context are either 10 or 11 consecutive zero received bits

Timer Module (TIM16B6CV3)

Only bits related to implemented channels are valid.

Register Name		Bit 7	6	5	4	3	2	1	Bit 0
0x0000 TIOS	R W	RESERV ED	RESERV ED	IOS5	IOS4	IOS3	IOS2	IOS1	IOS0
0x0001	R	0	0	0	0	0	0	0	0
CFORC	W	RESERV ED	RESERV ED	FOC5	FOC4	FOC3	FOC2	FOC1	FOC0
0x0004 TCNTH	R W	TCNT15	TCNT14	TCNT13	TCNT12	TCNT11	TCNT10	TCNT9	TCNT8
0x0005 TCNTL	R W	TCNT7	TCNT6	TCNT5	TCNT4	TCNT3	TCNT2	TCNT1	TCNT0
0x0006 TSCR1	R W	TEN	TSWAI	TSFRZ	TFFCA	PRNT	0	0	0
0x0007 TTOV	R W	RESERV ED	RESERV ED	TOV5	TOV4	TOV3	TOV2	TOV1	TOV0
0x0008 TCTL1	R W	RESERV ED	RESERV ED	RESERV ED	RESERV ED	OM5	OL5	OM4	OL4
0x0009 TCTL2	R W	OM3	OL3	OM2	OL2	OM1	OL1	OM0	OL0
0x000A TCTL3	R W	RESERV ED	RESERV ED	RESERV ED	RESERV ED	EDG5B	EDG5A	EDG4B	EDG4A
0x000B TCTL4	R W	EDG3B	EDG3A	EDG2B	EDG2A	EDG1B	EDG1A	EDG0B	EDG0A
0x000C TIE	R W	RESERV ED	RESERV ED	C5I	C4I	C3I	C2I	C1I	C0I
0x000D TSCR2	R W	τοι	0	0	0	RESERV ED	PR2	PR1	PR0
0x000E TFLG1	R W	RESERV ED	RESERV ED	C5F	C4F	C3F	C2F	C1F	C0F
0x000F TFLG2	R W	TOF	0	0	0	0	0	0	0
0x0010–0x001F TCxH–TCxL ¹	R W	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8
	R W	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0x0024–0x002B Reserved	R W								
0x002C OCPD	R W	RESERV ED	RESERV ED	OCPD5	OCPD4	OCPD3	OCPD2	OCPD1	OCPD0
0x002D Reserved	R								
0x002E PTPSR	R W	PTPS7	PTPS6	PTPS5	PTPS4	PTPS3	PTPS2	PTPS1	PTPS0
0x002F Reserved	R W								

Figure 22-3. TIM16B6CV3 Register Summary

MC9S12G Family Reference Manual Rev.1.27

Setting OCPDx to zero allows the internal register to drive the programmed state to OCx. This allows a glitch free switch over of port from general purpose I/O to timer output once the OCPDx bit is set to zero.

22.5 Resets

The reset state of each individual bit is listed within Section 22.3, "Memory Map and Register Definition" which details the registers and their bit fields

22.6 Interrupts

This section describes interrupts originated by the TIM16B6CV3 block. Table 22-18 lists the interrupts generated by the TIM16B6CV3 to communicate with the MCU.

Interrupt	Offset	Vector	Priority	Source	Description
C[5:0]F	—	—	—	Timer Channel 5–0	Active high timer channel interrupts 5–0
TOF		_		Timer Overflow	Timer Overflow interrupt

Table 22-18. TIM16B6CV3 Interrupts

The TIM16B6CV3 could use up to 7 interrupt vectors. The interrupt vector offsets and interrupt numbers are chip dependent.

22.6.1 Channel [5:0] Interrupt (C[5:0]F)

This active high outputs will be asserted by the module to request a timer channel 7 - 0 interrupt. The TIM block only generates the interrupt and does not service it. Only bits related to implemented channels are valid.

22.6.2 Timer Overflow Interrupt (TOF)

This active high output will be asserted by the module to request a timer overflow interrupt. The TIM block only generates the interrupt and does not service it.

25.4.6 Flash Command Description

This section provides details of all available Flash commands launched by a command write sequence. The ACCERR bit in the FSTAT register will be set during the command write sequence if any of the following illegal steps are performed, causing the command not to be processed by the Memory Controller:

- Starting any command write sequence that programs or erases Flash memory before initializing the FCLKDIV register
- Writing an invalid command as part of the command write sequence
- For additional possible errors, refer to the error handling table provided for each command

If a Flash block is read during execution of an algorithm (CCIF = 0) on that same block, the read operation will return invalid data if both flags SFDIF and DFDIF are set. If the SFDIF or DFDIF flags were not previously set when the invalid read operation occurred, both the SFDIF and DFDIF flags will be set.

If the ACCERR or FPVIOL bits are set in the FSTAT register, the user must clear these bits before starting any command write sequence (see Section 25.3.2.7).

CAUTION

A Flash word or phrase must be in the erased state before being programmed. Cumulative programming of bits within a Flash word or phrase is not allowed.

25.4.6.1 Erase Verify All Blocks Command

The Erase Verify All Blocks command will verify that all P-Flash and EEPROM blocks have been erased.

Table 25-31. Erase Verify All Blocks Command FCCOB Requirements

CCOBIX[2:0]	FCCOB P	arameters
000	0x01	Not required

Upon clearing CCIF to launch the Erase Verify All Blocks command, the Memory Controller will verify that the entire Flash memory space is erased. The CCIF flag will set after the Erase Verify All Blocks operation has completed. If all blocks are not erased, it means blank check failed, both MGSTAT bits will be set.

 Table 25-32. Erase Verify All Blocks Command Error Handling

Register	Error Bit	Error Condition
	ACCERR	Set if CCOBIX[2:0] != 000 at command launch
	FPVIOL	None
FSTAT	MGSTAT1	Set if any errors have been encountered during the read ¹ or if blank check failed .
	MGSTAT0	Set if any non-correctable errors have been encountered during the read ¹ or if blank check failed.

¹ As found in the memory map for FTMRG32K1.

- Fast sector erase and phrase program operation
- Ability to read the P-Flash memory while programming a word in the EEPROM memory
- Flexible protection scheme to prevent accidental program or erase of P-Flash memory

27.1.2.2 EEPROM Features

- 2 Kbytes of EEPROM memory composed of one 2 Kbyte Flash block divided into 512 sectors of 4 bytes
- Single bit fault correction and double bit fault detection within a word during read operations
- Automated program and erase algorithm with verify and generation of ECC parity bits
- Fast sector erase and word program operation
- Protection scheme to prevent accidental program or erase of EEPROM memory
- Ability to program up to four words in a burst sequence

27.1.2.3 Other Flash Module Features

- No external high-voltage power supply required for Flash memory program and erase operations
- Interrupt generation on Flash command completion and Flash error detection
- Security mechanism to prevent unauthorized access to the Flash memory

27.1.3 Block Diagram

The block diagram of the Flash module is shown in Figure 27-1.

27.4.4.2.1 Define FCCOB Contents

The FCCOB parameter fields must be loaded with all required parameters for the Flash command being executed. Access to the FCCOB parameter fields is controlled via the CCOBIX bits in the FCCOBIX register (see Section 27.3.2.3).

The contents of the FCCOB parameter fields are transferred to the Memory Controller when the user clears the CCIF command completion flag in the FSTAT register (writing 1 clears the CCIF to 0). The CCIF flag will remain clear until the Flash command has completed. Upon completion, the Memory Controller will return CCIF to 1 and the FCCOB register will be used to communicate any results. The flow for a generic command write sequence is shown in Figure 27-26.

Register	Error Bit	Bit Error Condition		
		Set if CCOBIX[2:0] != 001 at command launch		
	ACCERR	Set if command not available in current mode (see Table 27-27)		
		Set if an invalid global address [17:16] is supplied see Table 27-3)		
FSTAT		Set if a misaligned phrase address is supplied (global address [2:0] != 000)		
	FPVIOL	Set if the selected P-Flash sector is protected		
	MGSTAT1	Set if any errors have been encountered during the verify operation		
	MGSTAT0	Set if any non-correctable errors have been encountered during the verify operation		

Table 27-49. Erase P-Flash Sector Command Error Handling

27.4.6.10 Unsecure Flash Command

The Unsecure Flash command will erase the entire P-Flash and EEPROM memory space and, if the erase is successful, will release security.

Table 27-50. Unsecure Flash Command FCCOB Requirements

CCOBIX[2:0]	FCCOB P	arameters
000	0x0B	Not required

Upon clearing CCIF to launch the Unsecure Flash command, the Memory Controller will erase the entire P-Flash and EEPROM memory space and verify that it is erased. If the Memory Controller verifies that the entire Flash memory space was properly erased, security will be released. If the erase verify is not successful, the Unsecure Flash operation sets MGSTAT1 and terminates without changing the security state. During the execution of this command (CCIF=0) the user must not write to any Flash module register. The CCIF flag is set after the Unsecure Flash operation has completed.

Register	Error Bit	Error Condition			
	ACCERR	Set if CCOBIX[2:0] != 000 at command launch			
		Set if command not available in current mode (see Table 27-27)			
FSTAT	FPVIOL	Set if any area of the P-Flash or EEPROM memory is protected			
	MGSTAT1	Set if any errors have been encountered during the verify operation			
	MGSTAT0	Set if any non-correctable errors have been encountered during the verify operation			

Table 27-51. Unsecure Flash Command Error Handling

27.4.6.11 Verify Backdoor Access Key Command

The Verify Backdoor Access Key command will only execute if it is enabled by the KEYEN bits in the FSEC register (see Table 27-10). The Verify Backdoor Access Key command releases security if user-supplied keys match those stored in the Flash security bytes of the Flash configuration field (see

192 KByte Flash Module (S12FTMRG192K2V1)

CCOBIX[2:0]	FCCOB Parameters			
000	0x09	Global address [17:16] to identify Flash block		
001	Global address [15:0] in Flash block to be erased			

Upon clearing CCIF to launch the Erase Flash Block command, the Memory Controller will erase the selected Flash block and verify that it is erased. The CCIF flag will set after the Erase Flash Block operation has completed.

Register	Error Bit	Error Condition					
FSTAT		Set if CCOBIX[2:0] != 001 at command launch					
		Set if command not available in current mode (see Table 30-27)					
	ACCERR	Set if an invalid global address [17:16] is supplied					
		Set if the supplied P-Flash address is not phrase-aligned or if the EEPROM address is not word-aligned					
	FPVIOL	Set if an area of the selected Flash block is protected					
	MGSTAT1	Set if any errors have been encountered during the verify operation					
	MGSTAT0	Set if any non-correctable errors have been encountered during the verify operation					

Table 30-47. Erase Flash Block Command Error Handling

30.4.6.9 Erase P-Flash Sector Command

The Erase P-Flash Sector operation will erase all addresses in a P-Flash sector.

Table 30-48. Erase P-Flash Sector Command FCCOB Requirements

CCOBIX[2:0]	FCCOB Parameters				
000	0x0A	Global address [17:16] to identify P-Flash block to be erased			
001	Global address [15:0] anywhere within the sector to be er Refer to Section 30.1.2.1 for the P-Flash sector size.				

Upon clearing CCIF to launch the Erase P-Flash Sector command, the Memory Controller will erase the selected Flash sector and then verify that it is erased. The CCIF flag will be set after the Erase P-Flash Sector operation has completed.

240 KByte Flash Module (S12FTMRG240K2V1)

Address & Name		7	6	5	4	3	2	1	0		
0x000A FCCOBHI	R W	CCOB15	CCOB14	CCOB13	CCOB12	CCOB11	CCOB10	CCOB9	CCOB8		
0x000B FCCOBLO	R W	CCOB7	CCOB6	CCOB5	CCOB4	CCOB3	CCOB2	CCOB1	CCOB0		
0x000C FRSV1	R	0	0	0	0	0	0	0	0		
	W										
0x000D FRSV2	R	0	0	0	0	0	0	0	0		
	W										
0x000E I FRSV3 _V	R	0	0	0	0	0	0	0	0		
	W										
0x000F FRSV4	R	0	0	0	0	0	0	0	0		
	W										
0x0010 FOPT	R	NV7	NV6	NV5	NV4	NV3	NV2	NV1	NV0		
	W										
0x0011 FRSV5	R	0	0	0	0	0	0	0	0		
	W										
0x0012 FRSV6	R	0	0	0	0	0	0	0	0		
	W										
0x0013	R	0	0	0	0	0	0	0	0		
FRSV7	W										
		= Unimplemented or Reserved									

31.3.2.1 Flash Clock Divider Register (FCLKDIV)

The FCLKDIV register is used to control timed events in program and erase algorithms.

MC9S12G Family Reference Manual Rev.1.27

Electrical Characteristics

A.4.3.1 ADC Accuracy Definitions

For the following definitions see also Figure A-1. Differential non-linearity (DNL) is defined as the difference between two adjacent switching steps.

$$\mathsf{DNL}(i) = \frac{\mathsf{V}_i - \mathsf{V}_{i-1}}{\mathsf{1LSB}} - 1$$

The integral non-linearity (INL) is defined as the sum of all DNLs:

$$INL(n) = \sum_{i=1}^{n} DNL(i) = \frac{V_n - V_0}{1LSB} - n$$