

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	12V1
Core Size	16-Bit
Speed	25MHz
Connectivity	CANbus, IrDA, LINbus, SCI, SPI
Peripherals	LVD, POR, PWM, WDT
Number of I/O	26
Program Memory Size	48KB (48K x 8)
Program Memory Type	FLASH
EEPROM Size	1.5K × 8
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	3.13V ~ 5.5V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	32-LQFP
Supplier Device Package	32-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=s9s12g48f1mlcr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.8.4.3 Pinout 64-Pin LQFP

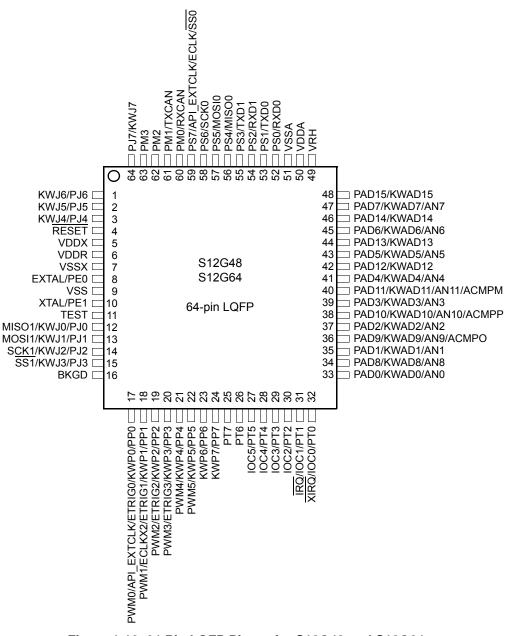


Figure 1-12. 64-Pin LQFP Pinout for S12G48 and S12G64

		<lowest< th=""><th>Function PRIORITY</th><th>highest></th><th>></th><th colspan="4">Internal Pull Resistor</th></lowest<>	Function PRIORITY	highest>	>	Internal Pull Resistor			
Package Pin	Pin	2nd Func.	3rd Func.	4th Func	5th Func	Supply	CTRL	Reset State	
2	VDDXR	_	—	_	_	—	_	—	
3	VSSX		—	_	_	_	—	_	
4	PE0 ¹	EXTAL	—	_		V _{DDX}	PUCR/PDPEE	Down	
5	VSS	_	—	_		_	—	_	
6	PE1 ¹	XTAL	—	_		V _{DDX}	PUCR/PDPEE	Down	
7	TEST	_	—	—		N.A.	RESET pin	Down	
8	PJ0	KWJ0	PWM6	MISO1	_	V _{DDX}	PERJ/PPSJ	Up	
9	PJ1	KWJ1	IOC6	MOSI1		V _{DDX}	PERJ/PPSJ	Up	
10	PJ2	KWJ2	IOC7	SCK1		V _{DDX}	PERJ/PPSJ	Up	
11	PJ3	KWJ3	PWM7	SS1	_	V _{DDX}	PERJ/PPSJ	Up	
12	BKGD	MODC	—	—		V _{DDX}	PUCR/BKPUE	Up	
13	PP0	KWP0	ETRIG0	API_EXTC LK	PWM0	V _{DDX}	PERP/PPSP	Disabled	
14	PP1	KWP1	ETRIG1	ECLKX2	PWM1	V _{DDX}	PERP/PPSP	Disabled	
15	PP2	KWP2	ETRIG2	PWM2		V _{DDX}	PERP/PPSP	Disabled	
16	PP3	KWP3	ETRIG3	PWM3	_	V _{DDX}	PERP/PPSP	Disabled	
17	PP4	KWP4	PWM4	_		V _{DDX}	PERP/PPSP	Disabled	
18	PP5	KWP5	PWM5	_		V _{DDX}	PERP/PPSP	Disabled	
19	PT5	IOC5	—	_		V _{DDX}	PERT/PPST	Disabled	
20	PT4	IOC4	—	_		V _{DDX}	PERT/PPST	Disabled	
21	PT3	IOC3	—	_		V _{DDX}	PERT/PPST	Disabled	
22	PT2	IOC2	—	_		V _{DDX}	PERT/PPST	Disabled	
23	PT1	IOC1	IRQ	—	_	V _{DDX}	PERT/PPST	Disabled	
24	PT0	IOC0	XIRQ	_	_	V _{DDX}	PERT/PPST	Disabled	
25	PAD0	KWAD0	AN0	—	_	V _{DDA}	PER1AD/PPS1AD	Disabled	
26	PAD8	KWAD8	AN8	_	_	V _{DDA}	PER0AD/PPS0AD	Disabled	
27	PAD1	KWAD1	AN1	_	_	V _{DDA}	PER1AD/PPS1AD	Disabled	
28	PAD9	KWAD9	AN9		_	V _{DDA}	PER0AD/PPS0AD	Disabled	
29	PAD2	KWAD2	AN2	_	_	V _{DDA}	PER1AD/PPS1AD	Disabled	

Table 1-20. 48-Pin LQFP Pinout for S12G96 and S12G128

MC9S12G Family Reference Manual Rev.1.27

		<lowest< th=""><th>Function -PRIORITY-</th><th>highest></th><th>></th><th>Power</th><th colspan="3">Internal Pull Resistor</th></lowest<>	Function -PRIORITY-	highest>	>	Power	Internal Pull Resistor		
Package Pin	Pin	2nd Func.	3rd Func.	4th Func	5th Func	Supply	CTRL	Reset State	
1	PJ6	KWJ6	SCK2	_	—	V _{DDX}	PERJ/PPSJ	Up	
2	PJ5	KWJ5	MOSI2	_	_	V _{DDX}	PERJ/PPSJ	Up	
3	PJ4	KWJ4	MISO2	_	_	V _{DDX}	PERJ/PPSJ	Up	
4	RESET		_	_	_	V _{DDX}	PULLU		
5	VDDX	_	—	_	_		_	_	
6	VDDR	_	—	_	_		_	_	
7	VSSX	_	—	_			_	_	
8	PE0 ¹	EXTAL	—	_		V _{DDX}	PUCR/PDPEE	Down	
9	VSS	_	—	_			_	_	
10	PE1 ¹	XTAL	—	_		V _{DDX}	PUCR/PDPEE	Down	
11	TEST	_	—	_		N.A.	RESET pin	Down	
12	PJ0	KWJ0	MISO1	_		V _{DDX}	PERJ/PPSJ	Up	
13	PJ1	KWJ1	MOSI1	_		V _{DDX}	PERJ/PPSJ	Up	
14	PJ2	KWJ2	SCK1	_		V _{DDX}	PERJ/PPSJ	Up	
15	PJ3	KWJ3	SS1	_	_	V _{DDX}	PERJ/PPSJ	Up	
16	BKGD	MODC	—	_		V _{DDX}	PUCR/BKPUE	Up	
17	PP0	KWP0	ETRIG0	API_EXTC LK	PWM0	V _{DDX}	PERP/PPSP	Disabled	
18	PP1	KWP1	ETRIG1	ECLKX2	PWM1	V _{DDX}	PERP/PPSP	Disabled	
19	PP2	KWP2	ETRIG2	PWM2		V _{DDX}	PERP/PPSP	Disabled	
20	PP3	KWP3	ETRIG3	PWM3		V _{DDX}	PERP/PPSP	Disabled	
21	PP4	KWP4	PWM4	_	—	V _{DDX}	PERP/PPSP	Disabled	
22	PP5	KWP5	PWM5	_	_	V _{DDX}	PERP/PPSP	Disabled	
23	PP6	KWP6	PWM6	_	_	V _{DDX}	PERP/PPSP	Disabled	
24	PP7	KWP7	PWM7	_	_	V _{DDX}	PERP/PPSP	Disabled	
25	PT7	IOC7	—		_	V _{DDX}	PERT/PPST	Disabled	
26	PT6	IOC6	—	_		V _{DDX}	PERT/PPST	Disabled	
27	PT5	IOC5			_	V _{DDX}	PERT/PPST	Disabled	

MC9S12G Family Reference Manual Rev.1.27

	< (FunctowestPRIO		st>	Power	Internal Pull Resistor		
Package Pin	Pin	2nd Func.	3rd Func.	4th Func.	Supply	CTRL	Reset State	
57	PAD1	KWAD1	AN1	_	V _{DDA}	PER1AD/PPS1AD	Disabled	
58	PAD9	KWAD9	AN9	_	V _{DDA}	PER0AD/PPS0AD	Disabled	
59	PAD2	KWAD2	AN2		V _{DDA}	PER1AD/PPS1AD	Disabled	
60	PAD10	KWAD10	AN10		V _{DDA}	PER0AD/PPS0AD	Disabled	
61	PAD3	KWAD3	AN3		V _{DDA}	PER1AD/PPS1AD	Disabled	
62	PAD11	KWAD11	AN11		V _{DDA}	PER0AD/PPS0AD	Disabled	
63	PAD4	KWAD4	AN4		V _{DDA}	PER1AD/PPS1AD	Disabled	
64	PAD12	KWAD12	AN12	_	V _{DDA}	PER0AD/PPS0AD	Disabled	
65	PAD5	KWAD5	AN5	_	V _{DDA}	PER1AD/PPS1AD	Disabled	
66	PAD13	KWAD13	AN13	_	V _{DDA}	PER0AD/PPS0AD	Disabled	
67	PAD6	KWAD6	AN6		V _{DDA}	PER1AD/PPS1AD	Disabled	
68	PAD14	KWAD14	AN14		V _{DDA}	PER0AD/PPS0AD	Disabled	
69	PAD7	KWAD7	AN7		V _{DDA}	PER1AD/PPS1AD	Disabled	
70	PAD15	KWAD15	AN15		V _{DDA}	PER0AD/PPS0AD	Disabled	
71	PC4	_			V _{DDA}	PUCR/PUPCE	Disabled	
72	PC5	_			V _{DDA}	PUCR/PUPCE	Disabled	
73	PC6	_			V _{DDA}	PUCR/PUPCE	Disabled	
74	PC7	_			V _{DDA}	PUCR/PUPCE	Disabled	
75	VRH	_	_	_	_	_	_	
76	VDDA	_	_		—	_		
77	VSSA	_	_		—	_		
78	PD0	_	_	_	V _{DDX}	PUCR/PUPDE	Disabled	
79	PD1	—		—	V _{DDX}	PUCR/PUPDE	Disabled	
80	PD2	_	_	_	V _{DDX}	PUCR/PUPDE	Disabled	
81	PD3	_	_	_	V _{DDX}	PUCR/PUPDE	Disabled	
82	PS0	RXD0	_	_	V _{DDX}	PERS/PPSS	Up	
83	PS1	TXD0		_	V _{DDX}	PERS/PPSS	Up	
84	PS2	RXD1			V _{DDX}	PERS/PPSS	Up	
85	PS3	TXD1			V _{DDX}	PERS/PPSS	Up	

Table 1-28. 100-Pin LQFP Pinout for S12G192 and S12G240

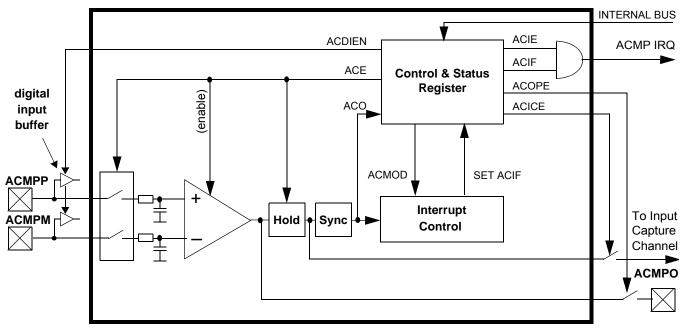


Figure 3-1. ACMP Block Diagram

Figure 3-2.

3.4 External Signals

The ACMP has two analog input signals, ACMPP and ACMPM, and one digital output, ACMPO. The associated pins are defined by the package option.

The ACMPP signal is connected to the non-inverting input of the comparator. The ACMPM signal is connected to the inverting input of the comparator. Each of these signals can accept an input voltage that varies across the full 5V operating voltage range. The module monitors the voltage on these inputs independent of any other functions in use (GPIO, ADC).

The raw comparator output signal can optionally be driven on an external pin.

3.5 Modes of Operation

1. Normal Mode

The ACMP is operating when enabled and not in STOP mode.

2. Shutdown Mode

The ACMP is held in shutdown mode either when disabled or during STOP mode. In this case the supply of the analog block is disconnected for power saving. ACMPO drives zero in shutdown mode.

15.1.2 Modes of Operation

15.1.2.1 Conversion Modes

There is software programmable selection between performing **single** or **continuous conversion** on a **single channel** or **multiple channels**.

15.1.2.2 MCU Operating Modes

• Stop Mode

Entering Stop Mode aborts any conversion sequence in progress and if a sequence was aborted restarts it after exiting stop mode. This has the same effect/consequences as starting a conversion sequence with write to ATDCTL5. So after exiting from stop mode with a previously aborted sequence all flags are cleared etc.

• Wait Mode

ADC10B16C behaves same in Run and Wait Mode. For reduced power consumption continuous conversions should be aborted before entering Wait mode.

• Freeze Mode

In Freeze Mode the ADC10B16C will either continue or finish or stop converting according to the FRZ1 and FRZ0 bits. This is useful for debugging and emulation.

Analog-to-Digital Converter (ADC12B16CV2)

¹If only AN0 should be converted use MULT=0.

16.3.2.2 ATD Control Register 1 (ATDCTL1)

Writes to this register will abort current conversion sequence.

Module Base + 0x0001

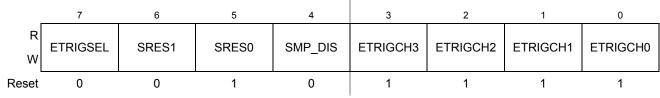


Figure 16-4. ATD Control Register 1 (ATDCTL1)

Read: Anytime

Write: Anytime

Table 16-3.	ATDCTL1	Field	Descriptions
		1 1010	Dooonpliono

Field	Description
7 ETRIGSEL	External Trigger Source Select — This bit selects the external trigger source to be either one of the AD channels or one of the ETRIG3-0 inputs. See device specification for availability and connectivity of ETRIG3-0 inputs. If a particular ETRIG3-0 input option is not available, writing a 1 to ETRISEL only sets the bit but has no effect, this means that one of the AD channels (selected by ETRIGCH3-0) is configured as the source for external trigger. The coding is summarized in Table 16-5.
6–5 SRES[1:0]	A/D Resolution Select — These bits select the resolution of A/D conversion results. See Table 16-4 for coding.
4 SMP_DIS	 Discharge Before Sampling Bit No discharge before sampling. The internal sample capacitor is discharged before sampling the channel. This adds 2 ATD clock cycles to the sampling time. This can help to detect an open circuit instead of measuring the previous sampled channel.
3–0 ETRIGCH[3:0]	External Trigger Channel Select — These bits select one of the AD channels or one of the ETRIG3-0 inputs as source for the external trigger. The coding is summarized in Table 16-5.

Table	16-4.	A/D	Resolution	Coding
-------	-------	-----	------------	--------

SRES1	SRES0	A/D Resolution
0	0	8-bit data
0	1	10-bit data
1	0	12-bit data
1	1	Reserved

BRP5	BRP4	BRP3	BRP2	BRP1	BRP0	Prescaler value (P)
0	0	0	0	0	0	1
0	0	0	0	0	1	2
0	0	0	0	1	0	3
0	0	0	0	1	1	4
:	:	:	:	:	:	:
1	1	1	1	1	1	64

Table 18-7. Baud Rate Prescaler

18.3.2.4 MSCAN Bus Timing Register 1 (CANBTR1)

The CANBTR1 register configures various CAN bus timing parameters of the MSCAN module.

Module Base + 0x0003

Access: User read/write¹

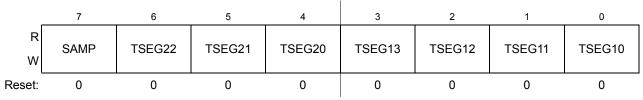


Figure 18-7. MSCAN Bus Timing Register 1 (CANBTR1)

¹ Read: Anytime

Write: Anytime in initialization mode (INITRQ = 1 and INITAK = 1)

Table 18-8. CANBTR1 Register Field Descriptions

Field	Description
7 SAMP	 Sampling — This bit determines the number of CAN bus samples taken per bit time. One sample per bit. Three samples per bit¹. If SAMP = 0, the resulting bit value is equal to the value of the single bit positioned at the sample point. If SAMP = 1, the resulting bit value is determined by using majority rule on the three total samples. For higher bit rates, it is recommended that only one sample is taken per bit time (SAMP = 0).
6-4 TSEG2[2:0]	Time Segment 2 — Time segments within the bit time fix the number of clock cycles per bit time and the location of the sample point (see Figure 18-44). Time segment 2 (TSEG2) values are programmable as shown in Table 18-9.
3-0 TSEG1[3:0]	Time Segment 1 — Time segments within the bit time fix the number of clock cycles per bit time and the location of the sample point (see Figure 18-44). Time segment 1 (TSEG1) values are programmable as shown in Table 18-10.

¹ In this case, PHASE_SEG1 must be at least 2 time quanta (Tq).

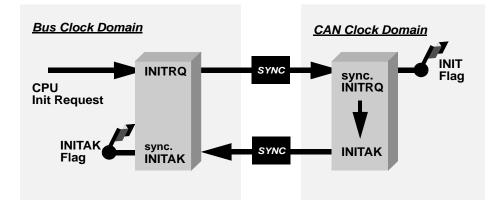


Figure 18-45. Initialization Request/Acknowledge Cycle

Due to independent clock domains within the MSCAN, INITRQ must be synchronized to all domains by using a special handshake mechanism. This handshake causes additional synchronization delay (see Figure 18-45).

If there is no message transfer ongoing on the CAN bus, the minimum delay will be two additional bus clocks and three additional CAN clocks. When all parts of the MSCAN are in initialization mode, the INITAK flag is set. The application software must use INITAK as a handshake indication for the request (INITRQ) to go into initialization mode.

NOTE

The CPU cannot clear INITRQ before initialization mode (INITRQ = 1 and INITAK = 1) is active.

18.4.5 Low-Power Options

If the MSCAN is disabled (CANE = 0), the MSCAN clocks are stopped for power saving.

If the MSCAN is enabled (CANE = 1), the MSCAN has two additional modes with reduced power consumption, compared to normal mode: sleep and power down mode. In sleep mode, power consumption is reduced by stopping all clocks except those to access the registers from the CPU side. In power down mode, all clocks are stopped and no power is consumed.

Table 18-38 summarizes the combinations of MSCAN and CPU modes. A particular combination of modes is entered by the given settings on the CSWAI and SLPRQ/SLPAK bits.

Field	Description
1 RWU	 Receiver Wakeup Bit — Standby state 0 Normal operation. 1 RWU enables the wakeup function and inhibits further receiver interrupt requests. Normally, hardware wakes the receiver by automatically clearing RWU.
0 SBK	 Send Break Bit — Toggling SBK sends one break character (10 or 11 logic 0s, respectively 13 or 14 logics 0s if BRK13 is set). Toggling implies clearing the SBK bit before the break character has finished transmitting. As long as SBK is set, the transmitter continues to send complete break characters (10 or 11 bits, respectively 13 or 14 bits). No break characters Transmit break characters

Table 20-10. SCICR2 Field Descriptions (continued)

20.3.2.7 SCI Status Register 1 (SCISR1)

The SCISR1 and SCISR2 registers provides inputs to the MCU for generation of SCI interrupts. Also, these registers can be polled by the MCU to check the status of these bits. The flag-clearing procedures require that the status register be read followed by a read or write to the SCI data register. It is permissible to execute other instructions between the two steps as long as it does not compromise the handling of I/O, but the order of operations is important for flag clearing.

Module Base + 0x0004

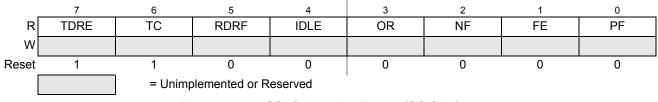


Figure 20-10. SCI Status Register 1 (SCISR1)

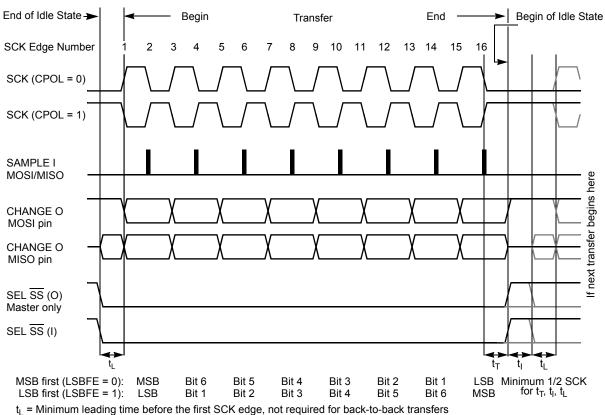
Read: Anytime

Write: Has no meaning or effect

Internal Bus $\langle \rangle$ SBR12:SBR0 SCI Data Register Ζ Bus Baud Divider Clock Start Stop 11-Bit Receive Shift Register **RXPOL** Data Н 8 7 6 5 4 3 2 L 1 0 Recovery SCRXD S ₹ Loop Control From TXD Pin MSB RE or Transmitter RAF FE LOOPS Μ RWU NF RSRC WAKE Wakeup ΡE Logic ILT PE R8 Parity Checking PT Idle IRQ IDI F ILIE BRKDFE **RDRF/OR** RDRF IRQ OR RIE Break BRKDIF Detect Logic Break IRQ BRKDIE Active Edge RXEDGIF Detect Logic RX Active Edge IRQ RXEDGIE

20.4.6 Receiver

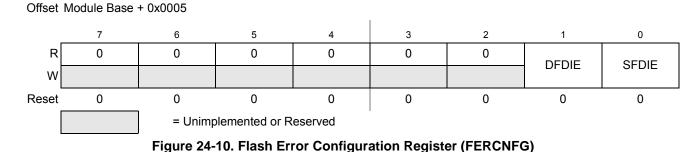
Figure 20-20. SCI Receiver Block Diagram


20.4.6.1 Receiver Character Length

The SCI receiver can accommodate either 8-bit or 9-bit data characters. The state of the M bit in SCI control register 1 (SCICR1) determines the length of data characters. When receiving 9-bit data, bit R8 in SCI data register high (SCIDRH) is the ninth bit (bit 8).

20.4.6.2 Character Reception

During an SCI reception, the receive shift register shifts a frame in from the RXD pin. The SCI data register is the read-only buffer between the internal data bus and the receive shift register.


After a complete frame shifts into the receive shift register, the data portion of the frame transfers to the SCI data register. The receive data register full flag, RDRF, in SCI status register 1 (SCISR1) becomes set,

 t_T = Minimum trailing time after the last SCK edge

 t_1 = Minimum idling time between transfers (minimum \overline{SS} high time), not required for back-to-back transfers

Figure 21-14. SPI Clock Format 1 (CPHA = 1), with 8-Bit Transfer Width selected (XFRW = 0)

All assigned bits in the FERCNFG register are readable and writable.

Table 24-14. FERCNFG Field Descriptions

Field	Description
1 DFDIE	 Double Bit Fault Detect Interrupt Enable — The DFDIE bit controls interrupt generation when a double bit fault is detected during a Flash block read operation. 0 DFDIF interrupt disabled 1 An interrupt will be requested whenever the DFDIF flag is set (see Section 24.3.2.8)
0 SFDIE	 Single Bit Fault Detect Interrupt Enable — The SFDIE bit controls interrupt generation when a single bit fault is detected during a Flash block read operation. 0 SFDIF interrupt disabled whenever the SFDIF flag is set (see Section 24.3.2.8) 1 An interrupt will be requested whenever the SFDIF flag is set (see Section 24.3.2.8)

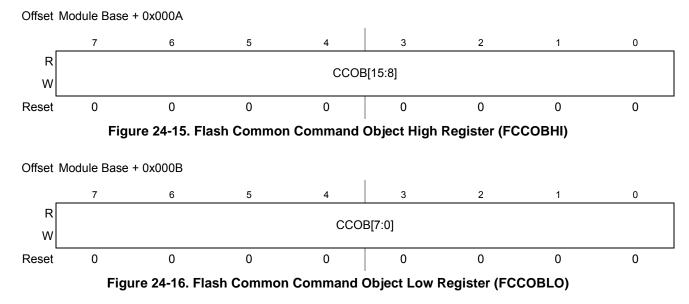
24.3.2.7 Flash Status Register (FSTAT)

The FSTAT register reports the operational status of the Flash module.

Offset Module Base + 0x0006

Figure 24-11. Flash Status Register (FSTAT)

¹ Reset value can deviate from the value shown if a double bit fault is detected during the reset sequence (see Section 24.6).


CCIF, ACCERR, and FPVIOL bits are readable and writable, MGBUSY and MGSTAT bits are readable but not writable, while remaining bits read 0 and are not writable.

DPS[4:0]	Global Address Range	Protected Size				
00000	0x0_0400 - 0x0_041F	32 bytes				
00001	0x0_0400 - 0x0_043F	64 bytes				
00010	0x0_0400 – 0x0_045F	96 bytes				
00011	0x0_0400 – 0x0_047F	128 bytes				
00100	0x0_0400 - 0x0_049F	160 bytes				
00101	0x0_0400 – 0x0_04BF	192 bytes				
The Protection Size goes on enlarging in step of 32 bytes, for each DPS value increasing of one.						
01111 - to - 11111	512 bytes					

Table 24-21. EEPROM Protection Address Range

24.3.2.11 Flash Common Command Object Register (FCCOB)

The FCCOB is an array of six words addressed via the CCOBIX index found in the FCCOBIX register. Byte wide reads and writes are allowed to the FCCOB register.

24.3.2.11.1 FCCOB - NVM Command Mode

NVM command mode uses the indexed FCCOB register to provide a command code and its relevant parameters to the Memory Controller. The user first sets up all required FCCOB fields and then initiates

26.4.6.13 Set Field Margin Level Command

The Set Field Margin Level command, valid in special modes only, causes the Memory Controller to set the margin level specified for future read operations of the P-Flash or EEPROM block.

Upon clearing CCIF to launch the Set Field Margin Level command, the Memory Controller will set the Table 26-57. Set Field Margin Level Command FCCOB Requirements

CCOBIX[2:0]	FCCOB Parameters				
000	0x0E	Flash block selection code [1:0]. See Table 26-34			
001	Margin level setting.				

field margin level for the targeted block and then set the CCIF flag.

NOTE

When the EEPROM block is targeted, the EEPROM field margin levels are applied only to the EEPROM reads. However, when the P-Flash block is targeted, the P-Flash field margin levels are applied to both P-Flash and EEPROM reads. It is not possible to apply field margin levels to the P-Flash block only.

Valid margin level settings for the Set Field Margin Level command are defined in Table 26-58.

CCOB (CCOBIX=001)	Level Description
0x0000	Return to Normal Level
0x0001	User Margin-1 Level ¹
0x0002	User Margin-0 Level ²
0x0003	Field Margin-1 Level ¹
0x0004	Field Margin-0 Level ²

Table 26-58. Valid Set Field Margin Level Settings

¹ Read margin to the erased state

² Read margin to the programmed state

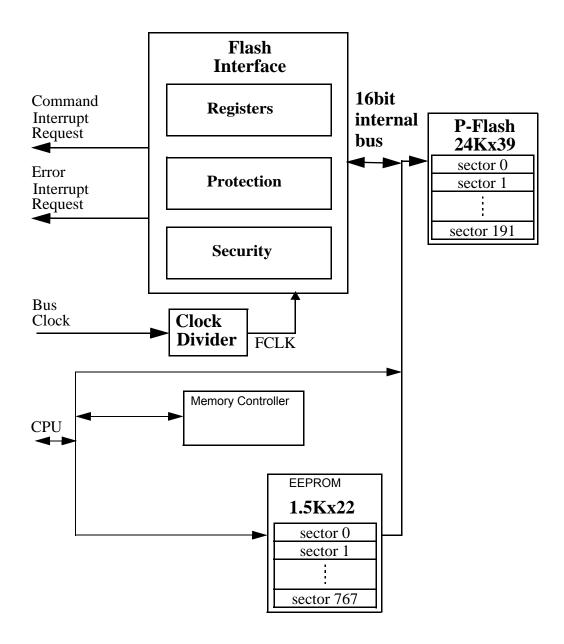


Figure 28-1. FTMRG96K1 Block Diagram

28.2 External Signal Description

The Flash module contains no signals that connect off-chip.

8. Reset the MCU

29.5.3 Mode and Security Effects on Flash Command Availability

The availability of Flash module commands depends on the MCU operating mode and security state as shown in Table 29-27.

29.6 Initialization

On each system reset the flash module executes an initialization sequence which establishes initial values for the Flash Block Configuration Parameters, the FPROT and DFPROT protection registers, and the FOPT and FSEC registers. The initialization routine reverts to built-in default values that leave the module in a fully protected and secured state if errors are encountered during execution of the reset sequence. If a double bit fault is detected during the reset sequence, both MGSTAT bits in the FSTAT register will be set.

CCIF is cleared throughout the initialization sequence. The Flash module holds off all CPU access for a portion of the initialization sequence. Flash reads are allowed once the hold is removed. Completion of the initialization sequence is marked by setting CCIF high which enables user commands.

If a reset occurs while any Flash command is in progress, that command will be immediately aborted. The state of the word being programmed or the sector/block being erased is not guaranteed.

All VDDX pins are internally connected by metal.

All VSSX pins are internally connected by metal.

VDDA, VDDX and VSSA, VSSX are connected by diodes for ESD protection.

NOTE

In the following context V_{DD35} is used for either VDDA, VDDR, and VDDX; V_{SS35} is used for either VSSA and VSSX unless otherwise noted.

 I_{DD35} denotes the sum of the currents flowing into the VDDA, VDDX and VDDR pins.

A.1.3 Pins

There are four groups of functional pins.

A.1.3.1 I/O Pins

The I/O pins have a level in the range of 3.13V to 5.5V. This class of pins is comprised of all port I/O pins, the analog inputs, BKGD and the RESET pins. Some functionality may be disabled.

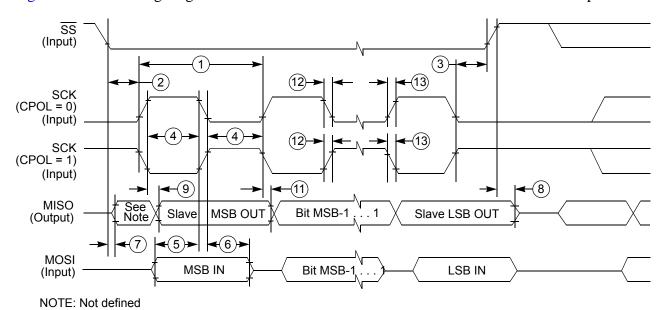
A.1.3.2 Analog Reference

This group consists of the VRH pin.

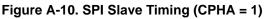
A.1.3.3 Oscillator

The pins EXTAL, XTAL dedicated to the oscillator have a nominal 1.8V level.

A.1.3.4 TEST


This pin is used for production testing only. The TEST pin must be tied to ground in all applications.

A.1.4 Current Injection


Power supply must maintain regulation within operating V_{DD35} or V_{DD} range during instantaneous and operating maximum current conditions. If positive injection current ($V_{in} > V_{DD35}$) is greater than I_{DD35} , the injection current may flow out of V_{DD35} and could result in external power supply going out of regulation. Ensure external V_{DD35} load will shunt current greater than maximum injection current. This will be the greatest risk when the MCU is not consuming power; e.g., if no system clock is present, or if clock rate is very low which would reduce overall power consumption.

A.1.5 Absolute Maximum Ratings

Absolute maximum ratings are stress ratings only. A functional operation under or outside those maxima is not guaranteed. Stress beyond those limits may affect the reliability or cause permanent damage of the device.

In Figure A-10 the timing diagram for slave mode with transmission format CPHA = 1 is depicted.

0x00A0-0x0C7 Pulse-Width-Modulator (PWM)

Address	Name		Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0x00A0	PWME	R W	PWME7	PWME6	PWME5	PWME4	PWME3	PWME2	PWME1	PWME0
0x00A1	PWMPOL	R W	PPOL7	PPOL6	PPOL5	PPOL4	PPOL3	PPOL2	PPOL1	PPOL0
0x00A2	PWMCLK	R W	PCLK7	PCLKL6	PCLK5	PCLK4	PCLK3	PCLK2	PCLK1	PCLK0
0x00A3	PWMPRCLK	R W	0	PCKB2	PCKB1	PCKB0	0	PCKA2	PCKA1	PCKA0
0x00A4	PWMCAE	R W	CAE7	CAE6	CAE5	CAE4	CAE3	CAE2	CAE1	CAE0
0x00A5	PWMCTL	R W	CON67	CON45	CON23	CON01	PSWAI	PFRZ	0	0
0x00A6	PWMCLKAB	R W	PCLKAB7	PCLKAB6	PCLKAB5	PCLKAB4	PCLKAB3	PCLKAB2	PCLKAB1	PCLKAB0
0x00A7	Reserved	R W	0	0	0	0	0	0	0	0
0x00A8	PWMSCLA	R W	Bit 7	6	5	4	3	2	1	Bit 0
0x00A9	PWMSCLB	R W	Bit 7	6	5	4	3	2	1	Bit 0
0x00AA - 0x00AB	Reserved	R W	0	0	0	0	0	0	0	0
0x00AC	PWMCNT0	R W	Bit 7 0	6 0	5 0	4 0	3 0	2 0	1 0	Bit 0 0
		R	Bit 7	6	5	4	3	2	1	Bit 0
0x00AD	PWMCNT1	W	0	0	0	0	0	0	0	0
0x00AE	PWMCNT2	R	Bit 7	6	5	4	3	2	1	Bit 0
UXUUAL	PWWCNTZ	W	0	0	0	0	0	0	0	0
0x00AF	PWMCNT3	R	Bit 7	6	5	4	3	2	1	Bit 0
0/00/1		W	0	0	0	0	0	0	0	0
0x0B0	PWMCNT4	R	Bit 7	6	5	4	3	2	1	Bit 0
	_	W	0	0	0	0	0	0	0	0
0x00B1	PWMCNT5	R	Bit 7	6	5	4	3	2	1	Bit 0
		W		0	0	0	0	0	0	0
0x00B2	PWMCNT6	R	Bit 7	6	5	4	3	2	1	Bit 0
		W	0	0	0	0	0	0	0	0
0x00B3	PWMCNT7	R	Bit 7	6	5	4	3	2	1	Bit 0
0x00B4	PWMPER0	W R W	0 Bit 7	0	0 5	0	0 3	0	0	0 Bit 0
0x00B5	PWMPER1	R W	Bit 7	6	5	4	3	2	1	Bit 0
0x00B6	PWMPER2	R W	Bit 7	6	5	4	3	2	1	Bit 0

MC9S12G Family Reference Manual Rev.1.27