

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Not For New Designs
Core Processor	M16C/60
Core Size	16-Bit
Speed	20MHz
Connectivity	I ² C, IEBus, SIO, UART/USART
Peripherals	DMA, PWM, Voltage Detect, WDT
Number of I/O	39
Program Memory Size	24KB (24K x 8)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	48-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/m30260f3agp-u7a

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2. Notation of Numbers and Symbols

The notation conventions for register names, bit names, numbers, and symbols used in this manual are described below.

(1)	Register Names, Bit Names, and Pin Names Registers, bits, and pins are referred to in the text by symbols. The symbol is accompanied by the word "register," "bit," or "pin" to distinguish the three categories. Examples the PM03 bit in the PM0 register P3_5 pin, VCC pin	
(2)	Notation of Numbers The indication "2" is appended to numeric values given in binary format. However, nothing is appended to the values of single bits. The indication "16" is appended to numeric values given in hexadecimal format. Nothing is appended to numeric values given in decimal format. Examples Binary: 112 Hexadecimal: EFA016 Decimal: 1234	

	Item	Performance
CPU	Basic instructions	91 instructions
	Minimun instruction	41.7 ns (f(BCLK) = 24 MHz ⁽³⁾ , VCC = 4.2 to 5.5 V (M16C/26B)
	execution time	50 ns (f(BCLK) = 20 MHz, Vcc = 3.0 to 5.5 V) (M16C/26A, M16C/26B)
		100 ns (f(BCLK) = 10 MHz, Vcc = 2.7 to 5.5 V) (M16C/26A, M16C/26B)
	Operation mode	Single-chip mode
	Address space	1M byte
	Memory capacity	ROM/RAM: See 1.4 Product Information
Peripheral	Port	33 I/O pins
function	Multifunction timer	Timer A: 16 bits x 5 channels, Timer B: 16 bits x 3 channels
		Three-phase motor control timer
	Serial I/O	1 channel (UART, clock synchronous serial I/O)
		1 channel (UART, clock synchronous, I ² C bus, or IEBus ⁽¹⁾)
	A/D converter	10 bit A/D converter: 1 circuit, 10 channels
	DMAC	2 channels
	CRC calcuration circuit	1 circuits (CRC-CCITT and CRC-16) with MSB/LSB selectable
	Watchdog timer	15 bits x 1 channel (with prescaler)
	Interrupt	18 internal and 8 external sources, 4 software sources,
		Interrupt priority level: 7
	Clock generation circuit	4 circuits
		Main clock(*), Sub-clock(*)
		On-chip oscillator, PLL frequency synthesizer
		(*)Equipped with a built-in feedback resister.
	Oscillation stop detection	Main clock oscillation stop, re-oscillation detection function
	Voltage detection circuit	On-chip
Electrical	Supply voltage	$V_{CC} = 4.2 \text{ to } 5.5 \text{ V} (f(BCLK) = 24 \text{ MHz})^{(3)}$ (M16C/26B)
Characteristics		Vcc = 3.0 to 5.5 V (f(BCLK) = 20 MHz) (M16C/26A, M16C/26B)
		Vcc = 2.7 to 5.5 V (f(BCLK) = 10 MHz)
	Power Consumption	20 mA (Vcc = 5 V, f(BCLK) = 24 MHz) (M16C/26B)
		16 mA (Vcc = 5 V, f(BCLK) = 20 MHz)
		25 μA (f(XCIN) = 32 KHz on RAM)
		3 μA (Vcc = 3 V, f(XCIN) = 32 KHz, in wait mode)
		$0.7 \mu\text{A} (\text{Vcc} = 3 \text{V}, \text{ in stop mode})$
Flash memory	Programming/erasure	2.7 to 5.5 V
	voltage	
	Programming/erasure	100 times (all area) or 1,000 times (block 0 to 3)
	endurance	/ 10,000 times (block A, block B) ⁽²⁾
Operating Amb	ient Temperature	-20 to 85°C / -40 to 85°C ⁽²⁾
Package		42-pin plastic molded SSOP

Table 1.2.	Performance outline o	f M16C/26A aroup	(M16C/26A.	, M16C/26B) (42-pin packag	ie)
		- miloo/20/1 group	(, miloo, 200) (42 pili puokug	,~,

NOTES:

1. IEBus is a trademark of NEC Electronics Corporation.

2. See **Tables 1.7 and 1.8 Product Code** for the program and erase endurance, and operating ambient temperature.

3. The PLL frequency synthesizer is used to run the M16C/26B at f(BCLK) = 24 MHz.

Table 4.4 SFR Information(4)⁽¹⁾

Address	Register	Symbol	After reset
034016	•		
034116			
034216	Timer A1-1 register	TA11	XX16
034316			XX16
034416	Timer A2-1 register	TA21	XX16
034516 034616	Timer A4-1 register	TA41	XX16 XX16
034018	Timer A4-T Tegister	1741	XX16
034816	Three phase PWM control register 0	INVC0	0016
034916	Three phase PWM control register 1	INVC1	0016
034A16	Three phase output buffer register 0	IDB0	001111112
034B16	Three phase output buffer register 1	IDB1	001111112
034C16	Dead time timer	DTT	XX16
034D16	Timer B2 Interrupt occurrence frequency set counter	ICTB2	XX16
034E16	Position-data-retain function control register	PDRF	XXXX00002
034F16			
035016			
035116			
035216 035316			
035316			
035416			
035616			
035716			
035816	Port function control register	PFCR	001111112
035916	· · · · · · · · · · · · · · · · · · ·		
035A16			
035B16			
035C16			
035D16			
035E16	Interrupt request cause select register 2	IFSR2A	XXXXXXX02 ⁽²⁾
035F16	Interrupt request cause select register	IFSR	0016
036016			
036116			
036216 036316			
036416			
036516			
036616			
036716			
036816			
036916			
036A16			
036B16			
036C16			
036D16			
036E16			
036F16 037016			
037016			
037116			
037216			
037416	UART2 special mode register 4	U2SMR4	0016
037516	UART2 special mode register 3	U2SMR3	000X0X0X2
037616	UART2 special mode register 2	U2SMR2	X0000002
037716	UART2 special mode register	U2SMR	X0000002
037816	UART2 transmit/receive mode register	U2MR	0016
037916	UART2 bit rate register	U2BRG	XX16
037A16	UART2 transmit buffer register	U2TB	XXXXXXXX2
037B16		11000	XXXXXXXX2
037C16	UART2 transmit/receive control register 0	U2C0	000010002
037D16 037E16	UART2 transmit/receive control register 1 UART2 receive buffer register	U2C1 U2RB	000000102 XXXXXXX2
037E16 037F16	UNITE IEVEIVE DUITET TEUSTET	UZKB	XXXXXXXX2 XXXXXXXX2
NOTE:		I	

Blank spaces are reserved. No access is allowed.
 Write "1" to bit 0 after reset.

X : Undefined

9.2 Interrupts and Interrupt Vector

One interrupt vector consists of 4 bytes. Set the start address of each interrupt routine in the respective interrupt vectors. When an interrupt request is accepted, the CPU branches to the address set in the corresponding interrupt vector. Figure 9.2.1 shows the interrupt vector.

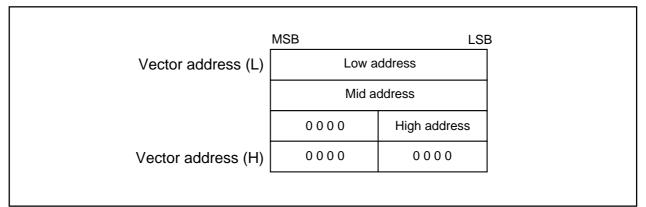


Figure 9.2.1. Interrupt Vector

9.2.1 Fixed Vector Tables

The fixed vector tables are allocated to the addresses from FFFDC16 to FFFF16. Table 9.2.1.1 lists the fixed vector tables. In the flash memory version of microcomputer, the vector addresses (H) of fixed vectors are used by the ID code check function. For details, refer to the section **17.3 Flash Memory Rewrite Disabling Function**.

Table 9.2.1.1.	Fixed Vector Tables

Interrupt source	Vector table addresses	Remarks	Reference
	Address (L) to address (H)		
Undefined instruction	FFFDC16 to FFFDF16	Interrupt on UND instruction	M16C/60, M16C/20
Overflow	FFFE016 to FFFE316	Interrupt on INTO instruction	serise software
BRK instruction	FFFE416 to FFFE716	If the contents of address FFFE716 is FF16, program ex- ecution starts from the address shown by the vector in the relocatable vector table.	maual
Address match	FFFE816 to FFFEB16		Address match interrupt
Single step (1)	FFFEC16 to FFFEF16		
Watchdog timer	FFFF016 to FFFF316		Watchdog timer
Oscillation stop and re-oscillation detection Voltage down			Clock generating circuit
detection			Voltage detection circuit
DBC (1)	FFFF416 to FFFF716		
NMI	FFFF816 to FFFFB16		NMI interrupt
Reset (2)	FFFFC16 to FFFFF16		Reset

NOTES:

- 1. Do not normally use this interrupt because it is provided exclusively for use by development tools.
- 2. The b3 to b0 in address 0FFFF16 are reserve bits. Set these bits to "11112".

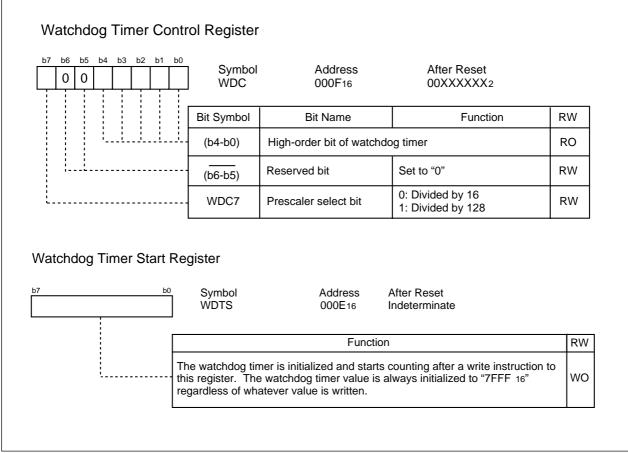


Figure 10.2 WDC Register and WDTS Register

10.1 Count Source Protective Mode

In this mode, a on-chip oscillator clock is used for the watchdog timer count source. The watchdog timer can be kept being clocked even when CPU clock stops as a result of run-away.

Before this mode can be used, the following register settings are required:

(1) Set the PRC1 bit in the PRCR register to "1" (enable writes to PM1 and PM2 registers).

(2) Set the PM12 bit in the PM1 register to "1" (reset when the watchdog timer underflows).

(3) Set the PM22 bit in the PM2 register to "1" (on-chip oscillator clock used for the watchdog timer count source).

(4) Set the PRC1 bit in the PRCR register to "0" (disable writes to PM1 and PM2 registers).

(5) Write to the WDTS register (watchdog timer starts counting).

Setting the PM22 bit to "1" results in the following conditions

- The on-chip oscillator continues oscillating even if the CM21 bit in the CM2 register is set to "0" (main clock or PLL clock) (system clock of count source selected by the CM21 bit is valid)
- The on-chip oscillator starts oscillating, and the in-chip oscillator clock becomes the watchdog timer count source.

Watchdog timer period = Watchdog timer count (32768) on-chip oscillator clock

- The CM10 bit in the CM1 register is disabled against write. (Writing a "1" has no effect, nor is stop mode entered.)
- The watchdog timer does not stop when in wait mode.

12.1.1. Timer Mode

In timer mode, the timer counts a count source generated internally (see Table 12.1.1.1). Figure 1.2.1.1.1 shows TAiMR register in timer mode.

Item	Specification
Count source	f1, f2, f8, f32, fC32
Count operation	Down-count
	• When the timer underflows, it reloads the reload register contents and continues counting
Divide ratio	1/(n+1) n: set value of TAi register (i= 0 to 4) 000016 to FFFF16
Count start condition	Set TAiS bit in the TABSR register to "1" (= start counting)
Count stop condition	Set TAiS bit to "0" (= stop counting)
Interrupt request generation timing	Timer underflow
TAilN pin function	I/O port or gate input
TAio∪⊤ pin function	I/O port or pulse output
Read from timer	Count value can be read by reading TAi register
Write to timer	When not counting and until the 1st count source is input after counting start
	Value written to TAi register is written to both reload register and counter
	 When counting (after 1st count source input)
	Value written to TAi register is written to only reload register
	(Transferred to counter when reloaded next)
Select function	Gate function
	Counting can be started and stopped by an input signal to TAIIN pin
	Pulse output function
	Whenever the timer underflows, the output polarity of TAiOUT pin is inverted.
	When not counting, the pin outputs a low.

Table 12.1.1.1. Specifications in Timer Mode

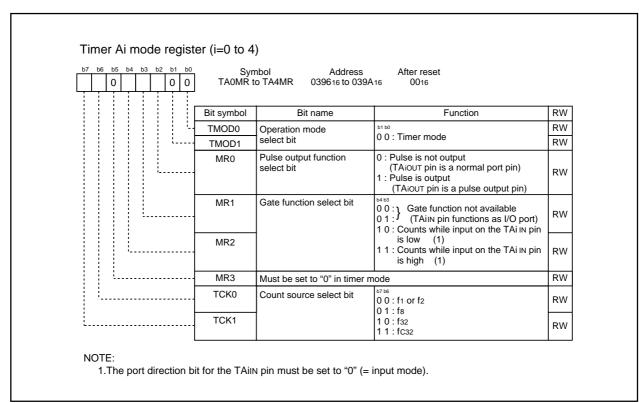


Figure 12.1.1.1. Timer Ai Mode Register in Timer Mode

12.1.2. Event Counter Mode

In event counter mode, the timer counts pulses from an external device or overflows and underflows of other timers. Timers A2, A3 and A4 can count two-phase external signals. Table 12.1.2.1 lists specifications in event counter mode (when <u>not</u> processing two-phase pulse signal). Table 12.1.2.2 lists specifications in event counter mode (when processing two-phase pulse signal with the timers A2, A3 and A4). Figure 12.1.2.1 shows TAiMR register in event counter mode (when <u>not</u> processing two-phase pulse signal). Figure 12.1.2.2 shows TA2MR to TA4MR registers in event counter mode (when processing two-phase pulse signal). Figure 12.1.2.2 shows TA2MR to TA4MR registers in event counter mode (when processing two-phase pulse signal).

Item	Specification
Count source	• External signals input to TAiN pin (i=0 to 4) (effective edge can be selected
	in program)
	Timer B2 overflows or underflows,
	timer Aj (j=i-1, except j=4 if i=0) overflows or underflows,
	timer Ak (k=i+1, except k=0 if i=4) overflows or underflows
Count operation	Up-count or down-count can be selected by external signal or program
	• When the timer overflows or underflows, it reloads the reload register con-
	tents and continues counting. When operating in free-running mode, the
	timer continues counting without reloading.
Divided ratio	1/ (FFFF16 - n + 1) for up-count
	1/ (n + 1) for down-count n : set value of TAi register 000016 to FFF16
Count start condition	Set TAiS bit in the TABSR register to "1" (= start counting)
Count stop condition	Set TAiS bit to "0" (= stop counting)
Interrupt request generation timing	Timer overflow or underflow
TAilN pin function	I/O port or count source input
TAIOUT pin function	I/O port, pulse output, or up/down-count select input
Read from timer	Count value can be read by reading TAi register
Write to timer	• When not counting and until the 1st count source is input after counting start
	Value written to TAi register is written to both reload register and counter
	 When counting (after 1st count source input)
	Value written to TAi register is written to only reload register
	(Transferred to counter when reloaded next)
Select function	Free-run count function
	Even when the timer overflows or underflows, the reload register content is
	not reloaded to it
	Pulse output function
	Whenever the timer underflows or underflows, the output polarity of TAiOUT
	pin is inverted. When not counting, the pin outputs a low.

Table 12.1.2.1. Specifications in Event Counter Mode (when not processing two-phase pulse signal)

12.2.1 Timer Mode

In timer mode, the timer counts a count source generated internally (see Table 12.2.1.1). Figure 12.2.1.1 shows TBiMR register in timer mode.

Item	Specification
Count source	f1, f2, f8, f32, fC32
Count operation	Down-count
	• When the timer underflows, it reloads the reload register contents and
	continues counting
Divide ratio	1/(n+1) n: set value of TBi register (i= 0 to 2) 000016 to FFFF16
Count start condition	Set TBiS bit ⁽¹⁾ to "1" (= start counting)
Count stop condition	Set TBiS bit to "0" (= stop counting)
Interrupt request generation timing	Timer underflow
TBilN pin function	I/O port
Read from timer	Count value can be read by reading TBi register
Write to timer	• When not counting and until the 1st count source is input after counting start
	Value written to TBi register is written to both reload register and counter
	 When counting (after 1st count source input)
	Value written to TBi register is written to only reload register
	(Transferred to counter when reloaded next)

Table 12.2.1.1	Specifications	in	Timer	Mode
----------------	----------------	----	-------	------

NOTE:

1. The TB0S to TB2S bits are assigned to the bit 5 to bit 7 in the TABSR register.

7 b6 b5 b4 b3 b2 b1 b0 0 0		nbol Address to TB2MR 039B16 to 039D	After reset 016 00XX00002	
	Bit symbol	Bit name	Function	RW
	TMOD0	Operation mode select bit		RW
	TMOD1	1	0 0 : Timer mode or A/D trigger mode	RW
	MR0	Has no effect in timer mode		RW
	MR1	Can be set to "0" or "1"		RW
	MR2	TB0MR register Must be set to "0" in timer mode		RW
		TB1MR, TB2MR registers Nothing is assigned. When content is indeterminate	write, set to "0". When read, its	
L	MR3	When write in timer mode, s content is indeterminate.	set to "0". When read in timer mode, its	RO
	TCK0	Count source select bit	^{b7 b6} 0 0 : f1 or f2 0 1 : f8	RW
	TCK1		1 0 : f32 1 1 : fC32	RW

Dimer Ai mode regist b7 b6 b5 b4 b3 b2 b1 b0 0 1 0 1 0 1 0	Symbol TA1MR TA2MR TA4MR	039716 039816	After reset 0016 0016 0016	
	Bit symbol	Bit name	Function	RW
	TMOD0	Operation mode	Must set to "102" (one-shot timer mode) for	RW
	TMOD1	select bit	the three-phase motor control timer function	RW
	MR0	Pulse output function select bit	Must set to "0" for the three-phase motor control timer function	-
	MR1	External trigger select bit	Has no effect for the three-phase motor control timer function	RW
· · · · · · · · · · · · · · · · · · ·	MR2	Trigger select bit	Must set to "1" (selected by event/trigger select register) for the three-phase motor control timer function	RW
	MR3	Must set to "0" for the thre	e-phase motor control timer function	RW
 	ТСК0	Count source select bit	b7 b6 0 0 : f1 or f2 0 1 : f8	RW
	TCK1		1 0 : f32	RW
Timer B2 mode regis	ter Symbo		1 1 : fc32 After reset	
	ter Symbo TB2MF	R 039D16	1 1 : fc32 After reset 00XX00002	
b7 b6 b5 b4 b3 b2 b1 b0	ter Symbo TB2MF Bit symbol	8 039D16 Bit name	1 1 : fc32 After reset 00XX00002 Function	RW
b7 b6 b5 b4 b3 b2 b1 b0	ter Symbo TB2MF	R 039D16	1 1 : fc32 After reset 00XX00002	RW
b7 b6 b5 b4 b3 b2 b1 b0	ter Symbo TB2MF Bit symbol TMOD0	Bit name Operation mode select bit	1 1 : fc32 After reset 00XX00002 Function Set to "002" (timer mode) for the three-phase motor control timer function	RW RW RW
<u>b7 b6 b5 b4 b3 b2 b1 b0</u>	ter Symbo TB2MF Bit symbol TMOD0 TMOD1	Bit name Bit name Operation mode select bit Has no effect for the three	1 1 : fc32 After reset 00XX00002 Function Set to "002" (timer mode) for the three-	RW RW RW
b7 b6 b5 b4 b3 b2 b1 b0	ter Symbo TB2MF Bit symbol TMOD0 TMOD1 MR0	Bit name Bit name Operation mode select bit Has no effect for the three When write, set to "0". Whe	1 1 : fc32 After reset 00XX00002 Function Set to "002" (timer mode) for the three-phase motor control timer function .phase motor control timer function.	RW RW RW RW
b7 b6 b5 b4 b3 b2 b1 b0	ter Symbo TB2MF Bit symbol TMOD0 TMOD1 MR0 MR1	Bit name Bit name Operation mode select bit Has no effect for the three When write, set to "0". Wh Must set to "0" for the three	1 1 : fc32 After reset 00XX00002 Function Set to "002" (timer mode) for the three-phase motor control timer function ephase motor control timer function. e-phase motor control timer function motor control timer function motor control timer function	RW RW RW RW RW RW RW RW RW
b7 b6 b5 b4 b3 b2 b1 b0	ter Symbo TB2MF Bit symbol TMOD0 TMOD1 MR0 MR1 MR2	Bit name Bit name Operation mode select bit Has no effect for the three When write, set to "0". Wh Must set to "0" for the three When write in three-phase	1 1 : fc32 After reset 00XX00002 Function Set to "002" (timer mode) for the three-phase motor control timer function ephase motor control timer function. e-phase motor control timer function motor control timer function motor control timer function	RW RW RW RW RW RW

Figure 12.3.8. TA1MR, TA2MR, TA4MR, and TB2MR Registers

b6 b5 b4	b3 b2 b1 b0	U	-,	dress After reset , 03A816 0016	
		Bit symbol	Bit name	Function	RV
		SMD0	Serial I/O mode select bit (2)	b2b1b0 0 0 0 : Serial I/O disabled 0 0 1 : Clock synchronous serial I/O mode	RV
		SMD1		1 0 0 : UART mode transfer data 7 bits long 1 0 1 : UART mode transfer data 8 bits long 1 1 0 : UART mode transfer data 8 bits long	RV
		SMD2		Do not set value other than the above	RV
		CKDIR	Internal/external clock select bit	0 : Internal clock 1 : External clock (1)	RV
		STPS	Stop bit length select bit	0 : One stop bit 1 : Two stop bits	RV
		PRY	Odd/even parity select bit	Effective when PRYE = 1 0 : Odd parity 1 : Even parity	RV
L		PRYE	Parity enable bit	0 : Parity disabled 1 : Parity enabled	RV
			Decenya hit		
2. To rece ART2 tra		ne corresp	de register	each RxDi pin to "0" (input mode).	RV
1. Set the 2. To rece ART2 tra	eive data, set tř ansmit/rece) port dire ne corresp	ction bit for each CLKi pin to bonding port direction bit for de register Symbol Ado	"0" (input mode).	RV
1. Set the 2. To rece RT2 tra	eive data, set tř ansmit/rece) port dire ne corresp	ction bit for each CLKi pin to conding port direction bit for de register Symbol Ado	o "0" (input mode). each RxDi pin to "0" (input mode). dress After reset	
1. Set the 2. To rece RT2 tra	eive data, set tř ansmit/rece	port dire ne corresp eive mo Bit	ction bit for each CLKi pin to bonding port direction bit for de register Symbol Addo U2MR 033	0 "0" (input mode). each RxDi pin to "0" (input mode). dress After reset 7816 0016 Function	RV
1. Set the 2. To rece RT2 tra	eive data, set tř ansmit/rece	port dire te corresp tive mo Bit symbol	ction bit for each CLKi pin to bonding port direction bit for de register Symbol Addo U2MR 033 Bit name Serial I/O mode select bit	b°0" (input mode). each RxDi pin to "0" (input mode). dress After reset 7816 0016 Function b2b1 b0 0 0 0 : Serial I/O disabled 0 0 1 : Clock synchronous serial I/O mode 0 1 0 : I²C bus mode (3) 1 0 0 : UART mode transfer data 7 bits long	RV RV RV RV
1. Set the 2. To rece RT2 tra	eive data, set tř ansmit/rece	port dire re corresp ive mo Bit symbol SMD0	ction bit for each CLKi pin to bonding port direction bit for de register Symbol Addo U2MR 033 Bit name Serial I/O mode select bit	0"0" (input mode). each RxDi pin to "0" (input mode). dress After reset 7816 0016 Function Implication in the set of th	RV
1. Set the 2. To rece RT2 tra	eive data, set tř ansmit/rece	port dire ne corresp ive mo Bit symbol SMD0 SMD1	ction bit for each CLKi pin to bonding port direction bit for de register Symbol Addo U2MR 033 Bit name Serial I/O mode select bit	b "0" (input mode). each RxDi pin to "0" (input mode). dress After reset 7816 0016 Function b2b1b0 0 0 0 : Serial I/O disabled 0 0 1 : Clock synchronous serial I/O mode 0 1 0 : I/2C bus mode (3) 1 0 0 : UART mode transfer data 7 bits long 1 1 0 : UART mode transfer data 8 bits long 1 1 0 : UART mode transfer data 9 bits long	RV
1. Set the 2. To rece ART2 tra	eive data, set tř ansmit/rece	port dire ne corresp ive mo Bit symbol SMD0 SMD1 SMD2	ction bit for each CLKi pin to bonding port direction bit for de register Symbol Addo U2MR 033 Bit name Serial I/O mode select bit (2) Internal/external clock	b "0" (input mode). each RxDi pin to "0" (input mode). dress After reset 7816 0016 Function bit bit 0 0 0 : Serial I/O disabled 0 1 : Clock synchronous serial I/O mode 0 1 0 : I2C bus mode (3) 1 0 0 : UART mode transfer data 7 bits long 1 1 : UART mode transfer data 8 bits long 1 1 0 : UART mode transfer data 9 bits long 1 1 0 : UART mode transfer data 9 bits long 0 : Internal clock	RV RV RV
1. Set the 2. To rece RT2 tra	eive data, set tř ansmit/rece	port dire ne corresp ive mo Bit symbol SMD0 SMD1 SMD2 CKDIR	ction bit for each CLKi pin to bonding port direction bit for de register Symbol Add U2MR 03 Bit name Serial I/O mode select bit (2) Internal/external clock select bit	p "0" (input mode). each RxDi pin to "0" (input mode). dress After reset 7816 0016 Function bit bit 0 0 0 0 : Serial I/O disabled 0 1 0 : Clock synchronous serial I/O mode 0 1 0 : I2C bus mode (3) 1 0 0 : UART mode transfer data 7 bits long 1 1 : UART mode transfer data 8 bits long 1 1 0 : UART mode transfer data 9 bits long 1 0 : UART mode transfer data 9 bits long 1 1 0 : UART mode transfer data 9 bits long Must not be set except above 0 : Internal clock 1 : External clock (1) 0 : One stop bit	RV RV RV RV RV
1. Set the 2. To rece ART2 tra	eive data, set tř ansmit/rece	Bit symbol SMD0 SMD1 SMD2 CKDIR STPS	ction bit for each CLKi pin to conding port direction bit for de register Symbol Add U2MR 03 Bit name Serial I/O mode select bit (2) Internal/external clock select bit Stop bit length select bit	p "0" (input mode). each RxDi pin to "0" (input mode). dress After reset 7816 0016 Function bib 0 0 0 0 : Serial I/O disabled 0 0 1 : Clock synchronous serial I/O mode 0 1 0 : I2C bus mode (3) 1 0 0 : UART mode transfer data 7 bits long 1 1 : UART mode transfer data 8 bits long 1 1 : UART mode transfer data 9 bits long Must not be set except above 0 : Internal clock 1 : External clock (1) 0 : One stop bit 1 : Two stop bits Effective when PRYE = 1 0 : Odd parity	RV RV RV RV RV RV RV

RENESAS

Table 13.1.2.3 lists the functions of the input/output pins during UART mode. Table 13.1.2.4 lists the P64 pin functions during UART mode. Note that for a period from when the UARTi operation mode is selected to when transfer starts, the TxDi pin outputs an "H". (If the N-channel open-drain output is selected, this pin is in a high-impedance state.)

Pin name	Function	Method of selection
TxDi (i = 0 to 2) (P63, P67, P70)	Serial data output	(Outputs "H" when performing reception only)
RxDi (P62, P66, P71)	Serial data input	PD6_2 bit, PD6_6 bit in the PD6 register and the PD7_1 bit in the PD7 register (Can be used as an input port when performing transmission only)
CLKi	Input/output port	Set the CKDIR bit in the UiMR register to "0"
(P61, P65, P72)	Transfer clock input	Set the CKDIR bit in the UiMR register to "1" Set the PD6_1 bit and PD6_5 bit in the PD6 register to "0", PD7_2 bit in the PD7 register to "0"
CTSi/RTSi (P60, P64, P73)	CTS input	Set the CRD bit in the UiC0 register to "0" Set the CRS bit in the UiC0 register to "0" Set the PD6_0 bit and PD6_4 bit in the PD6 register to "0", the PD7_3 bit in the PD7 register "0"
	RTS output	Set the CRD bit in the UiC0 register to "0" Set the CRS bit in the UiC0 register to "1"
	Input/output port	Set the CRD bit in the UiC0 register "1"

Table 13.1.2.3. I/O Pin Functions in UART mode⁽¹⁾

NOTE:

1. When the U1MAP bit in PACR register is set to "1" (P73 to P70), UART1 pin is assgined to P73 to P70.

Pin function		Bit set value						
	U1C0	register	UCON	register	PD6 register			
	CRD	CRS	RCSP CLKMD1		PD6_4			
P64	1		0	0	Input: 0, Output: 1			
CTS1	0	0	0	0	0			
RTS1	0	1	0	0	—			
CTS ₀ ⁽²⁾	0	0	1	0	0			

 Table 13.1.2.4.
 P64 Pin Functions in UART mode⁽¹⁾

NOTES:

1. When the U1MAP bit in PACR register is "1" (P73 to P70), this table lists the P70 functions.

2. In addition to this, set the CRD bit in the U0C0 register to "0" (CTS0/RTS0 enabled) and the CRS bit in the U0C0 register to "1" (RTS0 selected).

13.1.4.1 Clock Phase Setting Function

One of four combinations of transfer clock phases and polarities can be selected using the CKPH bit in the U2SMR3 register and the CKPOL bit in the U2C0 register.

Make sure the transfer clock polarity and phase are the same for the master and slave to communicate.

13.1.4.1.1 Master (Internal Clock)

Figure 13.1.4.1.1.1 shows the transmission and reception timing in master (internal clock).

13.1.4.1.2 Slave (External Clock)

Figure 13.1.4.1.2.1 shows the transmission and reception timing (CKPH=0) in slave (external clock) while Figure 13.1.4.1.2.2 shows the transmission and reception timing (CKPH=1) in slave (external clock).

Clock output "H" (CKPOL=1, CKPH=0) "L" Clock output "H" (CKPOL=0, CKPH=1) "L" Clock output "H" (CKPOL=1, CKPH=1) "L"	ıtput "H" <i>─</i> =0, CKPH=0) "L"					
(CKPOL=0, CKPH=1) "L"	ıtput "H"					
	nput					
Data output timing "H" D0 \ D1 \ D2 \3 \4 \5 \6 \7	iput unning		D1 \ D2 \	D3 D4	D5 D6	D7
Data input timing	ut timing	1	$\uparrow \uparrow$	\uparrow \uparrow	\uparrow \uparrow	↑

Figure 13.1.4.1.1.1. Transmission and Reception Timing in Master Mode (Internal Clock)

14.1.5 Repeat Sweep Mode 1

In repeat sweep mode 1, analog voltages applied to the all selected pins are converted to a digital code, with mainly used in the selected pins. Table 14.1.5.1 shows the repeat sweep mode 1 specifications. Figure 14.1.5.1 shows the operation example in repeat sweep mode 1. Figure 14.1.5.2 shows the ADCON0 to ADCON2 registers in repeat sweep mode 1.

Table 14.1.5.1	Repeat Sweep	Mode 1	Specifications
----------------	--------------	--------	----------------

Item	Specification
Function	The SCAN1 to SCAN0 bits in the ADCON1 register and the ADGSEL1 to
	ADGSEL0 bits in the ADCON2 register mainly select pins. Analog voltage
	applied to the all selected pins is repeatedly converted to a digital code
	Example : When selecting ANo
	Analog voltage is converted to a digital code in the following order
	AN0 \rightarrow AN1 \rightarrow AN0 \rightarrow AN2 \rightarrow AN0 \rightarrow AN3, and so on.
A/D Conversion Start Condition	When the TRG bit in the ADCON0 register is "0" (software trigger)
	Set the ADST bit in the ADCON0 register to "1" (A/D conversion started)
	 When the TRG bit in the ADCON0 register is "1" (hardware trigger)
	The $\overline{\text{ADTRG}}$ pin input changes state from "H" to "L" after setting the ADST bit
	to "1" (A/D conversion started)
A/D Conversion Stop Condition	Set the ADST bit to "0" (A/D conversion halted)
Interrupt Request Generation Timing	None generated
Analog Input Pins Mainly	Select from ANo (1 pins), ANo to AN1 (2 pins), ANo to AN2 (3 pins),
Used in A/D Conversions	AN ₀ to AN ₃ (4 pins) ⁽¹⁾
Readout of A/D Conversion Result	Readout one of the AD0 to AD7 registers that corresponds to the selected pin

NOTE:

1. AN₃₀ to AN₃₂ can be used in the same way as AN₀ to AN₇. However, all input pins need to belong to the same group.

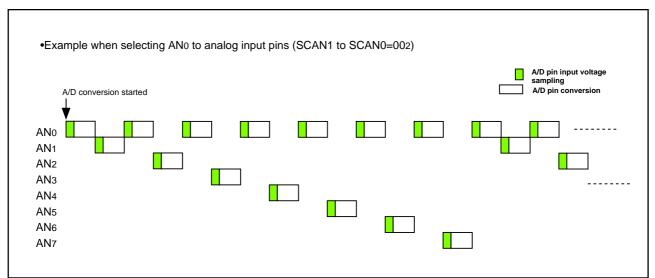


Figure 14.1.5.1 Operation Example in Repeat Sweep Mode 1

16. Programmable I/O Ports

Note

P60 to P63, P92 and P93 are not available in the 42-pin package.

The programmable input/output ports (hereafter referred to simply as "I/O ports") consist of 39 lines P15 to P17, P6, P7, P8, P90 to P93, P10 for the 48-pin package, or 33 lines P15 to P17, P64 to P67, P7, P8, P90 to P91, P10 for the 42-pin package. Each port can be set for input or output every line by using a direction register, and can also be chosen to be or not be pulled high in sets of 4 lines.

Figures 16.1 to 16.4 show the I/O ports. Figure 16.5 shows the I/O pins.

Each pin functions as an I/O port, a peripheral function input/output.

For details on how to set peripheral functions, refer to each functional description in this manual. If any pin is used as a peripheral function input, set the direction bit for that pin to "0" (input mode). Any pin used as an output pin for peripheral functions is directed for output no matter how the corresponding direction bit is set.

16.1 Port Pi Direction Register (PDi Register, i = 1, 6 to 10)

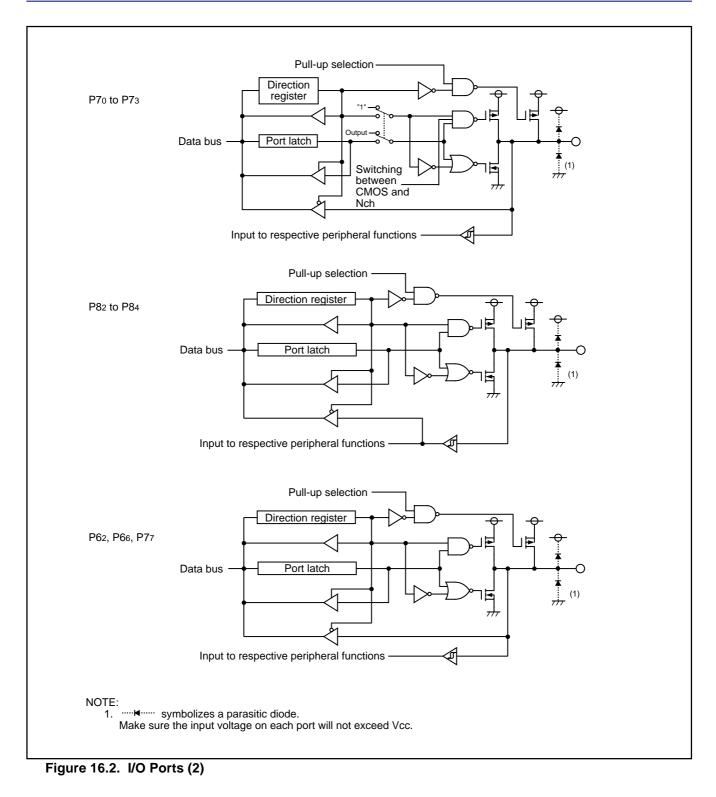
Figure 16.1.1 shows the direction registers.

This register selects whether the I/O port is to be used for input or output. The bits in this register correspond one for one to each port.

16.2 Port Pi Register (Pi Register, i = 1, 6 to 10)

Figure 16.2.1 shows the Pi registers.

Data input/output to and from external devices are accomplished by reading and writing to the Pi register. The Pi register consists of a port latch to hold the output data and a circuit to read the pin status. For ports set for input mode, the input level of the pin can be read by reading the corresponding Pi register, and data can be written to the port latch by writing to the Pi register.


For ports set for output mode, the port latch can be read by reading the corresponding Pi register, and data can be written to the port latch by writing to the Pi register. The data written to the port latch is output from the pin. The bits in the Pi register correspond one for one to each port.

16.3 Pull-up Control Register 0 to Pull-up Control Register 2 (PUR0 to PUR2 Registers)

Figure 16.3.1 shows the PUR0 to PUR2 registers.

The PUR0 to PUR2 registers select whether the ports, divided into groups of four ports, are pulled up or not. The ports, selected by setting the bits in registers PUR2 to PUR0 to "1" (pull-up), are pulled up when the direction registers are set to "0" (input mode). The ports are pulled up regardless of their function.

RENESAS

Symbol	Parameter			Standard		Unit
Symbol	Falameter		Min.	Typ. ⁽²⁾	Max.	
-	Program and Erase Endurance ⁽³⁾		100/1000	(4, 11)		cycles
-	Word Program Time (Vcc=5.0V, Topr=25°	C)		75	600	μs
-	Block Erase Time	2-Kbyte Block		0.2	9	S
	(Vcc=5.0V, Topr=25° C)	8-Kbyte Block		0.4	9	s
		16-Kbyte Block		0.7	9	S
		32-Kbyte Block		1.2	9	s
td(SR-ES)	Duration between Suspend Request and E	rase Suspend			8	ms
tps	Wait Time to Stabilize Flash Memory Circu	it			15	μs
-	Data Hold Time ⁽⁵⁾		20			years

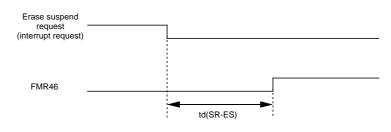
Table 18.4. Flash Memory Version Electrical Characteristic ⁽¹⁾:Program Space and Data Space for U3 and U5, Program Space for U7 and U9

Table 18.5. Flash Memory Version Electrical Characteristics ⁽⁶⁾: Data Space for U7 and U9 ⁽⁷⁾

Symbol	Parameter		Standard		Unit
Symbol	Falanielei	Min.	Typ. ⁽²⁾	Max.	
-	Program and Erase Endurance ^(3, 8, 9)	10000 ^{(4, 1}	0)		cycles
-	Word Program Time (Vcc=5.0V, Topr=25° C)		100		μs
-	Block Erase Time (Vcc=5.0V, Topr=25° C) (2-Kbyte block)		0.3		S
td(SR-ES)	Duration between Suspend Request and Erase Suspend			8	ms
tps	Wait Time to Stabilize Flash Memory Circuit			15	μs
-	Data Hold Time ⁽⁵⁾	20			years

NOTES:

1. Referenced to Vcc = 2.7 to 5.5 V at Topr = 0 to 60° C (program space), -40 to 85° C (data space), unless otherwise specified.


2. Vcc = 5.0 V; Topr = 25° C

3. Program and erase endurance is defined as number of program-erase cycles per block.

If program and erase endurance is n cycle (n = 100, 1000, 10000), each block can be erased and programmed n cycles.

For example, if a 2-Kbyte block A is erased after programming one-word data to each address 1,024 times, this counts as one program and erase endurance. Data cannot be programmed to the same address more than once without erasing the block. (rewrite prohibited).

- 4. Number of E/W cycles for which operation is guranteed (1 to minimum value are guaranteed).
- 5. Topr = 55° C
- 6. Referenced to Vcc = 2.7 to 5.5 V at T_{opr} = -40 to 85° C (U7) / -20 to 85° C (U9) unless otherwise specified.
- 7. Table 18.5 applies for data space in U7 and U9 when program and erase endurance is more than 1,000 cycles. Otherwise, use Table 18.4.
- 8. To reduce the number of program and erase endurance when working with systems requiring numerous rewrites, write to unused word addresses within the block instead of rewrite. Erase block only after all possible addresses are used. For example, an 8-word program can be written 128 times maximum before erase becomes necessary. Maintaining an equal number of times erasure between block A and block B will also improve efficiency. It is recommended to track the total number of erasure performed per block and to limit the number of erasure.
- 9. Execute the clear status register command and block erase command at least 3 times until an erase error is not generated when an erase error is generated.
- 10. When executing more than 100 times rewrites, set one wait state per block access by setting the FMR17 bit in the FMR1 register 1 to "1" (wait state). When accessing to all other blocks and internal RAM, wait state can be set by the PM17 bit, regardless of the FMR17 bit setting value.
- 11. The program and erase endurance is 100 cycles for program space and data space in U3 and U5; 1,000 cycles for program space in U7 and U9.
- 12. Customers desiring E/W failure rate information should contact their Renesas technical support representative.

VCC = 5V

Timing Requirements

(VCC = 5V, VSS = 0V, at Topr = - 20 to 85°C / - 40 to 85°C unless otherwise specified)

Table 18.17. Timer B Input (Counter Input in Event Counter Mode)

Symbol	Deveneter	Standard	Unit	
Symbol	Parameter	Min.	Max.	Unit
tc(TB)	TBin input cycle time (counted on one edge)	100		ns
tw(TBH)	TBin input HIGH pulse width (counted on one edge)	40		ns
tw(TBL)	TBin input LOW pulse width (counted on one edge)	40		ns
tc(TB)	TBin input cycle time (counted on both edges)	200		ns
tw(TBH)	TBin input HIGH pulse width (counted on both edges)	80		ns
tw(TBL)	TBin input LOW pulse width (counted on both edges)	80		ns

Table 18.18. Timer B Input (Pulse Period Measurement Mode)

Symbol	mbol Parameter		dard	Unit
Symbol			Max.	Unit
tc(TB)	TBin input cycle time	400		ns
tw(TBH)	TBilN input HIGH pulse width	200		ns
tw(TBL)	TBin input LOW pulse width	200		ns

Table 18.19. Timer B Input (Pulse Width Measurement Mode)

Symbol	Parameter		dard	Unit
Gymbol			Max.	Unit
tc(TB)	TBiin input cycle time	400		ns
tw(TBH)	TBilN input HIGH pulse width	200		ns
tw(TBL)	TBin input LOW pulse width	200		ns

Table 18.20. A/D Trigger Input

Symbol	Parameter	Standard		Unit
		Min.	Max.	Unit
tc(AD)	ADTRG input cycle time (trigger able minimum)	1000		ns
tw(ADL)	ADTRG input LOW pulse width	125		ns

Table 18.21. Serial I/O

Symbol	Parameter	Standard		Unit
	Falameter		Max.	
tc(CK)	CLKi input cycle time	200		ns
tw(CKH)	CLKi input HIGH pulse width	100		ns
tw(CKL)	CLKi input LOW pulse width	100		ns
td(C-Q)	TxDi output delay time		80	ns
th(C-Q)	TxDi hold time	0		ns
tsu(D-C)	RxDi input setup time	70		ns
th(C-D)	RxDi input hold time	90		ns

Table 18.22. External Interrupt INTi Input

Symbol	Parameter	Standard		Unit
		Min.	Max.	Unit
tw(INH)	INTi input HIGH pulse width	250		ns
tw(INL)	INTi input LOW pulse width	250		ns

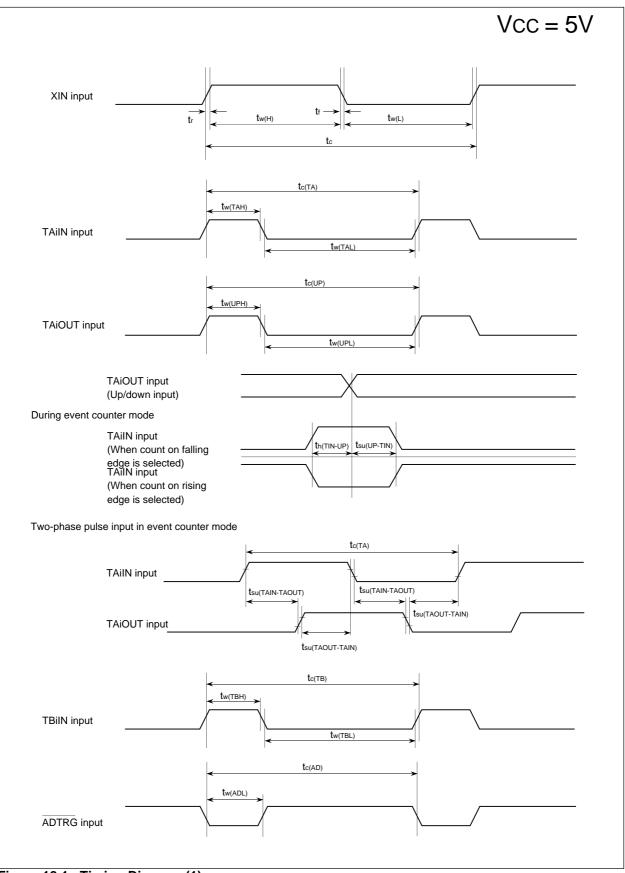


Figure 18.1. Timing Diagram (1)

RENESAS

18.2. M16C/26T (T version)

 Table 18.38.
 Absolute Maximum Ratings

Symbol	Parameter			Condition	Value	Unit
Vcc	Supply Voltage			Vcc = AVcc	-0.3 to 6.5	V
AVcc	Analog Supply Voltage			Vcc = AVcc	-0.3 to 6.5	V
Vı	Input Voltage	P15 to P17, P60 to P67, P P80 to P87, P90 to P93, P XIN, VREF, RESET, CNVSS	10º to P107,		-0.3 to Vcc+0.3	v
Vo	Output Voltage	P15 to P17, P60 to P67, P70 to P77, P80 to P87, P90 to P93, P100 to P107, Χαυτ			-0.3 to Vcc+0.3	v
Pd	Power Dissipation	ower Dissipation			300	mW
Topr	during CPU operation				-40 to 85	°C
	Operating Ambient Temperature	Ambient during flash memory	Program Space (Block 0 to Block 3)		0 to 60	°C
			Data Space (Block A, Block B)		-40 to 85	°C
Tstg	Storage Temperature				-65 to 150	°C

RENESAS 16-BIT CMOS SINGLE-CHIP MICROCOMPUTER HARDWARE MANUAL M16C/26A Group (M16C/26A, M16C/26B, M16C/26T)

Publication Date: Rev.1.00 Mar.15, 2005 Rev.2.00 Feb.15, 2007

Published by: Sales Strategic Planning Div. Renesas Technology Corp.

© 2007. Renesas Technology Corp., All rights reserved. Printed in Japan.