

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	ARM7®
Core Size	16/32-Bit
Speed	44MHz
Connectivity	EBI/EMI, I ² C, SPI, UART/USART
Peripherals	PLA, PWM, PSM, Temp Sensor, WDT
Number of I/O	14
Program Memory Size	62KB (31K x16)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2K x 32
Voltage - Supply (Vcc/Vdd)	2.7V ~ 3.6V
Data Converters	A/D 5x12b; D/A 4x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	40-WFQFN Exposed Pad, CSP
Supplier Device Package	40-LFCSP-WQ (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/analog-devices/aduc7020bcpz62irl7

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 4. I²C Timing in Fast Mode (400 kHz)

		S	ave	Master	
Parameter	Description	Min	Max	Тур	Unit
tL	SCL low pulse width ¹	200		1360	ns
tн	SCL high pulse width ¹	100		1140	ns
t _{shd}	Start condition hold time	300			ns
t dsu	Data setup time	100		740	ns
t _{DHD}	Data hold time	0		400	ns
t _{RSU}	Setup time for repeated start	100			ns
t _{PSU}	Stop condition setup time	100		400	ns
t _{BUF}	Bus-free time between a stop condition and a start condition	1.3			μs
t _R	Rise time for both SCL and SDA		300	200	ns
tF	Fall time for both SCL and SDA		300		ns
t _{sup}	Pulse width of spike suppressed		50		ns

 1 t_{HCLK} depends on the clock divider or CD bits in the POWCON MMR. t_{HCLK} = t_{UCLK}/2^{CD}; see Figure 67.

Table 5. I²C Timing in Standard Mode (100 kHz)

		SI	ave	Master	
Parameter	Description	Min	Max	Тур	Unit
t∟	SCL low pulse width ¹	4.7			μs
t _H	SCL high pulse width ¹	4.0			ns
t _{shd}	Start condition hold time	4.0			μs
t _{DSU}	Data setup time	250			ns
t DHD	Data hold time	0	3.45		μs
t _{RSU}	Setup time for repeated start	4.7			μs
t PSU	Stop condition setup time	4.0			μs
t _{BUF}	Bus-free time between a stop condition and a start condition	4.7			μs
t _R	Rise time for both SCL and SDA		1		μs
t _F	Fall time for both SCL and SDA		300		ns

 1 t_{HCLK} depends on the clock divider or CD bits in the POWCON MMR. t_{HCLK} = t_{UCLK}/2^{CD}; see Figure 67.

Figure 14. I²C Compatible Interface Timing

Piı	n No.			
7019/7020	7021	7022	Mnemonic	Description
38	37	36	ADC0	Single-Ended or Differential Analog Input 0.
39	38	37	ADC1	Single-Ended or Differential Analog Input 1.
40	39	38	ADC2/CMP0	Single-Ended or Differential Analog Input 2/Comparator Positive Input.
1	40	39	ADC3/CMP1	Single-Ended or Differential Analog Input 3 (Buffered Input on ADuC7019)/ Comparator Negative Input.
2	1	40	ADC4	Single-Ended or Differential Analog Input 4.
_	2	1	ADC5	Single-Ended or Differential Analog Input 5.
_	3	2	ADC6	Single-Ended or Differential Analog Input 6.
-	4	3	ADC7	Single-Ended or Differential Analog Input 7.
_	-	4	ADC8	Single-Ended or Differential Analog Input 8.
_	_	5	ADC9	Single-Ended or Differential Analog Input 9.
3	5	6	GND _{REF}	Ground Voltage Reference for the ADC. For optimal performance, the analog power supply should be separated from IOGND and DGND.
4	6	_	DAC0/ADC12	DAC0 Voltage Output/Single-Ended or Differential Analog Input 12.
5	7	-	DAC1/ADC13	DAC1 Voltage Output/Single-Ended or Differential Analog Input 13.
6	_	_	DAC2/ADC14	DAC2 Voltage Output/Single-Ended or Differential Analog Input 14.
7	_	_	DAC3/ADC15	DAC3 Voltage Output on ADuC7020. On the ADuC7019, a 10 nF capacitor must be connected between this pin and AGND/Single-Ended or Differential Analog Input 15 (see Figure 53).
8	8	7	TMS	Test Mode Select, JTAG Test Port Input. Debug and download access. This pin has an internal pull-up resistor to IOV _{DD} . In some cases, an external pull-up resistor (~100K) is also required to ensure that the part does not enter an erroneous state.
9	9	8	TDI	Test Data In, JTAG Test Port Input. Debug and download access.
10	10	9	BM/P0.0/CMP _{out} /PLAI[7]	Multifunction I/O Pin. Boot Mode (BM). The ADuC7019/20/21/22 enter serial download mode if BM is low at reset and execute code if BM is pulled high at reset through a 1 k Ω resistor/General-Purpose Input and Output Port 0.0/Voltage Comparator Output/Programmable Logic Array Input Element 7.
11	11	10	P0.6/T1/MRST/PLAO[3]	Multifunction Pin. Driven low after reset. General-Purpose Output Port 0.6/ Timer1 Input/Power-On Reset Output/Programmable Logic Array Output Element 3.
12	12	11	тск	Test Clock, JTAG Test Port Input. Debug and download access. This pin has an internal pull-up resistor to IOV_{DD} . In some cases an external pull-up resistor (~100K) is also required to ensure that the part does not enter an erroneous state.
13	13	12	TDO	Test Data Out, JTAG Test Port Output. Debug and download access.
14	14	13	IOGND	Ground for GPIO (see Table 78). Typically connected to DGND.
15	15	14	IOV _{DD}	3.3 V Supply for GPIO (see Table 78) and Input of the On-Chip Voltage Regulator.
16	16	15	LV _{DD}	2.6 V Output of the On-Chip Voltage Regulator. This output must be connected to a 0.47 μF capacitor to DGND only.
17	17	16	DGND	Ground for Core Logic.
18	18	17	P0.3/TRST/ADC _{BUSY}	General-Purpose Input and Output Port 0.3/Test Reset, JTAG Test Port Input/ ADC _{BUSY} Signal Output.
19	19	18	RST	Reset Input, Active Low.
20	20	19	IRQ0/P0.4/PWM _{TRIP} /PLAO[1]	Multifunction I/O Pin. External Interrupt Request 0, Active High/General- Purpose Input and Output Port 0.4/PWM Trip External Input/Programmable Logic Array Output Element 1.
21	21	20	IRQ1/P0.5/ADC _{BUSY} /PLAO[2]	Multifunction I/O Pin. External Interrupt Request 1, Active High/General- Purpose Input and Output Port 0.5/ADC _{BUSY} Signal Output/Programmable Logic Array Output Element 2.

Table 11. Pin Function Descriptions (ADuC7019/ADuC7020/ADuC7021/ADuC7022)

Table 12. Pin Function Descriptions (ADuC7024/ADuC7025 64-Lead LFCSP_VQ and 64-Lead LQFP)

Pin No.	Mnemonic	Description
1	ADC4	Single-Ended or Differential Analog Input 4.
2	ADC5	Single-Ended or Differential Analog Input 5.
3	ADC6	Single-Ended or Differential Analog Input 6.
4	ADC7	Single-Ended or Differential Analog Input 7.
5	ADC8	Single-Ended or Differential Analog Input 8.
6	ADC9	Single-Ended or Differential Analog Input 9.
7	GND	Ground Voltage Reference for the ADC. For optimal performance, the analog power supply
		should be separated from IOGND and DGND.
8	ADCNEG	to the ground of the signal to convert. This bias point must be between 0 V and 1 V.
9	DAC0/ADC12	DAC0 Voltage Output/Single-Ended or Differential Analog Input 12. DAC outputs are not present on the ADuC7025.
10	DAC1/ADC13	DAC1 Voltage Output/Single-Ended or Differential Analog Input 13. DAC outputs are not present on the ADuC7025.
11	TMS	JTAG Test Port Input. Test Mode Select. Debug and download access.
12	TDI	ITAG Test Port Input, Test Data In Debug and download access
13		General-Purpose Input and Output Port 4 6/Programmable Logic Array Output Element 14
12	P4 7/PL AO[15]	General-Purpose Input and Output Port 4.7/Programmable Logic Array Output Element 15
15		Multifunction $1/O$ Pin Boot mode The ADuC7024/ADuC7025 enter download mode if BM is low at
15		reset and execute code if BM is pulled high at reset through a 1 k Ω resistor/General-Purpose Input and Output Port 0.0/Voltage Comparator Output/Programmable Logic Array Input Element 7.
16	P0.6/T1/MRST/PLAO[3]	Multifunction Pin, Driven Low After Reset. General-Purpose Output Port 0.6/Timer1 Input/Power- On Reset Output/Programmable Logic Array Output Element 3.
17	ТСК	JTAG Test Port Input, Test Clock. Debug and download access.
18	TDO	JTAG Test Port Output, Test Data Out. Debug and download access.
19	IOGND	Ground for GPIO (see Table 78). Typically connected to DGND.
20	IOV _{DD}	3.3 V Supply for GPIO (see Table 78) and Input of the On-Chip Voltage Regulator.
21	LV _{DD}	2.6 V Output of the On-Chip Voltage Regulator. This output must be connected to a 0.47 μ F capacitor to DGND only.
22	DGND	Ground for Core Logic.
23	P3.0/PWM0 _H /PLAI[8]	General-Purpose Input and Output Port 3.0/PWM Phase 0 High-Side Output/Programmable Logic
24	P3.1/PWM0∟/PLAI[9]	General-Purpose Input and Output Port 3.1/PWM Phase 0 Low-Side Output/Programmable Logic
25	P3.2/PWM1 _H /PLAI[10]	General-Purpose Input and Output Port 3.2/PWM Phase 1 High-Side Output/Programmable Logic
26	P3.3/PWM1L/PLAI[11]	General-Purpose Input and Output Port 3.3/PWM Phase 1 Low-Side Output/Programmable Logic
27		General-Purpose Input and Output Port 0.3/JTAG Test Port Input. Test Reset/ADC _{Rusy} Signal Output.
28	RST	Reset Input Active I ow
29	P3.4/PWM2 _H /PLAI[12]	General-Purpose Input and Output Port 3.4/PWM Phase 2 High-Side Output/Programmable Logic
30	P3.5/PWM2L/PLAI[13]	General-Purpose Input and Output Port 3.5/PWM Phase 2 Low-Side Output/Programmable Logic
31	IRQ0/P0.4/PWM _{TRIP} /PLAO[1]	Multifunction I/O Pin. External Interrupt Request 0, Active High/General-Purpose Input and Output Port 0.4/PWM Trip External Input/Programmable Logic Array Output Element 1
32	IRQ1/P0.5/ADC _{BUSY} /PLAO[2]	Multifunction I/O Pin. External Interrupt Request 1, Active High/General-Purpose Input and Output Port 0.5/ADCRUSY Signal Output/Programmable Logic Array Output Element 2
33	P2.0/SPM9/PLAO[5]/CONV _{START}	Serial Port Multiplexed. General-Purpose Input and Output Port 2.0/UART/Programmable Logic
34	P0.7/ECLK/XCLK/SPM8/PLAO[4]	Serial Port Multiplexed. General-Purpose Input and Output Port 0.7/Output for External Clock Signal/Input to the Internal Clock Generator Circuits/UART/Programmable Logic Array Output Element 4.
35	XCLKO	Output from the Crystal Oscillator Inverter.
36	XCLKI	Input to the Crystal Oscillator Inverter and Input to the Internal Clock Generator Circuits.
	I	

Pin No.	Mnemonic	Description
37	P3.6/PWM _{TRIP} /PLAI[14]	General-Purpose Input and Output Port 3.6/PWM Safety Cutoff/Programmable Logic Array Input Element 14.
38	P3.7/PWM _{SYNC} /PLAI[15]	General-Purpose Input and Output Port 3.7/PWM Synchronization Input and Output/ Programmable Logic Array Input Element 15.
39	P1.7/SPM7/PLAO[0]	Serial Port Multiplexed. General-Purpose Input and Output Port 1.7/UART, SPI/Programmable Logic Array Output Element 0.
40	P1.6/SPM6/PLAI[6]	Serial Port Multiplexed. General-Purpose Input and Output Port 1.6/UART, SPI/Programmable Logic Array Input Element 6.
41	IOGND	Ground for GPIO (see Table 78). Typically connected to DGND.
42	IOV _{DD}	3.3 V Supply for GPIO (see Table 78) and Input of the On-Chip Voltage Regulator.
43	P4.0/PLAO[8]	General-Purpose Input and Output Port 4.0/Programmable Logic Array Output Element 8.
44	P4.1/PLAO[9]	General-Purpose Input and Output Port 4.1/Programmable Logic Array Output Element 9.
45	P1.5/SPM5/PLAI[5]/IRQ3	Serial Port Multiplexed. General-Purpose Input and Output Port 1.5/UART, SPI/Programmable Logic Array Input Element 5/External Interrupt Request 3, Active High.
46	P1.4/SPM4/PLAI[4]/IRQ2	Serial Port Multiplexed. General-Purpose Input and Output Port 1.4/UART, SPI/Programmable Logic Array Input Element 4/External Interrupt Request 2, Active High.
47	P1.3/SPM3/PLAI[3]	Serial Port Multiplexed. General-Purpose Input and Output Port 1.3/UART, I2C1/Programmable Logic Array Input Element 3.
48	P1.2/SPM2/PLAI[2]	Serial Port Multiplexed. General-Purpose Input and Output Port 1.2/UART, I2C1/Programmable Logic Array Input Element 2.
49	P1.1/SPM1/PLAI[1]	Serial Port Multiplexed. General-Purpose Input and Output Port 1.1/UART, I2CO/Programmable Logic Array Input Element 1.
50	P1.0/T1/SPM0/PLAI[0]	Serial Port Multiplexed. General-Purpose Input and Output Port 1.0/Timer1 Input/UART, I2C0/ Programmable Logic Array Input Element 0.
51	P4.2/PLAO[10]	General-Purpose Input and Output Port 4.2/Programmable Logic Array Output Element 10.
52	P4.3/PLAO[11]	General-Purpose Input and Output Port 4.3/Programmable Logic Array Output Element 11.
53	P4.4/PLAO[12]	General-Purpose Input and Output Port 4.4/Programmable Logic Array Output Element 12.
54	P4.5/PLAO[13]	General-Purpose Input and Output Port 4.5/Programmable Logic Array Output Element 13.
55	V _{REF}	2.5 V Internal Voltage Reference. Must be connected to a 0.47 μF capacitor when using the internal reference.
56	DAC _{REF}	External Voltage Reference for the DACs. Range: DACGND to $DACV_{DD}$.
57	DACGND	Ground for the DAC. Typically connected to AGND.
58	AGND	Analog Ground. Ground reference point for the analog circuitry.
59	AV _{DD}	3.3 V Analog Power.
60		3.3 V Power Supply for the DACs. Must be connected to AV_{DD} .
61	ADC0	Single-Ended or Differential Analog Input 0.
62	ADC1	Single-Ended or Differential Analog Input 1.
63	ADC2/CMP0	Single-Ended or Differential Analog Input 2/Comparator Positive Input.
64	ADC3/CMP1	Single-Ended or Differential Analog Input 3/Comparator Negative Input.
0	EP	Exposed Pad. The pin configuration for the ADuC7024/ADuC7025 LFCSP_VQ has an exposed pad that must be soldered for mechanical purposes and left unconnected.

0xFFFFFFFF		
0xFFFFFC3C	DW/M	
0xFFFFFC00	F VVIVI	
0xFFFFF820		
0xFFFFF800	INTERFACE	
0xEEEEE46C		
0xFFFFF400	GPIO	
0xFFFF0B54		
0xFFFF0B00	PLA	
0xFFFF0A14		
0xFFFF0A00	SPI	
0xFFFF0948		
0xFFFF0900	12C1	
0vFFFF0848		
0xFFFF0800	I2C0	
0xFFFF0730		
0xFFFF0700	UART	
0xFFFF0620		
0xFFFF0600	DAC	
0xFFFF0538		
0xFFFF0500	ADC	
0xFFFF0490	BAND GAP	
0xFFFF048C	REFERENCE	
0xFFFF0448	POWER SUPPLY	
0xFFFF0440	MONITOR	
0xFFFF0420	PLL AND	
0xFFFF0404	OSCILLATOR CONTROL	
0xFFFF0370	WATCHDOG	
0xFFFF0360		
0xFFFF0350	WAKE-UP	
0xFFFF0340	HMER	
0xFFFF0334	GENERAL-PURPOSE	
0xFFFF0320		
0xFFFF0310	TIMER 0	
0xFFFF0300		
0xFFFF0238	REMAP AND	
0xFFFF0220	STSTEM CONTROL	
0xFFFF0110	INTERRUPT CONTROLLER	955-010
0xFFFF0000		8

Figure 47. Memory Mapped Registers

Table 16. Complete MMR List

Address	Name	Byte	Access Type	Default Value	Page			
IRQ Addre	IRQ Address Base = 0xFFFF0000							
0x0000	IRQSTA	4	R	0x00000000	83			
0x0004	IRQSIG ¹	4	R	0x00XXX000	83			
0x0008	IRQEN	4	R/W	0x00000000	83			
0x000C	IRQCLR	4	W	0x00000000	83			
0x0010	SWICFG	4	W	0x00000000	84			
0x0100	FIQSTA	4	R	0x00000000	84			
0x0104	FIQSIG ¹	4	R	0x00XXX000	84			
0x0108	FIQEN	4	R/W	0x00000000	84			
0x010C	FIQCLR	4	W	0x00000000	84			

¹ Depends on the level on the external interrupt pins (P0.4, P0.5, P1.4, and P1.5).

System Control Address Base = 0xFFF0200

0x0220	REMAP	1	R/W	0xXX ¹	55
0x0230	RSTSTA	1	R/W	0x01	55
0x0234	RSTCLR	1	W	0x00	55

¹Depends on the model.

Timer Address Base = 0xFFFF0300

0x0300	TOLD	2	R/W	0x0000	85
0x0304	TOVAL	2	R	0xFFFF	85
0x0308	T0CON	2	R/W	0x0000	85
0x030C	TOCLRI	1	W	0xFF	85
0x0320	T1LD	4	R/W	0x00000000	86
0x0324	T1VAL	4	R	0xFFFFFFFF	86
0x0328	T1CON	2	R/W	0x0000	86
0x032C	T1CLRI	1	W	0xFF	87
0x0330	T1CAP	4	R/W	0x00000000	87
0x0340	T2LD	4	R/W	0x00000000	87
0x0344	T2VAL	4	R	0xFFFFFFFF	87
0x0348	T2CON	2	R/W	0x0000	87
0x034C	T2CLRI	1	W	0xFF	88
0x0360	T3LD	2	R/W	0x0000	88
0x0364	T3VAL	2	R	0xFFFF	88
0x0368	T3CON	2	R/W	0x0000	88
0x036C	T3CLRI	1	W	0x00	89

PLL Base Address = 0xFFFF0400

60
60
60
60
60
60
6

PSM Address Base = 0xFFFF0440

0x0440	PSMCON	2	R/W	0x0008	57
0x0444	CMPCON	2	R/W	0x0000	58

Address	Name	Byte	Access Type	Default Value	Page	
Reference	Address Base	$= 0 \times FFF$	F0480			
0x048C	REFCON	1	R/W	0x00	50	
ADC Addr	ess Base = 0xF	FFF050	0			
0x0500	ADCCON	2	R/W	0x0600	46	
0x0504	ADCCP	1	R/W	0x00	47	
0x0508	ADCCN	1	R/W	0x01	47	
0x050C	ADCSTA	1	R	0x00	48	
0x0510	ADCDAT	4	R	0x00000000	48	
0x0514	ADCRST	1	R/W	0x00	48	
0x0530	ADCGN	2	R/W	0x0200	48	
0x0534	ADCOF	2	R/W	0x0200	48	
DAC Addr	ess Base = 0xF	FFF060	0			
0x0600	DAC0CON	1	R/W	0x00	56	
0x0604	DAC0DAT	4	R/W	0x00000000	56	
0x0608	DAC1CON	1	R/W	0x00	56	
0x060C	DAC1DAT	4	R/W	0x00000000	56	
0x0610	DAC2CON	1	R/W	0x00	56	
0x0614	DAC2DAT	4	R/W	0x00000000	56	
0x0618	DAC3CON	1	R/W	0x00	56	
0x061C	DAC3DAT	4	R/W	0x00000000	56	
UART Base	e Address = 0x	FFFF07	00			
0x0700	COMTX	1	R/W	0x00	71	
	COMRX	1	R	0x00	71	
	COMDIV0	1	R/W	0x00	71	
0x0704	COMIEN0	1	R/W	0x00	71	
	COMDIV1	1	R/W	0x00	72	
0x0708	COMIID0	1	R	0x01	72	
0x070C	COMCON0	1	R/W	0x00	72	
0x0710	COMCON1	1	R/W	0x00	72	
0x0714	COMSTA0	1	R	0x60	72	
0x0718	COMSTA1	1	R	0x00	73	
0x071C	COMSCR	1	R/W	0x00	73	
0x0720	COMIEN1	1	R/W	0x04	73	
0x0724	COMIID1	1	R	0x01	73	
0x0728	COMADR	1	R/W	0xAA	74	
0x072C	COMDIV2	2	R/W	0x0000	73	

ADuC7019/20/21/22/24/25/26/27/28/29

I2C0 Base Address = 0xFFFF0800 0x0800 I2C0MSTA 1 R/W 0x00 0x0804 I2C0SSTA 1 R 0x01 0x0808 I2C0SSTA 1 R 0x01 0x0808 I2C0STX 1 R 0x00 0x080C I2C0STX 1 R 0x00 0x0810 I2C0MRX 1 R 0x00 0x0814 I2C0MTX 1 W 0x00 0x0818 I2C0CNT 1 R/W 0x00 0x0812 I2C0ADR 1 R/W 0x00 0x0812 I2C0ADR 1 R/W 0x00 0x0824 I2C0EYTE 1 R/W 0x00 0x0825 I2C0CFG 1 R/W 0x00 0x0830 I2C0DIV 2 R/W 0x1F1F 0x0838 I2C0ID0 1 R/W 0x00 0x0836 I2C0ID1 1 R/W 0x00 0x0840	76 76 77 77
0x0800 I2C0MSTA 1 R/W 0x00 0x0804 I2C0SSTA 1 R 0x01 0x0808 I2C0SRX 1 R 0x00 0x0808 I2C0SRX 1 R 0x00 0x080C I2C0STX 1 W 0x00 0x0810 I2C0MRX 1 R 0x00 0x0814 I2C0MTX 1 W 0x00 0x0818 I2C0CNT 1 R/W 0x00 0x081C I2C0ADR 1 R/W 0x00 0x0824 I2C0EYTE 1 R/W 0x00 0x0828 I2C0ALT 1 R/W 0x00 0x0830 I2C0DIV 2 R/W 0x1F1F 0x0838 I2C0ID0 1 R/W 0x00 0x0836 I2C0ID1 1 R/W 0x00 0x0836 I2C0ID2 1 R/W 0x00 0x0840 I2C0ID2 1 R/W	76 76 77 77
0x0804 I2C0SSTA 1 R 0x01 0x0808 I2C0SRX 1 R 0x00 0x080C I2C0STX 1 W 0x00 0x080C I2C0STX 1 W 0x00 0x0810 I2C0MRX 1 R 0x00 0x0814 I2C0MRX 1 R 0x00 0x0818 I2C0CNT 1 R/W 0x00 0x081C I2C0ADR 1 R/W 0x00 0x0824 I2C0BYTE 1 R/W 0x00 0x0828 I2C0ALT 1 R/W 0x00 0x0830 I2C0DIV 2 R/W 0x1F1F 0x0838 I2C0ID 1 R/W 0x00 0x0836 I2C0ID 1 R/W 0x00 0x0837 I2C0ID 1 R/W 0x00 0x0836 I2C0ID1 1 R/W 0x00 0x0840 I2C0ID2 1 R/W	76 77 77
0x0808 I2C0SRX 1 R 0x00 0x080C I2C0STX 1 W 0x00 0x0810 I2C0MRX 1 R 0x00 0x0810 I2C0MRX 1 R 0x00 0x0814 I2C0MTX 1 W 0x00 0x0818 I2C0CNT 1 R/W 0x00 0x0812 I2C0ADR 1 R/W 0x00 0x0824 I2C0BYTE 1 R/W 0x00 0x0825 I2C0CFG 1 R/W 0x00 0x0830 I2C0DIV 2 R/W 0x1F1F 0x0838 I2C0ID0 1 R/W 0x00 0x0836 I2C0ID1 1 R/W 0x00 0x0836 I2C0ID2 1 R/W 0x00 0x0840 I2C0ID2 1 R/W 0x00	77 77
0x080C I2C0STX 1 W 0x00 0x0810 I2C0MRX 1 R 0x00 0x0814 I2C0MTX 1 W 0x00 0x0818 I2C0CNT 1 R/W 0x00 0x081C I2C0ADR 1 R/W 0x00 0x0824 I2C0BYTE 1 R/W 0x00 0x0825 I2C0ALT 1 R/W 0x00 0x0830 I2C0DIV 2 R/W 0x1F1F 0x0838 I2C0ID0 1 R/W 0x00 0x0830 I2C0DIV 2 R/W 0x1F1F 0x0838 I2C0ID1 1 R/W 0x00 0x0836 I2C0ID2 1 R/W 0x00 0x0840 I2C0ID2 1 R/W 0x00	77
0x0810 I2C0MRX 1 R 0x00 0x0814 I2C0MTX 1 W 0x00 0x0818 I2C0CNT 1 R/W 0x00 0x0818 I2C0CNT 1 R/W 0x00 0x081C I2C0ADR 1 R/W 0x00 0x0824 I2C0BYTE 1 R/W 0x00 0x0825 I2C0ALT 1 R/W 0x00 0x0830 I2C0DIV 2 R/W 0x1F1F 0x0838 I2C0ID0 1 R/W 0x00 0x0836 I2C0ID1 1 R/W 0x00 0x0834 I2C0ID2 1 R/W 0x00 0x0834 I2C0ID1 1 R/W 0x00 0x0840 I2C0ID2 1 R/W 0x00 0x0844 I2C0ID3 1 R/W 0x00	
0x0814 I2C0MTX 1 W 0x00 0x0818 I2C0CNT 1 R/W 0x00 0x081C I2C0ADR 1 R/W 0x00 0x0824 I2C0BYTE 1 R/W 0x00 0x0828 I2C0ALT 1 R/W 0x00 0x0830 I2C0CFG 1 R/W 0x00 0x0830 I2C0DIV 2 R/W 0x1F1F 0x0838 I2C0ID0 1 R/W 0x00 0x0836 I2C0ID1 1 R/W 0x00 0x0840 I2C0ID2 1 R/W 0x00 0x0844 I2C0ID3 1 R/W 0x00	77
0x0818 I2C0CNT 1 R/W 0x00 0x081C I2C0ADR 1 R/W 0x00 0x0824 I2C0BYTE 1 R/W 0x00 0x0828 I2C0ALT 1 R/W 0x00 0x0830 I2C0CFG 1 R/W 0x00 0x0830 I2C0DIV 2 R/W 0x1F1F 0x0838 I2C0ID0 1 R/W 0x00 0x083C I2C0ID1 1 R/W 0x00 0x0840 I2C0ID2 1 R/W 0x00 0x0844 I2C0ID3 1 R/W 0x00	77
0x081C I2C0ADR 1 R/W 0x00 0x0824 I2C0BYTE 1 R/W 0x00 0x0828 I2C0ALT 1 R/W 0x00 0x0820 I2C0CFG 1 R/W 0x00 0x0830 I2C0DIV 2 R/W 0x1F1F 0x0838 I2C0ID0 1 R/W 0x00 0x083C I2C0ID1 1 R/W 0x00 0x0840 I2C0ID2 1 R/W 0x00 0x0844 I2C0ID3 1 R/W 0x00	77
0x0824 I2C0BYTE 1 R/W 0x00 0x0828 I2C0ALT 1 R/W 0x00 0x082C I2C0CFG 1 R/W 0x00 0x0830 I2C0DIV 2 R/W 0x1F1F 0x0838 I2C0ID0 1 R/W 0x00 0x083C I2C0ID1 1 R/W 0x00 0x0840 I2C0ID2 1 R/W 0x00 0x0844 I2C0ID3 1 R/W 0x00	77
0x0828 I2C0ALT 1 R/W 0x00 0x082C I2C0CFG 1 R/W 0x00 0x0830 I2C0DIV 2 R/W 0x1F1F 0x0838 I2C0ID0 1 R/W 0x00 0x083C I2C0ID1 1 R/W 0x00 0x0840 I2C0ID2 1 R/W 0x00 0x0844 I2C0ID3 1 R/W 0x00	77
0x082C 12C0CFG 1 R/W 0x00 0x0830 12C0DIV 2 R/W 0x1F1F 0x0838 12C0ID0 1 R/W 0x00 0x083C 12C0ID1 1 R/W 0x00 0x0840 12C0ID2 1 R/W 0x00 0x0844 12C0ID3 1 R/W 0x00	78
0x0830 I2C0DIV 2 R/W 0x1F1F 0x0838 I2C0ID0 1 R/W 0x00 0x083C I2C0ID1 1 R/W 0x00 0x0840 I2C0ID2 1 R/W 0x00 0x0844 I2C0ID3 1 R/W 0x00	78
0x0838 I2C0ID0 1 R/W 0x00 0x083C I2C0ID1 1 R/W 0x00 0x0840 I2C0ID2 1 R/W 0x00 0x0844 I2C0ID3 1 R/W 0x00	79
0x083C I2C0ID1 1 R/W 0x00 0x0840 I2C0ID2 1 R/W 0x00 0x0844 I2C0ID3 1 R/W 0x00	79
0x0840 I2C0ID2 1 R/W 0x00 0x0844 I2C0ID3 1 R/W 0x00	79
0x0844 I2C0ID3 1 R/W 0x00	79
	79
0x0848 I2C0CCNT 1 R/W 0x01	79
0x084C I2C0FSTA 2 R/W 0x0000	79
I2C1 Base Address = 0xFFFF0900	
0x0900 I2C1MSTA 1 R/W 0x00	76
0x0904 I2C1SSTA 1 R 0x01	76
0x0908 I2C1SRX 1 R 0x00	77
0x090C I2C1STX 1 W 0x00	77
0x0910 I2C1MRX 1 R 0x00	77
0x0914 I2C1MTX 1 W 0x00	77
0x0918 I2C1CNT 1 R/W 0x00	77
0x091C I2C1ADR 1 R/W 0x00	77
0x0924 I2C1BYTE 1 R/W 0x00	77
0x0928 I2C1ALT 1 R/W 0x00	78
0x092C I2C1CFG 1 R/W 0x00	78
0x0930 I2C1DIV 2 R/W 0x1F1F	79
0x0938 I2C1ID0 1 R/W 0x00	79
0x093C I2C1ID1 1 R/W 0x00	79
0x0940 I2C1ID2 1 R/W 0x00	79
0x0944 I2C1ID3 1 R/W 0x00	79
0x0948 I2C1CCNT 1 R/W 0x01	79
0x094C I2C1FSTA 2 R/W 0x0000	-
SPI Base Address = 0xFFFF0A00	79

0x0A00	SPISTA	1	R	0x00	75
0x0A04	SPIRX	1	R	0x00	75
0x0A08	SPITX	1	W	0x00	75
0x0A0C	SPIDIV	1	R/W	0x1B	75
0x0A10	SPICON	2	R/W	0x0000	75

			A	Default		
Address	Name	Byte	Access Type	Value	Page	
PLA Base Address – 0xEEEE0B00						
		2	D/W	0,0000	00	
UXUBUU	PLAELINU	2	R/ W	00000	00	
0x0B04	PLAELM1	2	R/W	0x0000	80	
0x0B08	PLAELM2	2	R/W	0x0000	80	
0x0B0C	PLAELM3	2	R/W	0x0000	80	
0x0B10	PLAELM4	2	R/W	0x0000	80	
0x0B14	PLAELM5	2	R/W	0x0000	80	
0x0B18	PLAELM6	2	R/W	0x0000	80	
0x0B1C	PLAELM7	2	R/W	0x0000	80	
0x0B20	PLAELM8	2	R/W	0x0000	80	
0x0B24	PLAELM9	2	R/W	0x0000	80	
0x0B28	PLAELM10	2	R/W	0x0000	80	
0x0B2C	PLAELM11	2	R/W	0x0000	80	
0x0B30	PLAELM12	2	R/W	0x0000	80	
0x0B34	PLAELM13	2	R/W	0x0000	80	
0x0B38	PLAELM14	2	R/W	0x0000	80	
0x0B3C	PLAELM15	2	R/W	0x0000	80	
0x0B40	PLACLK	1	R/W	0x00	81	
0x0B44	PLAIRQ	4	R/W	0x00000000	81	
0x0B48	PLAADC	4	R/W	0x00000000	82	
0x0B4C	PLADIN	4	R/W	0x00000000	82	
0x0B50	PLADOUT	4	R	0x00000000	82	
0x0B54	PLALCK	1	W	0x00	82	

External Memory Base Address = 0xFFFF000

0xF000 XMCF	FG 1	R/W	0x00	90
0xF010 XM00	CON 1	R/W	0x00	90
0xF014 XM10	CON 1	R/W	0x00	90
0xF018 XM20	CON 1	R/W	0x00	90
0xF01C XM30	CON 1	R/W	0x00	90
0xF020 XM0F	PAR 2	R/W	0x70FF	90
0xF024 XM1F	PAR 2	R/W	0x70FF	90
0xF028 XM2F	PAR 2	R/W	0x70FF	90
0xF02C XM3F	PAR 2	R/W	0x70FF	90

Address	Name	Buto	Access	Default Value	Dage
Address	Name Adducer Ou	Dyle	туре	Value	Page
GPIO Base	e Address = $0x$				
0xF400	GPOCON	4	R/W	0x00000000	68
0xF404	GPICON	4	R/W	0x00000000	68
0xF408	GP2CON	4	R/W	0x00000000	68
0xF40C	GP3CON	4	R/W	0x00000000	68
0xF410	GP4CON	4	R/W	0x00000000	68
0xF420	GPODAI	4	R/W	0x000000XX	70
0xF424	GPOSET	4	W	0x000000XX	70
0xF428	GPOCLR	4	W	0x000000XX1	70
0xF42C	GPOPAR	4	R/W	0x20000000	68
0xF430	GP1DAT	4	R/W	0x000000XX1	69
0xF434	GP1SET	4	W	0x000000XX1	70
0xF438	GP1CLR	4	W	0x000000XX1	70
0xF43C	GP1PAR	4	R/W	0x0000000	68
0xF440	GP2DAT	4	R/W	0x000000XX1	69
0xF444	GP2SET	4	W	0x000000XX1	70
0xF448	GP2CLR	4	W	0x000000XX1	70
0xF450	GP3DAT	4	R/W	0x000000XX1	69
0xF454	GP3SET	4	W	0x000000XX1	70
0xF458	GP3CLR	4	W	0x000000XX1	70
0xF460	GP4DAT	4	R/W	0x000000XX1	69
0xF464	GP4SET	4	W	0x000000XX1	70
0xF468	GP4CLR	4	W	0x000000XX1	70
¹ X = 0, 1, 2,	or 3.				
Flash/EE B	ase Address =	= 0xFFFF	F800		
0xF800	FEESTA	1	R	0x20	52
0xF804	FEEMOD	2	R/W	0x0000	52
0xF808	FEECON	1	R/W	0x07	53
0xF80C	FEEDAT	2	R/W	0xXXXX ¹	53
0xF810	FEEADR	2	R/W	0x0000	53
0xF818	FEESIGN	3	R	0xFFFFFF	53
0xF81C	FEEPRO	4	R/W	0x00000000	53
0xF820	FEEHIDE	4	R/W	0xFFFFFFFF	53
¹ X = 0, 1, 2,	or 3.				
PWM Base	e Address = 0x	FFFFFC	00		
0xFC00	PWMCON	2	R/W	0x0000	66
0xFC04	PWMSTA	2	R/W	0x0000	66
0xFC08	PWMDAT0	2	R/W	0x0000	67
0xFC0C	PWMDAT1	2	R/W	0x0000	67
0xFC10	PWMCFG	2	R/W	0x0000	67
0xFC14	PWMCH0	2	R/W	0x0000	67
0xFC18	PWMCH1	2	R/W	0x0000	67
0xFC1C	PWMCH2	2	R/W	0x0000	67

Data Sheet

0xFC20

0xFC24

PWMEN

PWMDAT2

2

2

R/W

R/W

0x0000

0x0000

67

67

ADC CIRCUIT OVERVIEW

The analog-to-digital converter (ADC) incorporates a fast, multichannel, 12-bit ADC. It can operate from 2.7 V to 3.6 V supplies and is capable of providing a throughput of up to 1 MSPS when the clock source is 41.78 MHz. This block provides the user with a multichannel multiplexer, a differential track-and-hold, an on-chip reference, and an ADC.

The ADC consists of a 12-bit successive approximation converter based around two capacitor DACs. Depending on the input signal configuration, the ADC can operate in one of three modes.

- Fully differential mode, for small and balanced signals
- Single-ended mode, for any single-ended signals
- Pseudo differential mode, for any single-ended signals, taking advantage of the common-mode rejection offered by the pseudo differential input

The converter accepts an analog input range of 0 V to V_{REF} when operating in single-ended or pseudo differential mode. In fully differential mode, the input signal must be balanced around a common-mode voltage (V_{CM}) in the 0 V to AV_{DD} range with a maximum amplitude of 2 V_{REF} (see Figure 48).

Figure 48. Examples of Balanced Signals in Fully Differential Mode

A high precision, low drift, factory calibrated, 2.5 V reference is provided on-chip. An external reference can also be connected as described in the Band Gap Reference section.

Single or continuous conversion modes can be initiated in the software. An external CONV_{START} pin, an output generated from the on-chip PLA, or a Timer0 or Timer1 overflow can also be used to generate a repetitive trigger for ADC conversions.

A voltage output from an on-chip band gap reference proportional to absolute temperature can also be routed through the front-end ADC multiplexer, effectively an additional ADC channel input. This facilitates an internal temperature sensor channel that measures die temperature to an accuracy of $\pm 3^{\circ}$ C.

TRANSFER FUNCTION

Pseudo Differential and Single-Ended Modes

In pseudo differential or single-ended mode, the input range is 0 V to V_{REF} . The output coding is straight binary in pseudo differential and single-ended modes with

1 LSB = *FS*/4096, or 2.5 V/4096 = 0.61 mV, or 610 μ V when *V_{REF}* = 2.5 V The ideal code transitions occur midway between successive integer LSB values (that is, 1/2 LSB, 3/2 LSB, 5/2 LSB, ..., FS – 3/2 LSB). The ideal input/output transfer characteristic is shown in Figure 49.

Figure 49. ADC Transfer Function in Pseudo Differential or Single-Ended Mode

Fully Differential Mode

The amplitude of the differential signal is the difference between the signals applied to the $V_{\rm IN+}$ and $V_{\rm IN-}$ input voltage pins (that is, $V_{\rm IN+}-V_{\rm IN-}$). The maximum amplitude of the differential signal is, therefore, $-V_{\rm REF}$ to $+V_{\rm REF}$ p-p (that is, $2\times V_{\rm REF}$). This is regardless of the common mode (CM). The common mode is the average of the two signals, for example, $(V_{\rm IN+}+V_{\rm IN-})/2$, and is, therefore, the voltage that the two inputs are centered on. This results in the span of each input being CM \pm $V_{\rm REF}/2$. This voltage has to be set up externally, and its range varies with $V_{\rm REF}$ (see the Driving the Analog Inputs section).

The output coding is twos complement in fully differential mode with 1 LSB = 2 V_{REF}/4096 or 2 × 2.5 V/4096 = 1.22 mV when V_{REF} = 2.5 V. The output result is ±11 bits, but this is shifted by 1 to the right. This allows the result in ADCDAT to be declared as a signed integer when writing C code. The designed code transitions occur midway between successive integer LSB values (that is, 1/2 LSB, 3/2 LSB, 5/2 LSB, ..., FS – 3/2 LSB). The ideal input/output transfer characteristic is shown in Figure 50.

Figure 50. ADC Transfer Function in Differential Mode

SECURITY

The 62 kB of Flash/EE memory available to the user can be read and write protected.

Bit 31 of the FEEPRO/FEEHIDE MMR (see Table 42) protects the 62 kB from being read through JTAG programming mode. The other 31 bits of this register protect writing to the flash memory. Each bit protects four pages, that is, 2 kB. Write protection is activated for all types of access.

Three Levels of Protection

- Protection can be set and removed by writing directly into FEEHIDE MMR. This protection does not remain after reset.
- Protection can be set by writing into the FEEPRO MMR. It takes effect only after a save protection command (0x0C) and a reset. The FEEPRO MMR is protected by a key to avoid direct access. The key is saved once and must be entered again to modify FEEPRO. A mass erase sets the key back to 0xFFFF but also erases all the user code.
- Flash can be permanently protected by using the FEEPRO MMR and a particular value of key: 0xDEADDEAD. Entering the key again to modify the FEEPRO register is not allowed.

Sequence to Write the Key

- 1. Write the bit in FEEPRO corresponding to the page to be protected.
- 2. Enable key protection by setting Bit 6 of FEEMOD (Bit 5 must equal 0).
- 3. Write a 32-bit key in FEEADR and FEEDAT.
- 4. Run the write key command 0x0C in FEECON; wait for the read to be successful by monitoring FEESTA.
- 5. Reset the part.

To remove or modify the protection, the same sequence is used with a modified value of FEEPRO. If the key chosen is the value 0xDEAD, the memory protection cannot be removed. Only a mass erase unprotects the part, but it also erases all user code.

The sequence to write the key is illustrated in the following example (this protects writing Page 4 to Page 7 of the Flash):

o 7
.d
: :

The same sequence should be followed to protect the part permanently with FEEADR = 0xDEAD and FEEDAT = 0xDEAD.

FLASH/EE CONTROL INTERFACE

Serial and JTAG programming use the Flash/EE control interface, which includes the eight MMRs outlined in this section.

Table 31. FEESTA Register

Name	Address	Default Value	Access
FEESTA	0xFFFFF800	0x20	R

FEESTA is a read-only register that reflects the status of the flash control interface as described in Table 32.

Table 32. FEESTA MMR Bit Designations

Bit	Description
15:6	Reserved.
5	Reserved.
4	Reserved.
3	Flash interrupt status bit. Set automatically when an interrupt occurs, that is, when a command is complete and the Flash/EE interrupt enable bit in the FEEMOD register is set. Cleared when reading the FEESTA register.
2	Flash/EE controller busy. Set automatically when the controller is busy. Cleared automatically when the controller is not busy.
1	Command fail. Set automatically when a command completes unsuccessfully. Cleared automatically when reading the FEESTA register.
0	Command pass. Set by the MicroConverter when a command completes successfully. Cleared automatic-ally when reading the FEESTA register.

Table 33. FEEMOD Register

Name	Address	Default Value	Access
FEEMOD	0xFFFFF804	0x0000	R/W

FEEMOD sets the operating mode of the flash control interface. Table 34 shows FEEMOD MMR bit designations.

Table 34. FEEMOD MMR Bit Designations

Bit	Description
15:9	Reserved.
8	Reserved. This bit should always be set to 0.
7:5	Reserved. These bits should always be set to 0 except when writing keys. See the Sequence to Write the Key section.
4	Flash/EE interrupt enable. Set by user to enable the Flash/EE interrupt. The interrupt occurs when a command is complete. Cleared by user to disable the Flash/EE interrupt.
3	Erase/write command protection. Set by user to enable the erase and write commands. Cleared to protect the Flash against the erase/write command.
2:0	Reserved. These bits should always be set to 0.

Table 35. FEECON Register

Name	Address	Default Value	Access
FEECON	0xFFFFF808	0x07	R/W

FEECON is an 8-bit command register. The commands are described in Table 36.

Table 36. Command Codes in FEECON

Code	Command	Description
0x00 ¹	Null	Idle state.
0x011	Single read	Load FEEDAT with the 16-bit data. Indexed by FEEADR.
0x02 ¹	Single write	Write FEEDAT at the address pointed to by FEEADR. This operation takes 50 μ s.
0x031	Erase/write	Erase the page indexed by FEEADR and write FEEDAT at the location pointed by FEEADR. This operation takes approxi- mately 24 ms.
0x04 ¹	Single verify	Compare the contents of the location pointed by FEEADR to the data in FEEDAT. The result of the comparison is returned in FEESTA, Bit 1.
0x05 ¹	Single erase	Erase the page indexed by FEEADR.
0x06 ¹	Mass erase	Erase 62 kB of user space. The 2 kB of kernel are protected. This operation takes 2.48 sec. To prevent accidental execution, a command sequence is required to execute this instruction. See the Command Sequence for Executing a Mass Erase section.
0x07	Reserved	Reserved.
0x08	Reserved	Reserved.
0x09	Reserved	Reserved.
0x0A	Reserved	Reserved.
0x0B	Signature	Give a signature of the 64 kB of Flash/EE in the 24-bit FEESIGN MMR. This operation takes 32,778 clock cycles.
0x0C	Protect	This command can run only once. The value of FEEPRO is saved and removed only with a mass erase (0x06) of the key.
0x0D	Reserved	Reserved.
0x0E	Reserved	Reserved.
0x0F	Ping	No operation; interrupt generated.

¹ The FEECON register always reads 0x07 immediately after execution of any of these commands.

ADuC7019/20/21/22/24/25/26/27/28/29

Table 37. FEEDAT Register

Name	Address	Default Value	Access	
FEEDAT	0xFFFFF80C	0xXXXX ¹	R/W	

 $^{1}X = 0, 1, 2, \text{ or } 3.$

FEEDAT is a 16-bit data register.

Table 38. FEEADR Register

Name	Address	Default Value	Access
FEEADR	0xFFFFF810	0x0000	R/W

FEEADR is another 16-bit address register.

Table 39. FEESIGN Register

Name	Address	Default Value	Access
FEESIGN	0xFFFFF818	0xFFFFFF	R

FEESIGN is a 24-bit code signature.

Table 40. FEEPRO Register

Name	Address	Default Value	Access
FEEPRO	0xFFFFF81C	0x0000000	R/W

FEEPRO MMR provides protection following a subsequent reset of the MMR. It requires a software key (see Table 42).

Table 41. FEEHIDE Register

Name	Address	Default Value	Access
FEEHIDE	0xFFFFF820	0xFFFFFFF	R/W

FEEHIDE MMR provides immediate protection. It does not require any software key. Note that the protection settings in FEEHIDE are cleared by a reset (see Table 42).

Table 42. FEEPRO and FEEHIDE MMR Bit Designations

Bit	Description
31	Read protection. Cleared by user to protect all code. Set by user to allow reading the code.
30:0	Write protection for Page 123 to Page 120, Page 119 to Page 116, and Page 0 to Page 3. Cleared by user to protect the pages from writing. Set by user to allow writing the pages.

Command Sequence for Executing a Mass Erase

FEEDAT=0x3CFF;	
$FEEADR = 0 \times FFC3;$	
FEEMOD= FEEMOD 0x8;	//Erase key enable
FEECON=0x06;	//Mass erase command

Linearity degradation near ground and AV_{DD} is caused by saturation of the output amplifier, and a general representation of its effects (neglecting offset and gain error) is illustrated in Figure 64. The dotted line in Figure 64 indicates the ideal transfer function, and the solid line represents what the transfer function may look like with endpoint nonlinearities due to saturation of the output amplifier. Note that Figure 64 represents a transfer function in 0-to-AV_{DD} mode only. In 0-to-V_{REF} or 0-to-DAC_{REF} mode (with V_{REF} < AV_{DD} or DAC_{REF} < AV_{DD}), the lower nonlinearity is similar. However, the upper portion of the transfer function follows the ideal line right to the end (V_{REF} in this case, not AV_{DD}), showing no signs of endpoint linearity errors.

Figure 64. Endpoint Nonlinearities Due to Amplifier Saturation

The endpoint nonlinearities conceptually illustrated in Figure 64 get worse as a function of output loading. Most of the ADuC7019/20/21/22/24/25/26/27/28/29 data sheet specifications assume a 5 k Ω resistive load to ground at the DAC output. As the output is forced to source or sink more current, the nonlinear regions at the top or bottom (respectively) of Figure 64 become larger. With larger current demands, this can significantly limit output voltage swing.

POWER SUPPLY MONITOR

The power supply monitor regulates the IOV_{DD} supply on the ADuC7019/20/21/22/24/25/26/27/28/29. It indicates when the IOV_{DD} supply pin drops below one of two supply trip points. The monitor function is controlled via the PSMCON register. If enabled in the IRQEN or FIQEN register, the monitor interrupts the core using the PSMI bit in the PSMCON MMR. This bit is immediately cleared after CMP goes high.

This monitor function allows the user to save working registers to avoid possible data loss due to low supply or brown-out conditions. It also ensures that normal code execution does not resume until a safe supply level is established.

Table 53. PSMCON Register

Name	Address	Default Value	Access
PSMCON	0xFFFF0440	0x0008	R/W

ADuC7019/20/21/22/24/25/26/27/28/29

Table 54. PSMCON MMR Bit Descriptions

Bit	Name	Description
3	СМР	Comparator bit. This is a read-only bit that directly reflects the state of the comparator. Read 1 indicates that the IOV _{DD} supply is above its selected trip point or that the PSM is in power-down mode. Read 0 indicates that the IOV _{DD} supply is below its selected trip point. This bit should be set before leaving the interrupt service routine.
2	TP	Trip point selection bit. $0 = 2.79 \text{ V}$, $1 = 3.07 \text{ V}$.
1	PSMEN	Power supply monitor enable bit. Set to 1 to enable the power supply monitor circuit. Cleared to 0 to disable the power supply monitor circuit.
0	PSMI	Power supply monitor interrupt bit. This bit is set high by the MicroConverter after CMP goes low, indicating low I/O supply. The PSMI bit can be used to interrupt the processor. After CMP returns high, the PSMI bit can be cleared by writing a 1 to this location. A 0 write has no effect. There is no timeout delay; PSMI can be immediately cleared after CMP goes high.

COMPARATOR

The ADuC7019/20/21/22/24/25/26/27/28/29 integrate voltage comparators. The positive input is multiplexed with ADC2, and the negative input has two options: ADC3 and DAC0. The output of the comparator can be configured to generate a system interrupt, be routed directly to the programmable logic array, start an ADC conversion, or be on an external pin, CMP_{OUT}, as shown in Figure 65.

Note that because the ADuC7022, ADuC7025, and ADu7027 parts do not support a DAC0 output, it is not possible to use DAC0 as a comparator input on these parts.

Hysteresis

Figure 66 shows how the input offset voltage and hysteresis terms are defined.

Figure 66. Comparator Hysteresis Transfer Function

DESCRIPTION OF THE PWM BLOCK

A functional block diagram of the PWM controller is shown in Figure 68. The generation of the six output PWM signals on Pin PWM0_H to Pin PWM2_L is controlled by the following four important blocks:

- The 3-phase PWM timing unit. The core of the PWM controller, this block generates three pairs of complemented and dead-time-adjusted, center-based PWM signals. This unit also generates the internal synchronization pulse, PWMSYNC. It also controls whether the external PWM_{SYNC} pin is used.
- The output control unit. This block can redirect the outputs of the 3-phase timing unit for each channel to either the high-side or low-side output. In addition, the output control unit allows individual enabling/disabling of each of the six PWM output signals.
- The gate drive unit. This block can generate the high frequency chopping and its subsequent mixing with the PWM signals.
- The PWM shutdown controller. This block controls the PWM shutdown via the PWM_{TRIP} pin and generates the correct reset signal for the timing unit.

The PWM controller is driven by the ADuC7019/20/21/22/24/ 25/26/27/28/29 core clock frequency and is capable of generating two interrupts to the ARM core. One interrupt is generated on the occurrence of a PWMSYNC pulse, and the other is generated on the occurrence of any PWM shutdown action.

3-Phase Timing Unit

PWM Switching Frequency (PWMDAT0 MMR)

The PWM switching frequency is controlled by the PWM period register, PWMDAT0. The fundamental timing unit of the PWM controller is

 $t_{CORE} = 1/f_{CORE}$

where f_{CORE} is the core frequency of the MicroConverter.

Therefore, for a 41.78 MHz $f_{\rm CORE}$, the fundamental time increment is 24 ns. The value written to the PWMDAT0 register is effectively the number of $f_{\rm CORE}$ clock increments in one-half a PWM period. The required PWMDAT0 value is a function of the desired PWM switching frequency ($f_{\rm PWN}$) and is given by

 $PWMDAT0 = f_{CORE}/(2 \times f_{PWM})$

Therefore, the PWM switching period, ts, can be written as

 $t_S = 2 \times PWMDAT0 \times t_{CORE}$

The largest value that can be written to the 16-bit PWMDAT0 MMR is 0xFFFF = 65,535, which corresponds to a minimum PWM switching frequency of

 $f_{PWM(min)} = 41.78 \times 10^{6}/(2 \times 65,535) = 318.75 \text{ Hz}$

Note that PWMDAT0 values of 0 and 1 are not defined and should not be used.

PWM Switching Dead Time (PWMDAT1 MMR)

The second important parameter that must be set up in the initial configuration of the PWM block is the switching dead time. This is a short delay time introduced between turning off one PWM signal (0H, for example) and turning on the complementary signal (0L). This short time delay is introduced to permit the power switch to be turned off (in this case, 0H) to completely recover its blocking capability before the complementary switch is turned on. This time delay prevents a potentially destructive short-circuit condition from developing across the dc link capacitor of a typical voltage source inverter.

The dead time is controlled by the 10-bit, read/write PWMDAT1 register. There is only one dead-time register that controls the dead time inserted into all three pairs of PWM output signals. The dead time, t_D , is related to the value in the PWMDAT1 register by

$t_D = PWMDAT1 \times 2 \times t_{CORE}$

Therefore, a PWMDAT1 value of 0x00A (= 10), introduces a 426 ns delay between the turn-off on any PWM signal (0H, for example) and the turn-on of its complementary signal (0L). The amount of the dead time can, therefore, be programmed in increments of $2t_{CORE}$ (or 49 ns for a 41.78 MHz core clock).

Figure 68. Overview of the PWM Controller

ADuC7019/20/21/22/24/25/26/27/28/29

Table 83. GPIO Drive Strength Control Bits Descriptions

The drive strength bits can be written to one time only after reset. More writing to related bits has no effect on changing drive strength. The GPIO drive strength and pull-up disable is not always adjustable for the GPIO port. Some control bits cannot be changed (see Table 84).

Bit	GPOPAR	GP1PAR
31	Reserved	Reserved
30 to 29	R/W	R/W
28	R/W	R/W
27	Reserved	Reserved
26 to 25	R/W	R/W
24	R/W	R/W
23	Reserved	Reserved
22 to 21	R/W	R (b00)
20	R/W	R/W
19	Reserved	Reserved
18 to 17	R (b00)	R (b00)
16	R/W	R/W
15	Reserved	Reserved
14 to 13	R (b00)	R (b00)
12	R/W	R/W
11	Reserved	Reserved
10 to 9	R (b00)	R (b00)
8	R/W	R/W
7	Reserved	Reserved
6 to 5	R (b00)	R (b00)
4	R/W	R/W
3	Reserved	Reserved
2 to 1	R (b00)	R (b00)
0	R/W	R/W

Table 84. GPxPAR Control Bits Access Descriptions

14010 001 01	Tuble obt GLADITI Registerio				
Name	Address	Default Value ¹	Access		
GP0DAT	0xFFFFF420	0x000000XX	R/W		
GP1DAT	0xFFFFF430	0x000000XX	R/W		
GP2DAT	0xFFFFF440	0x000000XX	R/W		
GP3DAT	0xFFFFF450	0x000000XX	R/W		
GP4DAT	0xFFFFF460	0x00000XX	R/W		

Table 85. GPxDAT Registers

¹X = 0, 1, 2, or 3.

GPxDAT are Port x configuration and data registers. They configure the direction of the GPIO pins of Port x, set the output value for the pins configured as output, and store the input value of the pins configured as input.

Table 86. GPxDAT MMR Bit Descriptions

Bit	Description
31:24	Direction of the data. Set to 1 by user to configure the GPIO pin as an output. Cleared to 0 by user to configure the GPIO pin as an input.
23:16	Port x data output.
15:8	Reflect the state of Port x pins at reset (read only).
7:0	Port x data input (read only).

Table 87. GPxSET Registers

	0		
Name	Address	Default Value ¹	Access
GP0SET	0xFFFFF424	0x000000XX	W
GP1SET	0xFFFFF434	0x000000XX	W
GP2SET	0xFFFFF444	0x000000XX	W
GP3SET	0xFFFFF454	0x000000XX	W
GP4SET	0xFFFFF464	0x000000XX	W

 $^{1}X = 0, 1, 2, \text{ or } 3.$

GPxSET are data set Port x registers.

Table 88. GPxSET MMR Bit Descriptions

Bit	Description
31:24	Reserved.
23:16	Data Port x set bit. Set to 1 by user to set bit on Port x; also sets the corresponding bit in the GPxDAT MMR. Cleared to 0 by user; does not affect the data out.
15:0	Reserved.

Table 89. GPxCLR Registers

Name	Address	Default Value ¹	Access
GP0CLR	0xFFFFF428	0x000000XX	W
GP1CLR	0xFFFFF438	0x000000XX	W
GP2CLR	0xFFFFF448	0x000000XX	W
GP3CLR	0xFFFFF458	0x000000XX	W
GP4CLR	0xFFFFF468	0x000000XX	W

 $^{1}X = 0, 1, 2, \text{ or } 3.$

GPxCLR are data clear Port x registers.

Table 90. GPxCLR MMR Bit Descriptions

Bit	Description
31:24	Reserved.
23:16	Data Port x clear bit. Set to 1 by user to clear bit on Port x; also clears the corresponding bit in the GPxDAT MMR. Cleared to 0 by user; does not affect the data out.
15:0	Reserved.

SERIAL PORT MUX

The serial port mux multiplexes the serial port peripherals (an SPI, UART, and two I²Cs) and the programmable logic array (PLA) to a set of 10 GPIO pins. Each pin must be configured to one of its specific I/O functions as described in Table 91.

Table 91. SPM Configuration

	GPIO	UART	UART/I ² C/SPI	PLA
SPMMUX	(00)	(01)	(10)	(11)
SPM0	P1.0	SIN	I2C0SCL	PLAI[0]
SPM1	P1.1	SOUT	I2C0SDA	PLAI[1]
SPM2	P1.2	RTS	I2C1SCL	PLAI[2]
SPM3	P1.3	CTS	I2C1SDA	PLAI[3]
SPM4	P1.4	RI	SCLK	PLAI[4]
SPM5	P1.5	DCD	MISO	PLAI[5]
SPM6	P1.6	DSR	MOSI	PLAI[6]
SPM7	P1.7	DTR	CS	PLAO[0]
SPM8	P0.7	ECLK/XCLK	SIN	PLAO[4]
SPM9	P2.0	CONV	SOUT	PLAO[5]

Table 91 also details the mode for each of the SPMMUX pins. This configuration must be done via the GP0CON, GP1CON, and GP2CON MMRs. By default, these 10 pins are configured as GPIOs.

UART SERIAL INTERFACE

The UART peripheral is a full-duplex, universal, asynchronous receiver/transmitter. It is fully compatible with the 16,450 serial port standard. The UART performs serial-to-parallel conversions on data characters received from a peripheral device or modem, and parallel-to-serial conversions on data characters received from the CPU. The UART includes a fractional divider for baud rate generation and has a network addressable mode. The UART function is made available on the 10 pins of the ADuC7019/20/21/22/24/25/26/27/28/29 (see Table 92).

Table 92. UART Signal Description

Pin	Signal	Description
SPM0 (Mode 1)	SIN	Serial receive data.
SPM1 (Mode 1)	SOUT	Serial transmit data.
SPM2 (Mode 1)	RTS	Request to send.
SPM3 (Mode 1)	CTS	Clear to send.
SPM4 (Mode 1)	RI	Ring indicator.
SPM5 (Mode 1)	DCD	Data carrier detect.
SPM6 (Mode 1)	DSR	Data set ready.
SPM7 (Mode 1)	DTR	Data terminal ready.
SPM8 (Mode 2)	SIN	Serial receive data.
SPM9 (Mode 2)	SOUT	Serial transmit data.

The serial communication adopts an asynchronous protocol, which supports various word lengths, stop bits, and parity generation options selectable in the configuration register.

Baud Rate Generation

There are two ways of generating the UART baud rate, normal 450 UART baud rate generation and the fractional divider.

Normal 450 UART Baud Rate Generation

The baud rate is a divided version of the core clock using the values in the COMDIV0 and COMDIV1 MMRs (16-bit value, DL).

Baud Rate =
$$\frac{41.78 \text{ MHz}}{2^{\text{CD}} - 16 \times 2 \times \text{DL}}$$

Table 93 gives some common baud rate values.

Table 93. Baud Rate Using the Normal Baud Rate Generator
--

Baud Rate	CD	DL	Actual Baud Rate	% Error
9600	0	0x88	9600	0
19,200	0	0x44	19,200	0
115,200	0	0x0B	118,691	3
9600	3	0x11	9600	0
19,200	3	0x08	20,400	6.25
115,200	3	0x01	163,200	41.67

Fractional Divider

The fractional divider, combined with the normal baud rate generator, produces a wider range of more accurate baud rates.

Figure 75. Baud Rate Generation Options

Calculation of the baud rate using fractional divider is as follows:

Baud Rate =
$$\frac{41.78 \text{ MHz}}{2^{CD} \times 16 \times DL \times 2 \times \left(M + \frac{N}{2048}\right)}$$
$$M + \frac{N}{2048} = \frac{41.78 \text{ MHz}}{\text{Baud Rate} \times 2^{CD} \times 16 \times \text{DL} \times 2}$$

For example, generation of 19,200 baud with CD bits = 3 (Table 93 gives DL = 0x08) is

$$M + \frac{N}{2048} = \frac{41.78 \text{ MHz}}{19200 \times 2^3 \times 16 \times 8 \times 2}$$

$$M + \frac{N}{2048} = 1.06$$

where:

M = 1 $N = 0.06 \times 2048 = 128$

ADuC7019/20/21/22/24/25/26/27/28/29

Baud Rate =
$$\frac{41.78 \text{ MHz}}{2}$$

$$2^{3} \times 16 \times 8 \times 2 \times \frac{128}{2048}$$

where:

Baud Rate = 19,200 bps

Error = 0%, compared to 6.25% with the normal baud rate generator.

UART Register Definitions

The UART interface consists of 12 registers: COMTX, COMRX, COMDIV0, COMIEN0, COMDIV1, COMIID0, COMCON0, COMCON1, COMSTA0, COMSTA1, COMSCR, and COMDIV2.

Table 94. COMTX Register

Name	Address	Default Value	Access
COMTX	0xFFFF0700	0x00	R/W

COMTX is an 8-bit transmit register.

Table 95. COMRX Register

Name	Address	Default Value	Access
COMRX	0xFFFF0700	0x00	R

COMRX is an 8-bit receive register.

Table 96. COMDIV0 Register

Name	Address	Default Value	Access
COMDIV0	0xFFFF0700	0x00	R/W

COMDIV0 is a low byte divisor latch. COMTX, COMRX, and COMDIV0 share the same address location. COMTX and COMRX can be accessed when Bit 7 in the COMCON0 register is cleared. COMDIV0 can be accessed when Bit 7 of COMCON0 is set.

Table 97. COMIEN0 Register

Name	Address	Default Value	Access
COMIEN0	0xFFFF0704	0x00	R/W

COMIEN0 is the interrupt enable register.

Table 98. COMIEN0 MMR Bit Descriptions

Bit	Name	Description
7:4	N/A	Reserved.
3	EDSSI	Modem status interrupt enable bit. Set by user to enable generation of an interrupt if any of COMSTA1[3:1] is set. Cleared by user.
2	ELSI	Rx status interrupt enable bit. Set by user to enable generation of an interrupt if any of COMSTA0[4:1] is set. Cleared by user.
1	ETBEI	Enable transmit buffer empty interrupt. Set by user to enable interrupt when buffer is empty during a transmission. Cleared by user.
0	ERBFI	Enable receive buffer full interrupt. Set by user to enable interrupt when buffer is full during a reception. Cleared by user.

PROGRAMMABLE LOGIC ARRAY (PLA)

Every ADuC7019/20/21/22/24/25/26/27/28/29 integrates a fully programmable logic array (PLA) that consists of two independent but interconnected PLA blocks. Each block consists of eight PLA elements, giving each part a total of 16 PLA elements.

Each PLA element contains a two-input lookup table that can be configured to generate any logic output function based on two inputs and a flip-flop. This is represented in Figure 76.

In total, 30 GPIO pins are available on each ADuC7019/20/21/ 22/24/25/26/27/28/29 for the PLA. These include 16 input pins and 14 output pins, which msut be configured in the GPxCON register as PLA pins before using the PLA. Note that the comparator output is also included as one of the 16 input pins.

The PLA is configured via a set of user MMRs. The output(s) of the PLA can be routed to the internal interrupt system, to the $\overline{\text{CONV}_{\text{START}}}$ signal of the ADC, to an MMR, or to any of the 16 PLA output pins.

The two blocks can be interconnected as follows:

- Output of Element 15 (Block 1) can be fed back to Input 0 of Mux 0 of Element 0 (Block 0).
- Output of Element 7 (Block 0) can be fed back to the Input 0 of Mux 0 of Element 8 (Block 1).

PLA Block 0			PLA Block 1		
Element	Input	Output	Element	Input	Output
0	P1.0	P1.7	8	P3.0	P4.0
1	P1.1	P0.4	9	P3.1	P4.1
2	P1.2	P0.5	10	P3.2	P4.2
3	P1.3	P0.6	11	P3.3	P4.3
4	P1.4	P0.7	12	P3.4	P4.4
5	P1.5	P2.0	13	P3.5	P4.5
6	P1.6	P2.1	14	P3.6	P4.6
7	P0.0	P2.2	15	P3.7	P4.7

Table 145. Element Input/Output

PLA MMRs Interface

The PLA peripheral interface consists of the 22 MMRs described in this section.

Table 140. FLAELMA Registers			
Name	Address	Default Value	Access
PLAELM0	0xFFFF0B00	0x0000	R/W
PLAELM1	0xFFFF0B04	0x0000	R/W
PLAELM2	0xFFFF0B08	0x0000	R/W
PLAELM3	0xFFFF0B0C	0x0000	R/W
PLAELM4	0xFFFF0B10	0x0000	R/W
PLAELM5	0xFFFF0B14	0x0000	R/W
PLAELM6	0xFFFF0B18	0x0000	R/W
PLAELM7	0xFFFF0B1C	0x0000	R/W
PLAELM8	0xFFFF0B20	0x0000	R/W
PLAELM9	0xFFFF0B24	0x0000	R/W
PLAELM10	0xFFFF0B28	0x0000	R/W
PLAELM11	0xFFFF0B2C	0x0000	R/W
PLAELM12	0xFFFF0B30	0x0000	R/W
PLAELM13	0xFFFF0B34	0x0000	R/W
PLAELM14	0xFFFF0B38	0x0000	R/W
PLAELM15	0xFFFF0B3C	0x0000	R/W

Table 14C DI AEI Mar Destateres

PLAELMx are Element 0 to Element 15 control registers. They configure the input and output mux of each element, select the function in the lookup table, and bypass/use the flip-flop. See Table 147 and Table 152.

Table 147. PLAELMx MMR Bit Descriptions

Bit	Value	Description
31:11		Reserved.
10:9		Mux 0 control (see Table 152).
8:7		Mux 1 control (see Table 152).
6		Mux 2 control. Set by user to select the output of Mux 0. Cleared by user to select the bit value from PLADIN.
5		Mux 3 control. Set by user to select the input pin of the particular element. Cleared by user to select the output of Mux 1.
4:1		Lookup table control.
	0000	0.
	0001	NOR.
	0010	B AND NOT A.
	0011	NOT A.
	0100	A AND NOT B.
	0101	NOT B.
	0110	EXOR.
	0111	NAND.
	1000	AND.
	1001	EXNOR.
	1010	В.
	1011	NOT A OR B.
	1100	Α.
	1101	A OR NOT B.
	1110	OR.
	1111	1.
0		Mux 4 control. Set by user to bypass the flip- flop. Cleared by user to select the flip-flop (cleared by default).

Bit	Value	Description
31:18		Reserved.
17		Event select bit. Set by user to enable time capture of an event. Cleared by user to disable time capture of an event.
16:12		Event select range, 0 to 31. These events are as described in Table 160. All events are offset by two; that is, Event 2 in Table 160 becomes Event 0 for the purposes of Timer1.
11:9		Clock select.
	000	Core clock (HCLK).
	001	External 32.768 kHz crystal.
	010	P1.0 rising edge triggered.
	011	P0.6 rising edge triggered.
8		Count up. Set by user for Timer1 to count up. Cleared by user for Timer1 to count down by default.
7		Timer1 enable bit. Set by user to enable Timer1. Cleared by user to disable Timer1 by default.
6		Timer1 mode. Set by user to operate in periodic mode. Cleared by user to operate in free-running mode. Default mode.
5:4		Format.
	00	Binary.
	01	Reserved.
	10	Hr: min: sec: hundredths (23 hours to 0 hour).
	11	Hr: min: sec: hundredths (255 hours to 0 hour).
3:0		Prescale.
	0000	Source Clock/1.
	0100	Source Clock/16.
	1000	Source Clock/256.
	1111	Source Clock/32,768.

Table 180. T1CON MMR Bit Descriptions

Table 181. T1CLRI Register

Name	Address	Default Value	Access
T1CLRI	0xFFFF032C	0xFF	W

T1CLRI is an 8-bit register. Writing any value to this register clears the Timer1 interrupt.

ADuC7019/20/21/22/24/25/26/27/28/29

Table 182. T1CAP Register

Name	Address	Default Value	Access
T1CAP	0xFFFF0330	0x0000000	R/W

T1CAP is a 32-bit register. It holds the value contained in T1VAL when a particular event occurs. This event must be selected in T1CON.

Timer2 (Wake-Up Timer)

Timer2 is a 32-bit wake-up timer (count down or count up) with a programmable prescaler. The source can be the 32 kHz external crystal, the core clock frequency, or the internal 32 kHz oscillator. The clock source can be scaled by a factor of 1, 16, 256, or 32,768. The wake-up timer continues to run when the core clock is disabled.

The counter can be formatted as plain 32-bit value or as hours: minutes: seconds: hundredths.

The Timer2 interface consists of four MMRs: T2LD, T2VAL, T2CON, and T2CLRI.

Table 183. T2LD Register

Name	Address	Default Value	Access
T2LD	0xFFFF0340	0x0000000	R/W

T2LD is a 32-bit register load register.

Table 184. T2VAL Register

Name	Address	Default Value	Access
T2VAL	0xFFFF0344	0xFFFFFFF	R

T2VAL is a 32-bit read-only register that represents the current state of the counter.

Table 185. T2CON Register

Name	Address	Default Value	Access
T2CON	0xFFFF0348	0x0000	R/W

T2CON is the configuration MMR described in Table 186.

Bit	Value	Description
31:11		Reserved.
10:9		Clock source.
	00	External crystal.
	01	External crystal.
	10	Internal oscillator.
	11	Core clock (41 MHz/2 ^{CD}).
8		Count up. Set by user for Timer2 to count up. Cleared by user for Timer2 to count down by default.
7		Timer2 enable bit. Set by user to enable Timer2. Cleared by user to disable Timer2 by default.
6		Timer2 mode. Set by user to operate in periodic mode. Cleared by user to operate in free-running mode. Default mode.
5:4		Format.
	00	Binary.
	01	Reserved.
	10	Hr: min: sec: Hundredths (23 hours to 0 hour).
	11	Hr: min: sec: Hundredths (255 hours to 0 hour).
3:0		Prescale.
	0000	Source Clock/1 by default.
	0100	Source Clock/16.
	1000	Source Clock/256 expected for Format 2 and Format 3.
	1111	Source Clock/32,768.

Table 186. T2CON MMR Bit Descriptions

Table 187. T2CLRI Register

Name	Address	Default Value	Access
T2CLRI	0xFFFF034C	0xFF	W

T2CLRI is an 8-bit register. Writing any value to this register clears the Timer2 interrupt.

Timer3 (Watchdog Timer)

Timer3 has two modes of operation: normal mode and watchdog mode. The watchdog timer is used to recover from an illegal software state. Once enabled, it requires periodic servicing to prevent it from forcing a processor reset.

Normal Mode

Timer3 in normal mode is identical to Timer0, except for the clock source and the count-up functionality. The clock source is 32 kHz from the PLL and can be scaled by a factor of 1, 16, or 256 (see Figure 80).

Watchdog Mode

Watchdog mode is entered by setting Bit 5 in the T3CON MMR. Timer3 decreases from the value present in the T3LD register to 0. T3LD is used as the timeout. The maximum timeout can be 512 sec, using the prescaler/256, and full scale in T3LD. Timer3 is clocked by the internal 32 kHz crystal when operating in watchdog mode. Note that to enter watchdog mode successfully, Bit 5 in the T3CON MMR must be set after writing to the T3LD MMR.

If the timer reaches 0, a reset or an interrupt occurs, depending on Bit 1 in the T3CON register. To avoid reset or interrupt, any value must be written to T3CLRI before the expiration period. This reloads the counter with T3LD and begins a new timeout period.

When watchdog mode is entered, T3LD and T3CON are writeprotected. These two registers cannot be modified until a reset clears the watchdog enable bit, which causes Timer3 to exit watchdog mode.

The Timer3 interface consists of four MMRs: T3LD, T3VAL, T3CON, and T3CLRI.

Table 188. T3LD Register

Name	Address	Default Value	Access
T3LD	0xFFFF0360	0x0000	R/W

T3LD is a 16-bit register load register.

Table 189. T3VAL Register

Name	Address	Default Value	Access
T3VAL	0xFFFF0364	0xFFFF	R

T3VAL is a 16-bit read-only register that represents the current state of the counter.

Table 190. T3CON Register

Name	Address	Default Value	Access
T3CON	0xFFFF0368	0x0000	R/W

T3CON is the configuration MMR described in Table 191.

DEVELOPMENT TOOLS

PC-BASED TOOLS

Four types of development systems are available for the ADuC7019/20/21/22/24/25/26/27/28/29 family.

- The ADuC7026 QuickStart Plus is intended for new users who want to have a comprehensive hardware development environment. Because the ADuC7026 contains the superset of functions available on the ADuC7019/20/21/22/24/25/ 26/27/28/29, it is suitable for users who wish to develop on any of the parts in this family. All parts are fully code compatible.
- The ADuC7019, ADuC7024, and ADuC7026 QuickStart systems are intended for users who already have an emulator.

These systems consist of the following PC-based (Windows^{*} compatible) hardware and software development tools.

Hardware

- ADuC7019/20/21/22/24/25/26/27/28/29 evaluation board
- Serial port programming cable
- RDI-compliant JTAG emulator (included in the ADuC7026 QuickStart Plus only)

Software

- Integrated development environment, incorporating assembler, compiler, and nonintrusive JTAG-based debugger
- Serial downloader software
- Example code

Miscellaneous

CD-ROM documentation

IN-CIRCUIT SERIAL DOWNLOADER

The serial downloader is a Windows application that allows the user to serially download an assembled program to the on-chip program Flash/EE memory via the serial port on a standard PC.

The UART-based serial downloader is included in all the development systems and is usable with the ADuC7019/20/21/22/24/25/26/27/28/29 parts that do not contain the I suffix in the Ordering Guide.

An I²C based serial downloader and a USB-to-I²C adaptor board, USB-EA-CONVZ, are also available at www.analog.com. The I²C-based serial downloader is only usable with the part models containing the I suffix (see Ordering Guide).