E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	12V1
Core Size	16-Bit
Speed	25MHz
Connectivity	IrDA, LINbus, SCI, SPI
Peripherals	LVD, POR, PWM, WDT
Number of I/O	54
Program Memory Size	48KB (48K x 8)
Program Memory Type	FLASH
EEPROM Size	1.5K x 8
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	3.13V ~ 5.5V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/s9s12gn48f0vlh

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

	Function <lowestpriorityhighest></lowestpriorityhighest>					Power	Internal Pull Resistor	
Package Pin	Pin	2nd Func.	3rd Func.	4th Func	5th Func	Supply	CTRL	Reset State
1	RESET	_	—	_	_	V _{DDX}	PULLUF	þ
2	VDDXR	_	—	_	_	—	_	_
3	VSSX	_	—	—	—	—	_	_
4	PE0 ¹	EXTAL	—	_	_	V _{DDX}	PUCR/PDPEE	Down
5	VSS	_	—		_	—	_	_
6	PE1 ¹	XTAL	—	_	_	V _{DDX}	PUCR/PDPEE	Down
7	TEST	_	—		_	N.A.	RESET pin	Down
8	PJ0	KWJ0	—		_	V _{DDX}	PERJ/PPSJ	Up
9	PJ1	KWJ1	—		_	V _{DDX}	PERJ/PPSJ Up	
10	PJ2	KWJ2	—		_	V _{DDX}	PERJ/PPSJ Up	
11	PJ3	KWJ3	—	_		V _{DDX}	PERJ/PPSJ	Up
12	BKGD	MODC	—		_	V _{DDX}	PUCR/BKPUE	Up
13	PP0	KWP0	ETRIG0	API_EXTC LK	PWM0	V _{DDX}	PERP/PPSP	Disabled
14	PP1	KWP1	ETRIG1	ECLKX2	PWM1	V _{DDX}	PERP/PPSP	Disabled
15	PP2	KWP2	ETRIG2	PWM2	_	V _{DDX}	PERP/PPSP	Disabled
16	PP3	KWP3	ETRIG3	PWM3	—	V _{DDX}	PERP/PPSP	Disabled
17	PP4	KWP4	PWM4	_	_	V _{DDX}	PERP/PPSP	Disabled
18	PP5	KWP5	PWM5		_	V _{DDX}	PERP/PPSP	Disabled
19	PT5	IOC5	—	—	—	V _{DDX}	PERT/PPST	Disabled
20	PT4	IOC4	—	—	—	V _{DDX}	PERT/PPST	Disabled
21	PT3	IOC3	—	_	_	V _{DDX}	PERT/PPST	Disabled
22	PT2	IOC2	—	_	_	V _{DDX}	PERT/PPST	Disabled
23	PT1	IOC1	IRQ	_	_	V _{DDX}	PERT/PPST	Disabled
24	PT0	IOC0	XIRQ	—	—	V _{DDX}	PERT/PPST	Disabled
25	PAD0	KWAD0	AN0	—	—	V _{DDA}	PER1AD/PPS1AD	Disabled
26	PAD8	KWAD8	—	—	—	V _{DDA}	PER0AD/PPS0AD	Disabled
27	PAD1	KWAD1	AN1	—	—	V _{DDA}	PER1AD/PPS1AD	Disabled

Table 1-10. 48-Pin LQFP/QFN Pinout for S12GN16 and S12GN32

1.8.6 S12G96 and S12G128

1.8.6.1 Pinout 48-Pin LQFP

Table 1-20. 48-Pin LQFP Pinout for S12G96 and S12G12
--

	Function <lowestpriorityhighest></lowestpriorityhighest>						Internal P Resisto	ull r
Package Pin	Pin	2nd Func.	3rd Func.	4th Func	5th Func	Supply	CTRL	Reset State
1	RESET	_	_	_	_	V _{DDX}	PULLUF)

	Function <lowestpriorityhighest></lowestpriorityhighest>					Power	Internal P Resisto	Pull r
Package Pin	Pin	2nd Func.	3rd Func.	4th Func	5th Func	Supply	CTRL	Reset State
1	PJ6	KWJ6	SCK2	—	_	V _{DDX}	PERJ/PPSJ	Up
2	PJ5	KWJ5	MOSI2	—	_	V _{DDX}	PERJ/PPSJ	Up
3	PJ4	KWJ4	MISO2	—	_	V _{DDX}	PERJ/PPSJ	Up
4	RESET	_	—	—	_	V _{DDX}	PULLUF	2
5	VDDX	_	—	—	_	—	_	—
6	VDDR	_	—	—	_	—	_	—
7	VSSX	_	—	—	_	—	_	—
8	PE0 ¹	EXTAL	—	—	_	V _{DDX}	PUCR/PDPEE	Down
9	VSS	_	—	—	_	—	_	—
10	PE1 ¹	XTAL	—	—	_	V _{DDX}	PUCR/PDPEE	Down
11	TEST	_	—	—	_	N.A.	RESET pin	Down
12	PJ0	KWJ0	MISO1	—	_	V _{DDX}	PERJ/PPSJ	Up
13	PJ1	KWJ1	MOSI1	—	_	V _{DDX}	PERJ/PPSJ	Up
14	PJ2	KWJ2	SCK1	—	_	V _{DDX}	PERJ/PPSJ	Up
15	PJ3	KWJ3	SS1	—	_	V _{DDX}	PERJ/PPSJ	Up
16	BKGD	MODC	—	—	_	V _{DDX}	PUCR/BKPUE	Up
17	PP0	KWP0	ETRIG0	API_EXTC LK	PWM0	V _{DDX}	PERP/PPSP	Disabled
18	PP1	KWP1	ETRIG1	ECLKX2	PWM1	V _{DDX}	PERP/PPSP	Disabled
19	PP2	KWP2	ETRIG2	PWM2	_	V _{DDX}	PERP/PPSP	Disabled
20	PP3	KWP3	ETRIG3	PWM3	_	V _{DDX}	PERP/PPSP	Disabled
21	PP4	KWP4	PWM4	—	_	V _{DDX}	PERP/PPSP	Disabled
22	PP5	KWP5	PWM5	—	_	V _{DDX}	PERP/PPSP	Disabled
23	PP6	KWP6	PWM6	—	_	V _{DDX}	PERP/PPSP	Disabled
24	PP7	KWP7	PWM7	—	_	V _{DDX}	PERP/PPSP	Disabled
25	PT7	IOC7	_	_	_	V _{DDX}	PERT/PPST	Disabled
26	PT6	IOC6	—	—	_	V _{DDX}	PERT/PPST	Disabled
27	PT5	IOC5	—	—	_	V _{DDX}	PERT/PPST	Disabled

Table 1-24. 64-Pin LQFP Pinout for S12GA96 and S12GA128

1.8.9.3 Pinout 100-Pin LQFP

Figure 1-26. 100-Pin LQFP Pinout for S12GA192 and S12GA240

1.17 ADC Result Reference

MCUs of the S12G-Family are able to measure the internal reference voltage V_{DDF} (see Table 1-38). V_{DDF} is a constant voltage with a narrow distribution over temperature and external voltage supply (see Table A-47).

A 12-bit left justified¹ ADC conversion result of V_{DDF} is provided at address $0x0_4022/0x0_4023$ in the NVM's IFR for reference. The measurement conditions of the reference conversion are listed in Section A.16, "ADC Conversion Result Reference". By measuring the voltage V_{DDF} (see Table 1-38) and comparing the result to the reference value in the IFR, it is possible to determine the ADC's reference voltage V_{RH} in the application environment:

 $V_{RH} = \frac{StoredReference}{ConvertedReference} \bullet 5V$

The exact absolute value of an analog conversion can be determined as follows:

Result = ConvertedADInput • $\frac{StoredReference • 5V}{ConvertedReference • 2^{n}}$

With:

ConvertedADInput:Result of the analog to digital conversion of the desired pinConvertedReference:Result of channel "Internal_0" conversionStoredReference:Value in IFR locatio 0x0_4022/0x0_4023n:ADC resolution (10 bit)

CAUTION

To assure high accuracy of the V_{DDF} reference conversion, the NVMs must not be programmed, erased, or read while the conversion takes place. This implies that code must be executed from RAM. The "ConvertedReference" value must be the average of eight consecutive conversions.

CAUTION

The ADC's reference voltage V_{RH} must remain at a constant level throughout the conversion process.

1.18 ADC VRH/VRL Signal Connection

On all S12G devices except for the S12GA192 and the S12GA240 the external VRH signal is directly connected to the ADC's VRH signal input. The ADC's VRL input is connected to VSSA. (see Figure 1-27).

1. The format of the stored $\mathsf{V}_{\mathsf{DDF}}$ reference value is still subject to change.

Table 10-12	CPMUCOP	Field Descriptio	ns
-------------	----------------	------------------	----

Field	Description
7 WCOP	 Window COP Mode Bit — When set, a write to the CPMUARMCOP register must occur in the last 25% of the selected period. A write during the first 75% of the selected period generates a COP reset. As long as all writes occur during this window, \$55 can be written as often as desired. Once \$AA is written after the \$55, the time-out logic restarts and the user must wait until the next window before writing to CPMUARMCOP. Table 10-13 shows the duration of this window for the seven available COP rates. 0 Normal COP operation 1 Window COP operation
6 RSBCK	COP and RTI Stop in Active BDM Mode Bit 0 Allows the COP and RTI to keep running in Active BDM mode. 1 Stops the COP and RTI counters whenever the part is in Active BDM mode.
5 WRTMASK	 Write Mask for WCOP and CR[2:0] Bit — This write-only bit serves as a mask for the WCOP and CR[2:0] bits while writing the CPMUCOP register. It is intended for BDM writing the RSBCK without changing the content of WCOP and CR[2:0]. Write of WCOP and CR[2:0] has an effect with this write of CPMUCOP Write of WCOP and CR[2:0] has no effect with this write of CPMUCOP. (Does not count for "write once".)
2–0 CR[2:0]	 COP Watchdog Timer Rate Select — These bits select the COP time-out rate (see Table 10-13 and Table 10-14). Writing a nonzero value to CR[2:0] enables the COP counter and starts the time-out period. A COP counter time-out causes a System Reset. This can be avoided by periodically (before time-out) initializing the COP counter via the CPMUARMCOP register. While all of the following four conditions are true the CR[2:0], WCOP bits are ignored and the COP operates at highest time-out period (2²⁴ cycles) in normal COP mode (Window COP mode disabled): COP is enabled (CR[2:0] is not 000) BDM mode active RSBCK = 0 Operation in Special Mode

Table 10-13. COP Watchdog Rates if COPOSCSEL1=0 (default out of reset)

CR2	CR1	CR0	COPCLK Cycles to Time-out (COPCLK is either IRCCLK or OSCCLK depending on the COPOSCSEL0 bit)
0	0	0	COP disabled
0	0	1	2 ¹⁴
0	1	0	2 ¹⁶
0	1	1	2 ¹⁸
1	0	0	2 ²⁰
1	0	1	2 ²²
1	1	0	2 ²³
1	1	1	2 24

Analog-to-Digital Converter (ADC10B12CV2)

Address	Name		Bit 7	6	5	4	3	2	1	Bit 0
0x0003	ATDCTL3	R W	DJM	S8C	S4C	S2C	S1C	FIFO	FRZ1	FRZ0
0x0004	ATDCTL4	R W	SMP2	SMP1	SMP0			PRS[4:0]		
0x0005	ATDCTL5	R W	0	SC	SCAN	MULT	CD	СС	СВ	CA
0x0006	ATDSTAT0	R W	SCF	0	ETORF	FIFOR	CC3	CC2	CC1	CC0
0x0007	Unimple- mented	R W	0	0	0	0	0	0	0	0
0x0008	ATDCMPEH	R W	0	0	0	0		CMPE	[11:8]	
0x0009	ATDCMPEL	R W				CM	PE[7:0]			
0x000A	ATDSTAT2H	R W	0	0	0	0		CCF[11:8]	
0x000B	ATDSTAT2L	R W				CC	F[7:0]			
0x000C	ATDDIENH	R W	1	1	1	1		IEN[11:8]	
0x000D	ATDDIENL	R W		IEN[7:0]						
0x000E	ATDCMPHTH	R W	0	0	0	0		CMPH	T[11:8]	
0x000F	ATDCMPHTL	R W				CMF	PHT[7:0]			
0x0010	ATDDR0	R W		See S and Se	ection 13.3. ection 13.3.2	.2.12.1, "Let 2.12.2, "Rigl	ft Justified Re ht Justified R	esult Data (D esult Data (D	JM=0)" JM=1)"	
0x0012	ATDDR1	R W		See S and Se	ection 13.3. ection 13.3.2	.2.12.1, "Let 2.12.2, "Rigl	ft Justified Re ht Justified R	esult Data (D. esult Data (D	JM=0)" JM=1)"	
0x0014	ATDDR2	R W		See S and Se	ection 13.3. ection 13.3.2	.2.12.1, "Let 2.12.2, "Rigl	ft Justified Re ht Justified R	esult Data (D esult Data (D	JM=0)" JM=1)"	
0x0016	ATDDR3	R W		See S and Se	ection 13.3. ection 13.3.2	.2.12.1, "Let 2.12.2, "Rigl	ft Justified Re ht Justified R	esult Data (D esult Data (D	JM=0)" JM=1)"	
0x0018	ATDDR4	R W		See S and Se	ection 13.3. ection 13.3.2	.2.12.1, "Let 2.12.2, "Rigl	ft Justified Re ht Justified R	esult Data (D esult Data (D	JM=0)" JM=1)"	
0x001A	ATDDR5	R W		See S and Se	ection 13.3. ection 13.3.2	.2.12.1, "Let 2.12.2, "Rigl	ft Justified Re	esult Data (D esult Data (D	JM=0)" JM=1)"	
0x001C	ATDDR6	R W		See S and Se	ection 13.3. ection 13.3.2	.2.12.1, "Let 2.12.2, "Rigl	ft Justified Re ht Justified R	esult Data (D esult Data (D	JM=0)" JM=1)"	
0x001E	ATDDR7	R W		See S and Se	ection 13.3. ection 13.3.2	.2.12.1, "Let 2.12.2, "Rigl	ft Justified Re ht Justified R	esult Data (D esult Data (D	JM=0)" JM=1)"	
0x0020	ATDDR8	R W		See S and Se	ection 13.3. ection 13.3.2	.2.12.1, "Let 2.12.2, "Rigl	ft Justified Re ht Justified R	esult Data (D esult Data (D	JM=0)" JM=1)"	
0x0022	ATDDR9	R W		See S and Se	ection 13.3.	.2.12.1, "Let 2.12.2, "Rigl	ft Justified Re	esult Data (D esult Data (D	JM=0)" JM=1)"	
				= Unimpler	nented or R	eserved				

Figure 13-2. ADC10B12C Register Summary (Sheet 2 of 3)

Chapter 15 Analog-to-Digital Converter (ADC10B16CV2)

Revision History

Version Number	Revision Date	Effective Date	Author	Description of Changes
V02.00	18 June 2009	18 June 2009		Initial version copied 12 channel block guide
V02.01	09 Feb 2010	09 Feb 2010		Updated Table 15-15 Analog Input Channel Select Coding - description of internal channels. Updated register ATDDR (left/right justified result) description in section 15.3.2.12.1/15-527 and 15.3.2.12.2/15-528 and added Table 15-21 to improve feature description. Fixed typo in Table 15-9 - conversion result for 3mV and 10bit resolution
V02.03	26 Feb 2010	26 Feb 2010		Corrected Table 15-15 Analog Input Channel Select Coding - description of internal channels.
V02.04	26 Mar 2010	16 Mar 2010		Corrected typo: Reset value of ATDDIEN register
V02.05	14 Apr 2010	14 Apr 2010		Corrected typos to be in-line with SoC level pin naming conventions for VDDA, VSSA, VRL and VRH.
V02.06	25 Aug 2010	25 Aug 2010		Removed feature of conversion during STOP and general wording clean up done in Section 15.4, "Functional Description
v02.07	09 Sep 2010	09 Sep 2010		Update of internal only information.
V02.08	11 Feb 2011	11 Feb 2011		Connectivity Information regarding internal channel_6 added to Table 15-15.
V02.09	29 Mar 2011	29 Mar 2011		Fixed typo in bit description field Table 15-14 for bits CD, CC, CB, CA. Last sentence contained a wrong highest channel number (it is not AN7 to AN0 instead it is AN15 to AN0).
V02.10	22. Jun 2012	22. Jun 2012		Updated register wirte access information in section 15.3.2.9/15-525
V02.11	29. Jun 2012	29. Jun 2012		Removed IP name in block diagram Figure 15-1
V02.12	02 Oct 2012	02 Oct 2012		Added user information to avoid maybe false external trigger events when enabling the external trigger mode (Section 15.4.2.1, "External Trigger Input).

Operational amplifier	001	disabled	enabled	disabled	depend on AMPP and AMPM input
Unbuffered DAC	100	enabled	disabled	unbuffered resistor output voltage	disconnected
Unbuffered DAC with Operational amplifier	101	enabled	enabled	unbuffered resistor output voltage	depend on AMPP and AMPM input
Buffered DAC	111	enabled	enabled	disconnected	buffered resistor output voltage

Table 17-5. DAC Modes of Operation

The DAC resistor network itself can work on two different voltage ranges: Table 17-6. DAC Resistor Network Voltage ranges

DAC Mode	Description
Full Voltage Range (FVR)	DAC resistor network provides a output voltage over the complete input voltage range, default after reset
Reduced Voltage Range	DAC resistor network provides a output voltage over a reduced input voltage range

Table 17-7 shows the control signal decoding for each mode. For more detailed mode description see the sections below.

Table 17-7. DAC Control Signals

DACM		DAC resistor network	Operational Amplifier	Switch S1	Switch S2	Switch S3
Off	000	disabled	disabled	open	open	open
Operational amplifier	001	disabled	enabled	closed	open	open
Unbuffered DAC	100	enabled	disabled	open	open	closed
Unbuffered DAC with Operational amplifier	101	enabled	enabled	closed	open	closed
Buffered DAC	111	enabled	enabled	open	closed	open

17.5.2 Mode "Off"

The "Off" mode is the default mode after reset and is selected by DACCTL.DACM[2:0] = 0x0. During this mode the DAC resistor network and the operational amplifier are disabled and all switches are open. This mode provides the lowest power consumption. For decoding of the control signals see Table 17-7.

17.5.3 Mode "Operational Amplifier"

The "Operational Amplifier" mode is selected by DACCTL.DACM[2:0] = 0x1. During this mode the operational amplifier can be used independent from the DAC resister network. All required amplifier signals, AMP, AMPP and AMPM are available on the pins. The DAC resistor network output is disconnected from the DACU pin. The connection between the amplifier output and the negative amplifier input is open. For decoding of the control signals see Table 17-7.

Scalable Controller Area Network (S12MSCANV3)

18.4.2 Message Storage

Figure 18-39. User Model for Message Buffer Organization

The MSCAN facilitates a sophisticated message storage system which addresses the requirements of a broad range of network applications.

18.4.2.1 Message Transmit Background

Modern application layer software is built upon two fundamental assumptions:

20.1.2 Features

The SCI includes these distinctive features:

- Full-duplex or single-wire operation
- Standard mark/space non-return-to-zero (NRZ) format
- Selectable IrDA 1.4 return-to-zero-inverted (RZI) format with programmable pulse widths
- 13-bit baud rate selection
- Programmable 8-bit or 9-bit data format
- Separately enabled transmitter and receiver
- Programmable polarity for transmitter and receiver
- Programmable transmitter output parity
- Two receiver wakeup methods:
 - Idle line wakeup
 - Address mark wakeup
- Interrupt-driven operation with eight flags:
 - Transmitter empty
 - Transmission complete
 - Receiver full
 - Idle receiver input
 - Receiver overrun
 - Noise error
 - Framing error
 - Parity error
 - Receive wakeup on active edge
 - Transmit collision detect supporting LIN
 - Break Detect supporting LIN
- Receiver framing error detection
- Hardware parity checking
- 1/16 bit-time noise detection

20.1.3 Modes of Operation

The SCI functions the same in normal, special, and emulation modes. It has two low power modes, wait and stop modes.

- Run mode
- Wait mode
- Stop mode

Figure 24-1. FTMRG16K1 Block Diagram

24.2 External Signal Description

The Flash module contains no signals that connect off-chip.

Field	Description
1 DFDIF	 Double Bit Fault Detect Interrupt Flag — The setting of the DFDIF flag indicates that a double bit fault was detected in the stored parity and data bits during a Flash array read operation or that a Flash array read operation returning invalid data was attempted on a Flash block that was under a Flash command operation.¹ The DFDIF flag is cleared by writing a 1 to DFDIF. Writing a 0 to DFDIF has no effect on DFDIF.² No double bit fault detected Double bit fault detected or a Flash array read operation returning invalid data was attempted while command running
0 SFDIF	 Single Bit Fault Detect Interrupt Flag — With the IGNSF bit in the FCNFG register clear, the SFDIF flag indicates that a single bit fault was detected in the stored parity and data bits during a Flash array read operation or that a Flash array read operation returning invalid data was attempted on a Flash block that was under a Flash command operation.¹ The SFDIF flag is cleared by writing a 1 to SFDIF. Writing a 0 to SFDIF has no effect on SFDIF. 0 No single bit fault detected 1 Single bit fault detected and corrected or a Flash array read operation returning invalid data was attempted operation returning invalid data was attempted while command running

Table 25-16. FERSTAT Field Descriptions

The single bit fault and double bit fault flags are mutually exclusive for parity errors (an ECC fault occurrence can be either single fault or double fault but never both). A simultaneous access collision (Flash array read operation returning invalid data attempted while command running) is indicated when both SFDIF and DFDIF flags are high.

² There is a one cycle delay in storing the ECC DFDIF and SFDIF fault flags in this register. At least one NOP is required after a flash memory read before checking FERSTAT for the occurrence of ECC errors.

25.3.2.9 P-Flash Protection Register (FPROT)

The FPROT register defines which P-Flash sectors are protected against program and erase operations.

Offset Module Base + 0x0008

¹ Loaded from IFR Flash configuration field, during reset sequence.

The (unreserved) bits of the FPROT register are writable with the restriction that the size of the protected region can only be increased (see Section 25.3.2.9.1, "P-Flash Protection Restrictions," and Table 25-21).

During the reset sequence, the FPROT register is loaded with the contents of the P-Flash protection byte in the Flash configuration field at global address 0x3_FF0C located in P-Flash memory (see Table 25-4) as indicated by reset condition 'F' in Figure 25-13. To change the P-Flash protection that will be loaded during the reset sequence, the upper sector of the P-Flash memory must be unprotected, then the P-Flash protection byte must be reprogrammed. If a double bit fault is detected while reading the P-Flash phrase containing the P-Flash protection byte during the reset sequence, the FPOPEN bit will be cleared and remaining bits in the FPROT register will be set to leave the P-Flash memory fully protected.

29.3.2 Register Descriptions

The Flash module contains a set of 20 control and status registers located between Flash module base + 0x0000 and 0x0013.

In the case of the writable registers, the write accesses are forbidden during Fash command execution (for more detail, see Caution note in Section 29.3).

A summary of the Flash module registers is given in Figure 29-4 with detailed descriptions in the following subsections.

Address & Name		7	6	5	4	3	2	1	0
0x0000 FCLKDIV	R W	FDIVLD	FDIVLCK	FDIV5	FDIV4	FDIV3	FDIV2	FDIV1	FDIV0
0x0001 FSEC	R W	KEYEN1	KEYEN0	RNV5	RNV4	RNV3	RNV2	SEC1	SEC0
0x0002 FCCOBIX	R W	0	0	0	0	0	CCOBIX2	CCOBIX1	CCOBIX0
0x0003 FRSV0	R W	0	0	0	0	0	0	0	0
0x0004 FCNFG	R W	CCIE	0	0	IGNSF	0	0	FDFD	FSFD
0x0005 FERCNFG	R W	0	0	0	0	0	0	DFDIE	SFDIE
0x0006 FSTAT	R W	CCIF	0	ACCERR	FPVIOL	MGBUSY	RSVD	MGSTAT1	MGSTAT0
0x0007 FERSTAT	R W	0	0	0	0	0	0	DFDIF	SFDIF
0x0008 FPROT	R W	FPOPEN	RNV6	FPHDIS	FPHS1	FPHS0	FPLDIS	FPLS1	FPLS0
0x0009 DFPROT	R W	DPOPEN	DPS6	DPS5	DPS4	DPS3	DPS2	DPS1	DPS0

Figure 29-4. FTMRG128K1 Register Summary

128 KByte Flash Module (S12FTMRG128K1V1)

Address & Name		7	6	5	4	3	2	1	0		
0x000A FCCOBHI	R W	CCOB15	CCOB14	CCOB13	CCOB12	CCOB11	CCOB10	CCOB9	CCOB8		
0x000B FCCOBLO	R W	CCOB7	CCOB6	CCOB5	CCOB4	CCOB3	CCOB2	CCOB1	CCOB0		
0x000C	R	0	0	0	0	0	0	0	0		
FRSV1	W										
0x000D	R	0	0	0	0	0	0	0	0		
FRSV2	W										
0x000E	R	0	0	0	0	0	0	0	0		
FRSV3	W										
0x000F	R	0	0	0	0	0	0	0	0		
FRSV4	W										
0x0010	R	NV7	NV6	NV5	NV4	NV3	NV2	NV1	NV0		
FOPT	W										
0x0011	R	0	0	0	0	0	0	0	0		
FRSV5	W										
0x0012	R	0	0	0	0	0	0	0	0		
FRSV6	W										
0x0013	R	0	0	0	0	0	0	0	0		
FRSV7	W										
		= Unimplemented or Reserved									

Figure 29-4. FTMRG128K1 Register Summary (continued)

29.3.2.1 Flash Clock Divider Register (FCLKDIV)

The FCLKDIV register is used to control timed events in program and erase algorithms.

29.4.7 Interrupts

The Flash module can generate an interrupt when a Flash command operation has completed or when a Flash command operation has detected an ECC fault.

Interrupt Source	Interrupt Flag	Local Enable	Global (CCR) Mask
Flash Command Complete	CCIF (FSTAT register)	CCIE (FCNFG register)	l Bit
ECC Double Bit Fault on Flash Read	DFDIF (FERSTAT register)	DFDIE (FERCNFG register)	l Bit
ECC Single Bit Fault on Flash Read	SFDIF (FERSTAT register)	SFDIE (FERCNFG register)	l Bit

Table 29-66. Flash Interrupt Sources

NOTE

Vector addresses and their relative interrupt priority are determined at the MCU level.

29.4.7.1 Description of Flash Interrupt Operation

The Flash module uses the CCIF flag in combination with the CCIE interrupt enable bit to generate the Flash command interrupt request. The Flash module uses the DFDIF and SFDIF flags in combination with the DFDIE and SFDIE interrupt enable bits to generate the Flash error interrupt request. For a detailed description of the register bits involved, refer to Section 29.3.2.5, "Flash Configuration Register (FCNFG)", Section 29.3.2.6, "Flash Error Configuration Register (FERCNFG)", Section 29.3.2.7, "Flash Status Register (FSTAT)", and Section 29.3.2.8, "Flash Error Status Register (FERSTAT)".

The logic used for generating the Flash module interrupts is shown in Figure 29-27.

Figure 29-27. Flash Module Interrupts Implementation

Figure 31-5. Flash Clock Divider Register (FCLKDIV)

All bits in the FCLKDIV register are readable, bit 7 is not writable, bit 6 is write-once-hi and controls the writability of the FDIV field in normal mode. In special mode, bits 6-0 are writable any number of times but bit 7 remains unwritable.

CAUTION

The FCLKDIV register should never be written while a Flash command is executing (CCIF=0).

Fable 31-7	FCLKDIV	Field D	Descriptions
-------------------	---------	---------	--------------

Field	Description
7 FDIVLD	Clock Divider Loaded 0 FCLKDIV register has not been written since the last reset 1 FCLKDIV register has been written since the last reset
6 FDIVLCK	 Clock Divider Locked FDIV field is open for writing FDIV value is locked and cannot be changed. Once the lock bit is set high, only reset can clear this bit and restore writability to the FDIV field in normal mode.
5–0 FDIV[5:0]	Clock Divider Bits — FDIV[5:0] must be set to effectively divide BUSCLK down to 1 MHz to control timed events during Flash program and erase algorithms. Table 31-8 shows recommended values for FDIV[5:0] based on the BUSCLK frequency. Please refer to Section 31.4.4, "Flash Command Operations," for more information.

CAUTION

Field margin levels must only be used during verify of the initial factory programming.

NOTE

Field margin levels can be used to check that Flash memory contents have adequate margin for data retention at the normal level setting. If unexpected results are encountered when checking Flash memory contents at field margin levels, the Flash memory contents should be erased and reprogrammed.

31.4.6.14 Erase Verify EEPROM Section Command

The Erase Verify EEPROM Section command will verify that a section of code in the EEPROM is erased. The Erase Verify EEPROM Section command defines the starting point of the data to be verified and the number of words.

CCOBIX[2:0]	FCCOB Parameters						
000	0x10	Global address [17:16] to identify the EEPROM block					
001	Global address [15:0] of the first word to be verified						
010	Number of words to be verified						

Table 31-60. Erase Verify EEPROM Section Command FCCOB Requirements

Upon clearing CCIF to launch the Erase Verify EEPROM Section command, the Memory Controller will verify the selected section of EEPROM memory is erased. The CCIF flag will set after the Erase Verify EEPROM Section operation has completed. If the section is not erased, it means blank check failed, both MGSTAT bits will be set.

Table 31-61.	Erase Verify	EEPROM	Section	Command E	Error Handling

Register	Error Bit	Error Condition
		Set if CCOBIX[2:0] != 010 at command launch
		Set if command not available in current mode (see Table 31-27)
	ACCERR	Set if an invalid global address [17:0] is supplied
		Set if a misaligned word address is supplied (global address [0] != 0)
FSTAT		Set if the requested section breaches the end of the EEPROM block
	FPVIOL	None
	MGSTAT1	Set if any errors have been encountered during the read or if blank check failed.
	MGSTAT0	Set if any non-correctable errors have been encountered during the read or if blank check failed.

0x0140–0x017F CAN Controller (MSCAN)

Address	Name		Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
0x0140	CANCTL0	R W	RXFRM	RXACT	CSWAI	SYNCH	TIME	WUPE	SLPRQ	INITRQ	
0x0141	CANCTL1	R W	CANE	CLKSRC	LOOPB	LISTEN	BORM	WUPM	SLPAK	INITAK	
0x0142	CANBTR0	R W	SJW1	SJW0	BRP5	BRP4	BRP3	BRP2	BRP1	BRP0	
0x0143	CANBTR1	R W	SAMP	TSEG22	TSEG21	TSEG20	TSEG13	TSEG12	TSEG11	TSEG10	
0x0144	CANRFLG	R W	WUPIF	CSCIF	RSTAT1	RSTAT0	TSTAT1	TSTAT0	OVRIF	RXF	
0x0145	CANRIER	R W	WUPIE	CSCIE	RSTATE1	RSTATE0	TSTATE1	TSTATE0	OVRIE	RXFIE	
0x0146	CANTFLG	R W	0	0	0	0	0	TXE2	TXE1	TXE0	
0x0147	CANTIER	R W	0	0	0	0	0	TXEIE2	TXEIE1	TXEIE0	
0x0148	CANTARQ	R W	0	0	0	0	0	ABTRQ2	ABTRQ1	ABTRQ0	
0x0149	CANTAAK	R	0	0	0	0	0	ABTAK2	ABTAK1	ABTAK0	
0x014A	CANTBSEL	W R W	0	0	0	0	0	TX2	TX1	ТХО	
0x014B	CANIDAC	R w	0	0	IDAM1	IDAM0	0	IDHIT2	IDHIT1	IDHIT0	
0x014C	Reserved	R W	0	0	0	0	0	0	0	0	
0x014D	CANMISC	R W	0	0	0	0	0	0	0	BOHOLD	
0x014E	CANRXERR	R W	RXERR7	RXERR6	RXERR5	RXERR4	RXERR3	RXERR2	RXERR1	RXERR0	
0x014F	CANTXERR	R W	TXERR7	TXERR6	TXERR5	TXERR4	TXERR3	TXERR2	TXERR1	TXERR0	
0x0150- 0x0153	CANIDAR0-3	R W	AC7	AC6	AC5	AC4	AC3	AC2	AC1	AC0	
0x0154- 0x0157	CANIDMRx	R W	AM7	AM6	AM5	AM4	AM3	AM2	AM1	AM0	
0x0158- 0x015B	CANIDAR4-7	R W	AC7	AC6	AC5	AC4	AC3	AC2	AC1	AC0	
0x015C- 0x015F	CANIDMR4-7	R W	AM7	AM6	AM5	AM4	AM3	AM2	AM1	AM0	
0x0160- 0x016F	CANRXFG	R W		See Se	ection 18.3.3,	"Programm	er's Model o	f Message S	itorage"		
0x0170- 0x017F	CANTXFG	R W		See Section 18.3.3, "Programmer's Model of Message Storage"							

© FREESCALE SEMICONDUCTOR, INC. All RIGHTS RESERVED.	MECHANICA	L OUTLINE	PRINT VERSION NO	IT TO SCALE
TITLE:		DOCUMENT NE]: 98ASH70169A	RE∨: C
	0.65MM	CASE NUMBER	948E-02	25 MAY 2005
		STANDARD: JE	DEC	