

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	12V1
Core Size	16-Bit
Speed	25MHz
Connectivity	IrDA, LINbus, SCI, SPI
Peripherals	LVD, POR, PWM, WDT
Number of I/O	40
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	3.13V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	48-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/s9s12gn32f0vlf

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

	Function <lowestpriorityhighest></lowestpriorityhighest>					Power	Internal Pull Resistor	
Package Pin	Pin	2nd Func.	3rd Func.	4th Func	5th Func	Supply	CTRL	Reset State
28	PT4	IOC4	—	_	—	V _{DDX}	PERT/PPST	Disabled
29	PT3	IOC3	—	—	—	V _{DDX}	PERT/PPST	Disabled
30	PT2	IOC2	—	_	—	V _{DDX}	PERT/PPST	Disabled
31	PT1	IOC1	ĪRQ	_	—	V _{DDX}	PERT/PPST	Disabled
32	PT0	IOC0	XIRQ	_	—	V _{DDX}	PERT/PPST	Disabled
33	PAD0	KWAD0	AN0	_	—	V _{DDA}	PER1AD/PPS1AD	Disabled
34	PAD8	KWAD8	AN8	_	—	V _{DDA}	PER0AD/PPS0AD	Disabled
35	PAD1	KWAD1	AN1	_	—	V _{DDA}	PER1AD/PPS1AD	Disabled
36	PAD9	KWAD9	AN9	ACMPO	—	V _{DDA}	PER0ADPPS0AD	Disabled
37	PAD2	KWAD2	AN2	_	_	V _{DDA}	PER1AD/PPS1AD	Disabled
38	PAD10	KWAD10	AN10	ACMPP		V _{DDA}	PER0AD/PPS0AD	Disabled
39	PAD3	KWAD3	AN3	_	_	V _{DDA}	PER1AD/PPS1AD	Disabled
40	PAD11	KWAD11	AN11	ACMPM		V _{DDA}	PER0AD/PPS0AD	Disabled
41	PAD4	KWAD4	AN4	_	—	V _{DDA}	PER1AD/PPS1AD	Disabled
42	PAD12	KWAD12	—	_	—	V _{DDA}	PER0AD/PPS0AD	Disabled
43	PAD5	KWAD5	AN5	_	_	V _{DDA}	PER1AD/PPS1AD	Disabled
44	PAD13	KWAD13	—	_	—	V _{DDA}	PER0AD/PPS0AD	Disabled
45	PAD6	KWAD6	AN6	_	—	V _{DDA}	PER1AD/PPS1AD	Disabled
46	PAD14	KWAD14	—	_	—	V _{DDA}	PER0AD/PPS0AD	Disabled
47	PAD7	KWAD7	AN7	_	—	V _{DDA}	PER1AD/PPS1AD	Disabled
48	PAD15	KWAD15	—	_	—	V _{DDA}	PER0AD/PPS0AD	Disabled
49	VRH	_		_	_	_	_	_
50	VDDA	_		_	_	_	_	_
51	VSSA	_		_	_	_	_	_
52	PS0	RXD0		_	_	V _{DDX}	PERS/PPSS	Up
53	PS1	TXD0		_	_	V _{DDX}	PERS/PPSS	Up
54	PS2	RXD1	_	_	—	V _{DDX}	PERS/PPSS	Up
55	PS3	TXD1	_	—	—	V _{DDX}	PERS/PPSS	Up
56	PS4	MISO0	—	_	_	V _{DDX}	PERS/PPSS	Up

Table 1-17. 64-Pin LQFP Pinout for S12G48 and S12G64

Port Integration Module (S12GPIMV1)

Global Address Register Name		Bit 7	6	5	4	3	2	1	Bit 0
0x0249	R	PTIS7	PTIS6	PTIS5	PTIS4	PTIS3	PTIS2	PTIS1	PTIS0
PTIS W									
0x024A DDRS	R W	DDRS7	DDRS6	DDRS5	DDRS4	DDRS3	DDRS2	DDRS1	DDRS0
0x024B	R	0	0	0	0	0	0	0	0
Reserved	W								
0x024C PERS	R W	PERS7	PERS6	PERS5	PERS4	PERS3	PERS2	PERS1	PERS0
0x024D PPSS	R W	PPSS7	PPSS6	PPSS5	PPSS4	PPSS3	PPSS2	PPSS1	PPSS0
0x024E WOMS	R W	WOMS7	WOMS6	WOMS5	WOMS4	WOMS3	WOMS2	WOMS1	WOMS0
0x024F PRR0	R W	PRR0P3	PRR0P2	PRR0T31	PRR0T30	PRR0T21	PRR0T20	PRR0S1	PRR0S0
0x0250 PTM	R W	0	0	0	0	PTM3	PTM2	PTM1	PTM0
0x0251	R	0	0	0	0	PTIM3	PTIM2	PTIM1	PTIM0
PTIM	W								
0x0252	R	0	0	0	0	555140		DDRM1	
DDRM	W					DDRM3	DDRM2		DDRM0
0x0253	R	0	0	0	0	0	0	0	0
Reserved	W								
0x0254	R	0	0	0	0		DEDMO		DEDMO
PERM						PERMS	PERM2	PERM1	PERM0
0x0255	R	0	0	0	0	DDOM2	DDCM2	DDOM4	DDCMO
PPSM	W					FFSIMS	FFOIVIZ	FFOINT	FF3IVIU
0x0256	R	0	0	0	0				
WOMM	W					VVOIMINI5	VVOIVIIVIZ		VVOIVIIVIO
0x0257 PKGCR	R W	APICLKS7	0	0	0	0	PKGCR2	PKGCR1	PKGCR0
	[= Unimplen	nented or Re	served				

Table 2-20. Block Register Map (G2) (continued)

Figure 7-11 shows the ACK handshake protocol in a command level timing diagram. The READ_BYTE instruction is used as an example. First, the 8-bit instruction opcode is sent by the host, followed by the address of the memory location to be read. The target BDM decodes the instruction. A bus cycle is grabbed (free or stolen) by the BDM and it executes the READ_BYTE operation. Having retrieved the data, the BDM issues an ACK pulse to the host controller, indicating that the addressed byte is ready to be retrieved. After detecting the ACK pulse, the host initiates the byte retrieval process. Note that data is sent in the form of a word and the host needs to determine which is the appropriate byte based on whether the address was odd or even.

Differently from the normal bit transfer (where the host initiates the transmission), the serial interface ACK handshake pulse is initiated by the target MCU by issuing a negative edge in the BKGD pin. The hardware handshake protocol in Figure 7-10 specifies the timing when the BKGD pin is being driven, so the host should follow this timing constraint in order to avoid the risk of an electrical conflict in the BKGD pin.

NOTE

The only place the BKGD pin can have an electrical conflict is when one side is driving low and the other side is issuing a speedup pulse (high). Other "highs" are pulled rather than driven. However, at low rates the time of the speedup pulse can become lengthy and so the potential conflict time becomes longer as well.

The ACK handshake protocol does not support nested ACK pulses. If a BDM command is not acknowledge by an ACK pulse, the host needs to abort the pending command first in order to be able to issue a new BDM command. When the CPU enters wait or stop while the host issues a hardware command (e.g., WRITE_BYTE), the target discards the incoming command due to the wait or stop being detected. Therefore, the command is not acknowledged by the target, which means that the ACK pulse will not be issued in this case. After a certain time the host (not aware of stop or wait) should decide to abort any possible pending ACK pulse in order to be sure a new command can be issued. Therefore, the protocol provides a mechanism in which a command, and its corresponding ACK, can be aborted.

Since the host knows the target serial clock frequency, the SYNC command (used to abort a command) does not need to consider the lower possible target frequency. In this case, the host could issue a SYNC very close to the 128 serial clock cycles length. Providing a small overhead on the pulse length in order to assure the SYNC pulse will not be misinterpreted by the target. See Section 7.4.9, "SYNC — Request Timed Reference Pulse".

Figure 7-12 shows a SYNC command being issued after a READ_BYTE, which aborts the READ_BYTE command. Note that, after the command is aborted a new command could be issued by the host computer.

NOTE

Figure 7-13 shows a conflict between the ACK pulse and the SYNC request pulse. This conflict could occur if a POD device is connected to the target BKGD pin and the target is already in debug active mode. Consider that the target CPU is executing a pending BDM command at the exact moment the POD is being connected to the BKGD pin. In this case, an ACK pulse is issued along with the SYNC command. In this case, there is an electrical conflict between the ACK speedup pulse and the SYNC pulse. Since this is not a probable situation, the protocol does not prevent this conflict from happening.

MC9S12G Family Reference Manual Rev.1.27

16.1 Introduction

The ADC12B16C is a 16-channel, 12-bit, multiplexed input successive approximation analog-to-digital converter. Refer to device electrical specifications for ATD accuracy.

16.1.1 Features

- 8-, 10-, or 12-bit resolution.
- Automatic return to low power after conversion sequence
- Automatic compare with interrupt for higher than or less/equal than programmable value
- Programmable sample time.
- Left/right justified result data.
- External trigger control.
- Sequence complete interrupt.
- Analog input multiplexer for 8 analog input channels.
- Special conversions for VRH, VRL, (VRL+VRH)/2.
- 1-to-16 conversion sequence lengths.
- Continuous conversion mode.
- Multiple channel scans.
- Configurable external trigger functionality on any AD channel or any of four additional trigger inputs. The four additional trigger inputs can be chip external or internal. Refer to device specification for availability and connectivity.
- Configurable location for channel wrap around (when converting multiple channels in a sequence).

Serial Communication Interface (S12SCIV5)

indicating that the received byte can be read. If the receive interrupt enable bit, RIE, in SCI control register 2 (SCICR2) is also set, the RDRF flag generates an RDRF interrupt request.

20.4.6.3 Data Sampling

The RT clock rate. The RT clock is an internal signal with a frequency 16 times the baud rate. To adjust for baud rate mismatch, the RT clock (see Figure 20-21) is re-synchronized:

- After every start bit
- After the receiver detects a data bit change from logic 1 to logic 0 (after the majority of data bit samples at RT8, RT9, and RT10 returns a valid logic 1 and the majority of the next RT8, RT9, and RT10 samples returns a valid logic 0)

To locate the start bit, data recovery logic does an asynchronous search for a logic 0 preceded by three logic 1s. When the falling edge of a possible start bit occurs, the RT clock begins to count to 16.

Figure 20-21. Receiver Data Sampling

To verify the start bit and to detect noise, data recovery logic takes samples at RT3, RT5, and RT7. Figure 20-17 summarizes the results of the start bit verification samples.

RT3, RT5, and RT7 Samples	Start Bit Verification	Noise Flag
000	Yes	0
001	Yes	1
010	Yes	1
011	No	0
100	Yes	1
101	No	0
110	No	0
111	No	0

Table 20-17	. Start Bit	Verification
-------------	-------------	--------------

If start bit verification is not successful, the RT clock is reset and a new search for a start bit begins.

MC9S12G Family Reference Manual Rev.1.27

Serial Peripheral Interface (S12SPIV5)

Figure 21-10. Reception with SPIF serviced too late

21.4 Functional Description

The SPI module allows a duplex, synchronous, serial communication between the MCU and peripheral devices. Software can poll the SPI status flags or SPI operation can be interrupt driven.

The SPI system is enabled by setting the SPI enable (SPE) bit in SPI control register 1. While SPE is set, the four associated SPI port pins are dedicated to the SPI function as:

- Slave select (\overline{SS})
- Serial clock (SCK)
- Master out/slave in (MOSI)
- Master in/slave out (MISO)

23.3.2.18 Output Compare Pin Disconnect Register(OCPD)

Module Base + 0x002C

Figure 23-28. Output Compare Pin Disconnect Register (OCPD)

Read: Anytime

Write: Anytime

All bits reset to zero.

Table 23-22. OCPD Field Description

Note: Writing to unavailable bits has no effect. Reading from unavailable bits return a zero.

Field	Description
7:0 OCPD[7:0]	 Output Compare Pin Disconnect Bits Enables the timer channel port. Output Compare action will occur on the channel pin. These bits do not affect the input capture or pulse accumulator functions. Disables the timer channel port. Output Compare action will not occur on the channel pin, but the output compare flag still become set.

23.3.2.19 Precision Timer Prescaler Select Register (PTPSR)

Module Base + 0x002E

	7	6	5	4	3	2	1	0
R W	PTPS7	PTPS6	PTPS5	PTPS4	PTPS3	PTPS2	PTPS1	PTPS0
Reset	0	0	0	0	0	0	0	0

Figure 23-29. Precision Timer Prescaler Select Register (PTPSR)

Read: Anytime

Write: Anytime

All bits reset to zero.

24.4.6 Flash Command Description

This section provides details of all available Flash commands launched by a command write sequence. The ACCERR bit in the FSTAT register will be set during the command write sequence if any of the following illegal steps are performed, causing the command not to be processed by the Memory Controller:

- Starting any command write sequence that programs or erases Flash memory before initializing the FCLKDIV register
- Writing an invalid command as part of the command write sequence
- For additional possible errors, refer to the error handling table provided for each command

If a Flash block is read during execution of an algorithm (CCIF = 0) on that same block, the read operation will return invalid data if both flags SFDIF and DFDIF are set. If the SFDIF or DFDIF flags were not previously set when the invalid read operation occurred, both the SFDIF and DFDIF flags will be set.

If the ACCERR or FPVIOL bits are set in the FSTAT register, the user must clear these bits before starting any command write sequence (see Section 24.3.2.7).

CAUTION

A Flash word or phrase must be in the erased state before being programmed. Cumulative programming of bits within a Flash word or phrase is not allowed.

24.4.6.1 Erase Verify All Blocks Command

The Erase Verify All Blocks command will verify that all P-Flash and EEPROM blocks have been erased.

Table 24-29. Erase Verify All Blocks Command FCCOB Requirements

CCOBIX[2:0]	FCCOB Parameters		
000	0x01	Not required	

Upon clearing CCIF to launch the Erase Verify All Blocks command, the Memory Controller will verify that the entire Flash memory space is erased. The CCIF flag will set after the Erase Verify All Blocks operation has completed. If all blocks are not erased, it means blank check failed, both MGSTAT bits will be set.

Register	Error Bit	Error Condition
	ACCERR	Set if CCOBIX[2:0] != 000 at command launch
	FPVIOL	None
FSTAT	MGSTAT1	Set if any errors have been encountered during the read ¹ or if blank check failed .
	MGSTAT0	Set if any non-correctable errors have been encountered during the read or if blank check failed.

¹ As found in the memory map for FTMRG32K1.

32 KByte Flash Module (S12FTMRG32K1V1)

FCMD	Command	Function on P-Flash Memory
0x02	Erase Verify Block	Verify that a P-Flash block is erased.
0x03	Erase Verify P-Flash Section	Verify that a given number of words starting at the address provided are erased.
0x04	Read Once	Read a dedicated 64 byte field in the nonvolatile information register in P-Flash block that was previously programmed using the Program Once command.
0x06	Program P-Flash	Program a phrase in a P-Flash block.
0x07	Program Once	Program a dedicated 64 byte field in the nonvolatile information register in P-Flash block that is allowed to be programmed only once.
0x08	Erase All Blocks	Erase all P-Flash (and EEPROM) blocks. An erase of all Flash blocks is only possible when the FPLDIS, FPHDIS, and FPOPEN bits in the FPROT register and the DPOPEN bit in the EEPROT register are set prior to launching the command.
0x09	Erase Flash Block	Erase a P-Flash (or EEPROM) block. An erase of the full P-Flash block is only possible when FPLDIS, FPHDIS and FPOPEN bits in the FPROT register are set prior to launching the command.
0x0A	Erase P-Flash Sector	Erase all bytes in a P-Flash sector.
0x0B	Unsecure Flash	Supports a method of releasing MCU security by erasing all P-Flash (and EEPROM) blocks and verifying that all P-Flash (and EEPROM) blocks are erased.
0x0C	Verify Backdoor Access Key	Supports a method of releasing MCU security by verifying a set of security keys.
0x0D	Set User Margin Level	Specifies a user margin read level for all P-Flash blocks.
0x0E	Set Field Margin Level	Specifies a field margin read level for all P-Flash blocks (special modes only).

Table 25-28. P-Flash Commands

25.4.4.5 EEPROM Commands

Table 25-29 summarizes the valid EEPROM commands along with the effects of the commands on the EEPROM block.

Table	25-29.	EEPROM	Commands
-------	--------	--------	----------

FCMD	Command	Function on EEPROM Memory	
0x01	Erase Verify All Blocks	Verify that all EEPROM (and P-Flash) blocks are erased.	
0x02	Erase Verify Block	Verify that the EEPROM block is erased.	

48 KByte Flash Module (S12FTMRG48K1V1)

All bits in the FRSV3 register read 0 and are not writable.

26.3.2.15 Flash Reserved4 Register (FRSV4)

This Flash register is reserved for factory testing.

All bits in the FRSV4 register read 0 and are not writable.

26.3.2.16 Flash Option Register (FOPT)

The FOPT register is the Flash option register.

Figure 26-22. Flash Option Register (FOPT)

¹ Loaded from IFR Flash configuration field, during reset sequence.

All bits in the FOPT register are readable but are not writable.

During the reset sequence, the FOPT register is loaded from the Flash nonvolatile byte in the Flash configuration field at global address $0x_3$ _FF0E located in P-Flash memory (see Table 26-4) as indicated by reset condition F in Figure 26-22. If a double bit fault is detected while reading the P-Flash phrase containing the Flash nonvolatile byte during the reset sequence, all bits in the FOPT register will be set.

Register	Register Error Bit Error Condition		
	ACCERR	Set if CCOBIX[2:0] != 001 at command launch	
		Set if command not available in current mode (see Table 26-27)	
		Set if an invalid global address [17:16] is supplied see Table 26-3)	
FSTAT		Set if a misaligned phrase address is supplied (global address [2:0] != 000)	
	FPVIOL	Set if the selected P-Flash sector is protected	
	MGSTAT1	Set if any errors have been encountered during the verify operation	
	MGSTAT0	Set if any non-correctable errors have been encountered during the verify operation	

Table 26-49. Erase P-Flash Sector Command Error Handling

26.4.6.10 Unsecure Flash Command

The Unsecure Flash command will erase the entire P-Flash and EEPROM memory space and, if the erase is successful, will release security.

 Table 26-50. Unsecure Flash Command FCCOB Requirements

CCOBIX[2:0]	FCCOB Parameters	
000	0x0B	Not required

Upon clearing CCIF to launch the Unsecure Flash command, the Memory Controller will erase the entire P-Flash and EEPROM memory space and verify that it is erased. If the Memory Controller verifies that the entire Flash memory space was properly erased, security will be released. If the erase verify is not successful, the Unsecure Flash operation sets MGSTAT1 and terminates without changing the security state. During the execution of this command (CCIF=0) the user must not write to any Flash module register. The CCIF flag is set after the Unsecure Flash operation has completed.

Register Error Bit Error Condition		Error Condition
	ACCERR	Set if CCOBIX[2:0] != 000 at command launch
		Set if command not available in current mode (see Table 26-27)
FSTAT	FPVIOL	Set if any area of the P-Flash or EEPROM memory is protected
-	MGSTAT1	Set if any errors have been encountered during the verify operation
	MGSTAT0	Set if any non-correctable errors have been encountered during the verify operation

Table 26-51. Unsecure Flash Command Error Handling

26.4.6.11 Verify Backdoor Access Key Command

The Verify Backdoor Access Key command will only execute if it is enabled by the KEYEN bits in the FSEC register (see Table 26-10). The Verify Backdoor Access Key command releases security if user-supplied keys match those stored in the Flash security bytes of the Flash configuration field (see

26.4.6.13 Set Field Margin Level Command

The Set Field Margin Level command, valid in special modes only, causes the Memory Controller to set the margin level specified for future read operations of the P-Flash or EEPROM block.

Upon clearing CCIF to launch the Set Field Margin Level command, the Memory Controller will set the Table 26-57. Set Field Margin Level Command FCCOB Requirements

CCOBIX[2:0]	FCCOB Parameters		
000	0x0E	Flash block selection code [1:0]. See Table 26-34	
001	Margin level setting.		

field margin level for the targeted block and then set the CCIF flag.

NOTE

When the EEPROM block is targeted, the EEPROM field margin levels are applied only to the EEPROM reads. However, when the P-Flash block is targeted, the P-Flash field margin levels are applied to both P-Flash and EEPROM reads. It is not possible to apply field margin levels to the P-Flash block only.

Valid margin level settings for the Set Field Margin Level command are defined in Table 26-58.

CCOB (CCOBIX=001)	Level Description
0x0000	Return to Normal Level
0x0001	User Margin-1 Level ¹
0x0002	User Margin-0 Level ²
0x0003	Field Margin-1 Level ¹
0x0004	Field Margin-0 Level ²

Table 26-58. Valid Set Field Margin Level Settings

¹ Read margin to the erased state

² Read margin to the programmed state

64 KByte Flash Module (S12FTMRG64K1V1)

FCMD	Command	Function on P-Flash Memory		
0x02	Erase Verify Block	Verify that a P-Flash block is erased.		
0x03	Erase Verify P-Flash Section	Verify that a given number of words starting at the address provided are erased.		
0x04	Read Once	Read a dedicated 64 byte field in the nonvolatile information register in P-Flash block that was previously programmed using the Program Once command.		
0x06	Program P-Flash	Program a phrase in a P-Flash block.		
0x07	Program Once	Program a dedicated 64 byte field in the nonvolatile information register in P-Flash block that is allowed to be programmed only once.		
0x08Erase All BlocksErase all P-Flash (and EEPROM) blocks. An erase of all Flash blocks is only possibl bits in the FPROT register and the DPOPE launching the command.		Erase all P-Flash (and EEPROM) blocks. An erase of all Flash blocks is only possible when the FPLDIS, FPHDIS, and FPOPEN bits in the FPROT register and the DPOPEN bit in the EEPROT register are set prior to launching the command.		
0x09	Erase Flash Block	Erase a P-Flash (or EEPROM) block. An erase of the full P-Flash block is only possible when FPLDIS, FPHDIS and FPOPEN bits in the FPROT register are set prior to launching the command.		
0x0A	0x0A Erase P-Flash Erase all bytes in a P-Flash sector. Sector			
0x0B	Unsecure Flash	Supports a method of releasing MCU security by erasing all P-Flash (and EEPROM) blocks and verifying that all P-Flash (and EEPROM) blocks are erased.		
0x0C	Verify Backdoor Access Key	Supports a method of releasing MCU security by verifying a set of security keys.		
0x0D	Set User Margin Level	Specifies a user margin read level for all P-Flash blocks.		
0x0E	Set Field Margin Level	Specifies a field margin read level for all P-Flash blocks (special modes only).		

Table 27-28. P-Flash Commands

27.4.4.5 EEPROM Commands

Table 27-29 summarizes the valid EEPROM commands along with the effects of the commands on the EEPROM block.

Table 27-29	. EEPROM	Commands
-------------	----------	----------

FCMD	Command	Function on EEPROM Memory	
0x01	Erase Verify All Blocks	Verify that all EEPROM (and P-Flash) blocks are erased.	
0x02	Erase Verify Block	Verify that the EEPROM block is erased.	

96 KByte Flash Module (S12FTMRG96K1V1)

Global Address	Size (Bytes)	Description
0x2_8000 – 0x3_FFFF	96 K	P-Flash Block Contains Flash Configuration Field (see Table 28-4)

The FPROT register, described in Section 28.3.2.9, can be set to protect regions in the Flash memory from accidental program or erase. Three separate memory regions, one growing upward from global address 0x3_8000 in the Flash memory (called the lower region), one growing downward from global address 0x3_FFFF in the Flash memory (called the higher region), and the remaining addresses in the Flash memory, can be activated for protection. The Flash memory addresses covered by these protectable regions are shown in the P-Flash memory map. The higher address region is mainly targeted to hold the boot loader code since it covers the vector space. Default protection settings as well as security information that allows the MCU to restrict access to the Flash module are stored in the Flash configuration field as described in Table 28-4.

Table 28-4. Flash Configuration Field

Global Address	Size (Bytes)	Description	
0x3_FF00-0x3_FF07 8		Backdoor Comparison Key Refer to Section 28.4.6.11, "Verify Backdoor Access Key Command," and Section 28.5.1, "Unsecuring the MCU using Backdoor Key Access"	
0x3_FF08-0x3_FF0B ¹	08-0x3_FF0B ¹ 4 Reserved		
0x3_FF0C ¹	1	P-Flash Protection byte. Refer to Section 28.3.2.9, "P-Flash Protection Register (FPROT)"	
0x3_FF0D ¹	0x3_FF0D ¹ 1 EEPROM Protection byte. Refer to Section 28.3.2.10, "EEPROM Protection Register (EEPROT		
0x3_FF0E ¹	1	Flash Nonvolatile byte Refer to Section 28.3.2.16, "Flash Option Register (FOPT)"	
0x3_FF0F ¹ 1 Flash So Refer to		Flash Security byte Refer to Section 28.3.2.2, "Flash Security Register (FSEC)"	

¹ 0x3FF08-0x3_FF0F form a Flash phrase and must be programmed in a single command write sequence. Each byte in the 0x3_FF08 - 0x3_FF0B reserved field should be programmed to 0xFF.

28.3.2.9.1 P-Flash Protection Restrictions

The general guideline is that P-Flash protection can only be added and not removed. Table 28-21 specifies all valid transitions between P-Flash protection scenarios. Any attempt to write an invalid scenario to the FPROT register will be ignored. The contents of the FPROT register reflect the active protection scenario. See the FPHS and FPLS bit descriptions for additional restrictions.

From Protection Scenario	To Protection Scenario ¹								
	0	1	2	3	4	5	6	7	
0	Х	Х	Х	Х					
1		Х		Х					
2			Х	Х					
3				Х					
4				Х	Х				
5			Х	Х	Х	Х			
6		Х		Х	Х		Х		
7	Х	Х	Х	Х	Х	Х	Х	Х	

Table 28-21. P-Flash Protection Scenario Transitions

¹ Allowed transitions marked with X, see Figure 28-14 for a definition of the scenarios.

28.3.2.10 EEPROM Protection Register (EEPROT)

The EEPROT register defines which EEPROM sectors are protected against program and erase operations.

¹ Loaded from IFR Flash configuration field, during reset sequence.

The (unreserved) bits of the EEPROT register are writable with the restriction that protection can be added but not removed. Writes must increase the DPS value and the DPOPEN bit can only be written from 1 (protection disabled) to 0 (protection enabled). If the DPOPEN bit is set, the state of the DPS bits is irrelevant.

During the reset sequence, fields DPOPEN and DPS of the EEPROT register are loaded with the contents of the EEPROM protection byte in the Flash configuration field at global address 0x3_FF0D located in

96 KByte Flash Module (S12FTMRG96K1V1)

CCOBIX[2:0]	Byte	FCCOB Parameter Fields (NVM Command Mode)			
010	HI	Data 0 [15:8]			
	LO	Data 0 [7:0]			
011	HI	Data 1 [15:8]			
	LO	Data 1 [7:0]			
100	HI	Data 2 [15:8]			
100	LO	Data 2 [7:0]			
101	HI	Data 3 [15:8]			
101	LO	Data 3 [7:0]			

Table 28-24. FCCOB - NVM Command Mode (Typical Usage)

28.3.2.12 Flash Reserved1 Register (FRSV1)

This Flash register is reserved for factory testing.

Offset Module Base + 0x000C

Offset Module Base + 0x000D

Figure 28-18. Flash Reserved1 Register (FRSV1)

All bits in the FRSV1 register read 0 and are not writable.

28.3.2.13 Flash Reserved2 Register (FRSV2)

This Flash register is reserved for factory testing.

Figure 28-19. Flash Reserved2 Register (FRSV2)

All bits in the FRSV2 register read 0 and are not writable.

28.3.2.14 Flash Reserved3 Register (FRSV3)

This Flash register is reserved for factory testing.

A.12 Electrical Specification for Voltage Regulator

Num	С	Characteristic	Symbol	Min	Typical	Мах	Unit
1	Р	Input Voltages	V _{VDDR,A}	3.13	—	5.5	V
2	Р	V _{DDA} Low Voltage Interrupt Assert Level ¹ V _{DDA} Low Voltage Interrupt Deassert Level	V _{LVIA} V _{LVID}	4.04 4.19	4.23 4.38	4.40 4.49	V V
3	Р	V _{DDX} Low Voltage Reset Deassert ^{2 3 4}	V _{LVRXD}		3.05	3.13	V
4	Р	V _{DDX} Low Voltage Reset Assert ^{2 3 4}	V _{LVRXA}	2.95	3.02	—	V
5	т	CPMU ACLK frequency (CPMUACLKTR[5:0] = %000000)	f _{ACLK}	_	10	_	KHz
6	С	Trimmed ACLK internal clock ⁵ Δf / f _{nominal}	df _{ACLK}	- 5%	-	+ 5%	—
7	D	The first period after enabling the counter by APIFE might be reduced by ACLK start up delay	t _{sdel}	_	_	100	us
8	D	The first period after enabling the COP might be reduced by ACLK start up delay	t _{sdel}	_	_	100	us
9	Р	Output Voltage Flash Full Performance Mode Reduced Power Mode (MCU STOP mode)	V _{DDF}	2.6 1.1	2.82 1.6	2.9 1.98	V V
10	С	$\begin{array}{l} V_{DDF} \text{ Voltage Distribution} \\ \text{over input voltage } V_{DDA}{}^6 \\ \text{4.5V} \leq V_{DDA} \leq \text{5.5V}, \ T_A = 27^o \text{C} \\ \text{compared to } V_{DDA} = \text{5.0V} \end{array}$		-5	0	5	mV
11	С	$\begin{array}{l} V_{DDF} \mbox{ Voltage Distribution} \\ \mbox{ over ambient temperature } T_A \\ V_{DDA} = 5V, -40^\circ C \leq T_A \leq 125^\circ C \\ \mbox{ compared to } V_{DDF} \mbox{ production test value} \\ \mbox{ (see A.16, "ADC Conversion Result} \\ \mbox{ Reference"}) \end{array}$	Δ_{VDDF}	-20	-	+20	mV

Table A-47. Voltage Regulator Characteristics (Junction Temperature From –40°C To +150°C)

¹ Monitors VDDA, active only in Full Performance Mode. Indicates I/O & ADC performance degradation due to low supply voltage.

² Device functionality is guaranteed on power down to the LVR assert level

³ Monitors VDDX, active only in Full Performance Mode. MCU is monitored by the POR in RPM (see Figure A-6)

 4 V_{LVRXA} < V_{LVRXD}. The hysteresis is unspecified and untested.

⁵ The ACLK Trimming CPMUACLKTR[5:0] bits must be set so that f_{ACLK}=10KHz.

⁶ VDDR \geq 3.13V

MC9S12G Family Reference Manual Rev.1.27

How to Reach Us:

Home Page:

nxp.com

Web Support

nxp.com/support

Information in this document is provided solely to enable system and software implementers to use NXP products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document. NXP reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does NXP assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in NXP data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each customer application by customer's technical experts. NXP does not convey any license under its patent rights nor the rights of others. NXP sells products pursuant to standard terms and conditions of sale, which can be found at the following address: nxp.com/SalesTermsandConditions.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, COOLFLUX, EMBRACE, GREENCHIP, HITAG, I2C BUS, ICODE, JCOP, LIFE VIBES, MIFARE, MIFARE CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX, MANTIS, MIFARE ULTRALIGHT, MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET, TRENCHMOS, UCODE, Freescale, the Freescale logo, AltiVec, C-5, CodeTEST, CodeWarrior, ColdFire, ColdFire+, C-Ware, the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV, mobileGT, PEG, PowerQUICC, Processor Expert, QorIQ, QorIQ Qonverge, Ready Play, SafeAssure, the SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack, CoreNet, Flexis, MXC, Platform in a Package, QUICC Engine, SMARTMOS, Tower, TurboLink, and UMEMS are trademarks of NXP B.V. All other product or service names are the property of their respective owners. ARM, AMBA, ARM Powered, Artisan, Cortex, Jazelle, Keil, SecurCore, Thumb, TrustZone, and µVision are registered trademarks of ARM Limited (or its subsidiaries) in the EU and/or elsewhere. ARM7, ARM9, ARM11, big.LITTLE, CoreLink, CoreSight, DesignStart, Mali, mbed, NEON, POP, Sensinode, Socrates, ULINK and Versatile are trademarks of ARM Limited (or its subsidiaries) in the EU and/or elsewhere. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. The Power Architecture and Power.org word marks and the Power and Power.org logos and related marks are trademarks and service marks licensed by Power.org.

© 2016 NXP B.V.

