

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM7®
Core Size	16/32-Bit
Speed	44MHz
Connectivity	EBI/EMI, I²C, SPI, UART/USART
Peripherals	PLA, PWM, PSM, Temp Sensor, WDT
Number of I/O	13
Program Memory Size	62KB (31K x16)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2K x 32
Voltage - Supply (Vcc/Vdd)	2.7V ~ 3.6V
Data Converters	A/D 8x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	40-VFQFN Exposed Pad, CSP
Supplier Device Package	40-LFCSP-VQ (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/analog-devices/aduc7021bcpz62

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

REVISION HISTORY

12/15—Rev. F to Rev. G	
Changed CP-40-1 to CP-40-9 Univer-	ersal
Updated Outline Dimensions	97
Deleted Figure 96 (CP-40-1); Renumbered Sequentially	97
Changes to Ordering Guide	.101

5/13-Rev. E to Rev. F

Changes to Figure 1	1
Added Figure 2 to Figure 10; Renumbered Sequentially	4
Changes to Figure 19; Added Figure 20	21
Changes to EPAD Note in Figure 21 and Figure 22	22
Changes to EPAD Note in Table 11	23
Changes to EPAD Note in Figure 23	25
Changes to EPAD Note in Table 12	26
Changes to Table 14	31
Changes to Table 15	33
Changes to Table 82	68
Added Table 83, Figure 73, Figure 74, Following Text, and	
Table 84; Renumbered Sequentially	69
Changes to Bit 2 Description, Table 98	71
Changes to Table 101	72
Changes to Timer2 (Wake-Up Timer) Section	87
Changes to Figure 94	95
Updated Outline Dimensions	97
Changes to Ordering Guide	101

7/12-Rev. D to Rev. E

Changed SCLOCK to SCLK When Refering to SPI Clock,
SPIMISO to MISO when Refering to SPI MISO, SPIMOSI to
MOSI when Refering to SPI MOSI, and SPICSL to $\overline{\text{CS}}$ when
Refering to SPI Chip Select Universal
Changes to Table 4, Table 5, and Figure 511
Changes to Endnote 1 in Table 6 and Figure 612
Changes to Table 7 and Figure 713
Changes to Table 8 and Figure 814
Changes to Table 9 and Figure 915
Changed EPAD Note in Figure 12 and Table 1118
Changed EPAD Note in Figure 13 and Table 1221
Changes to Bit 6 in Table 1843
Changes to Example Source Code (External Crystal Selection)
Section and Example Source Code (External Clock Selection)
Section
Changes to Serial Peripheral Interface Section69
Changes to SPICON[10] and SPICON[9] Descriptions in
Table 12370
Changes to Timer Interval Down Equation and Added Timer
Interval Up Equation79
Added Hour:Minute:Second:1/128 Format Section80
Changes to Table 189
Removed CP-40-10 Package92
Changes to Ordering Guide96
5/11—Rev. C to Rev. D

Changes to Table 411

Changes to Table 105	67
Updated Outline Dimensions	
Changes to Ordering Guide	94
12/09—Rev. B to Rev. C	

-Rev. B to Rev. C

Added ADuC7029 Part	Universal
Added Table Numbers and Renumbered Tables	Universal
Changes to Figure Numbers	Universal
Changes to Table 1	6
Changes to Figure 3	9
Changes to Table 3 and Figure 4	10
Changes to Table 10	16
Changes to Figure 55	53
Changes to Serial Peripheral Interface Section	69
Changes to Table 137	73
Changes to Figure 71 and Figure 72	85
Changes to Figure 73 and Figure 74	86
Updated Outline Dimensions	91
Changes to Ordering Guide	94

3/07—Rev. A to Rev. B

Added ADuC7028 Part	. Universal
Updated Format	. Universal
Changes to Figure 2	5
Changes to Table 1	6
Changes to ADuC7026/ADuC7027 Section	23
Changes to Figure 21	
Changes to Figure 32 Caption	
Changes to Table 14	35
Changes to ADC Circuit Overview Section	
Changes to Programming Section	44
Changes to Flash/EE Control Interface Section	45
Changes to Table 24	47
Changes to RSTCLR Register Section	
Changes to Figure 52	49
Changes to Figure 53	50
Changes to Comparator Section	50
Changes to Oscillator and PLL-Power Control Section	on51
Changes to Digital Peripherals Section	54
Changes to Interrupt System Section	75
Changes to Timers Section	76
Changes to External Memory Interfacing Section	80
Added IOV _{DD} Supply Sensitivity Section	
Changes to Ordering Guide	90

1/06—Rev. 0 to Rev. A

Changes to Table 1	6
Added the Flash/EE Memory Reliability Section	43
Changes to Table 30	52
Changes to Serial Peripheral Interface	66
Changes to Ordering Guide	90

10/05—Revision 0: Initial Version

Data Sheet

Parameter	Min	Тур	Max	Unit	Test Conditions/Comments
DAC AC CHARACTERISTICS					
Voltage Output Settling Time		10		μs	
Digital-to-Analog Glitch Energy		±20		nV-sec	1 LSB change at major carry (where maximum
					number of bits simultaneously changes in the
COMPARATOR					DACXDAT register)
		115		m)/	
Input Diset Voltage		±15			
Input Maltage Bange		1	AV/ 1.2	μΑ	
	AGND	7	$AV_{DD} - 1.2$	v v	
	2	/	1 5	pr m)/	
Hysteresis	2		15	mv	the CMPCON register
Response Time		3		μs	100 mV overdrive and configured with CMPRES = 11
TEMPERATURE SENSOR					
Voltage Output at 25°C		780		mV	
Voltage TC		-1.3		mV/°C	
Accuracy		±3		°C	
POWER SUPPLY MONITOR (PSM)					
IOV _{DD} Trip Point Selection		2.79		v	Two selectable trip points
		3.07		v	
Power Supply Trip Point Accuracy		±2.5		%	Of the selected nominal trip point voltage
POWER-ON-RESET		2.36		V	
GLITCH IMMUNITY ON RESET PIN ⁴		50		us	
WATCHDOG TIMER (WDT)				pro	
Timeout Period	0		512	sec	
			512	500	
Endurance ⁹	10,000			Cycles	
Data Retention ¹⁰	20			Years	T ₁ = 85°C
	20			rears	All digital inputs excluding XCLKL and XCLKO
Logic 1 Input Current		+0.2	+1	ΠΑ	$V_{\rm HI} = 10V_{\rm PD}$ or $V_{\rm HI} = 5V$
		<u>⊥0:2</u> _40	<u></u> _60		$V_{\rm H} = 0.0000$ t $V_{\rm H} = 0.0000$
Logic o input current		40	00	μπ	ADuC7019/20/21/22/24/25/29
		-80	-120	μA	$V_{IL} = 0 V$; TDI on ADuC7019/20/21/22/24/25/29
Input Capacitance		10		pF	
LOGIC INPUTS ³					All logic inputs excluding XCLKI
V _{INL} , Input Low Voltage			0.8	v	
V _{INH} , Input High Voltage	2.0			V	
					All digital outputs excluding XCLKO
V _{OH} , Output High Voltage	2.4			v	$I_{\text{SOURCE}} = 1.6 \text{ mA}$
V _{oL} , Output Low Voltage ¹¹			0.4	v	$I_{SINK} = 1.6 \text{ mA}$
CRYSTAL INPUTS XCLKI and XCLKO					
Logic Inputs, XCLKI Only					
V _{INI} , Input Low Voltage		1.1		v	
V _{INH} , Input High Voltage		1.7		v	
XCLKI Input Capacitance		20		рF	
XCLKO Output Capacitance		20		pF	
INTERNAL OSCILLATOR	1	32.768		kHz	
			±3	%	
	1		+2 ⁴	%	$T_{A} = 0^{\circ}C$ to 85°C range

Parameter	Description	Min	Тур	Max	Unit
t _{cs}	CS to SCLK edge ¹	$(2 \times t_{HCLK}) + (2 \times t_{UCLK})$			ns
t _{sL}	SCLK low pulse width ²		$(SPIDIV + 1) \times t_{HCLK}$		ns
t _{sн}	SCLK high pulse width ²		$(SPIDIV + 1) \times t_{HCLK}$		ns
t _{DAV}	Data output valid after SCLK edge			25	ns
t _{DSU}	Data input setup time before SCLK edge ¹	1 × tuclk			ns
t _{DHD}	Data input hold time after SCLK edge ¹	$2 \times t_{UCLK}$			ns
t _{DF}	Data output fall time		5	12.5	ns
t _{DR}	Data output rise time		5	12.5	ns
t _{sr}	SCLK rise time		5	12.5	ns
t _{sF}	SCLK fall time		5	12.5	ns
t _{SFS}	CS high after SCLK edge	0			ns

Table 8. SPI Slave Mode Timing (Phsae Mode = 1)

¹ t_{UCLK} = 23.9 ns. It corresponds to the 41.78 MHz internal clock from the PLL before the clock divider; see Figure 67. ² t_{HCLK} depends on the clock divider or CD bits in the POWCONMMR. t_{HCLK} = t_{UCLK}/2^{CD}; see Figure 67.

Figure 17. SPI Slave Mode Timing (Phase Mode = 1)

Pin No.							
7019/7020	7021	7022	Mnemonic	Description			
38	37	36	ADC0	Single-Ended or Differential Analog Input 0.			
39	38	37	ADC1	Single-Ended or Differential Analog Input 1.			
40	39	38	ADC2/CMP0	Single-Ended or Differential Analog Input 2/Comparator Positive Input.			
1	40	39	ADC3/CMP1	Single-Ended or Differential Analog Input 3 (Buffered Input on ADuC7019)/ Comparator Negative Input.			
2	1	40	ADC4	Single-Ended or Differential Analog Input 4.			
_	2	1	ADC5	Single-Ended or Differential Analog Input 5.			
_	3	2	ADC6	Single-Ended or Differential Analog Input 6.			
-	4	3	ADC7	Single-Ended or Differential Analog Input 7.			
_	-	4	ADC8	Single-Ended or Differential Analog Input 8.			
_	_	5	ADC9	Single-Ended or Differential Analog Input 9.			
3	5	6	GND _{REF}	Ground Voltage Reference for the ADC. For optimal performance, the analog power supply should be separated from IOGND and DGND.			
4	6	_	DAC0/ADC12	DAC0 Voltage Output/Single-Ended or Differential Analog Input 12.			
5	7	-	DAC1/ADC13	DAC1 Voltage Output/Single-Ended or Differential Analog Input 13.			
6	_	_	DAC2/ADC14	DAC2 Voltage Output/Single-Ended or Differential Analog Input 14.			
7	_	_	DAC3/ADC15	DAC3 Voltage Output on ADuC7020. On the ADuC7019, a 10 nF capacitor must be connected between this pin and AGND/Single-Ended or Differential Analog Input 15 (see Figure 53).			
8	8	7	TMS	Test Mode Select, JTAG Test Port Input. Debug and download access. This pin has an internal pull-up resistor to IOV _{DD} . In some cases, an external pull-up resistor (~100K) is also required to ensure that the part does not enter an erroneous state.			
9	9	8	TDI	Test Data In, JTAG Test Port Input. Debug and download access.			
10	10	9	BM/P0.0/CMP _{out} /PLAI[7]	Multifunction I/O Pin. Boot Mode (BM). The ADuC7019/20/21/22 enter serial download mode if BM is low at reset and execute code if BM is pulled high at reset through a 1 k Ω resistor/General-Purpose Input and Output Port 0.0/Voltage Comparator Output/Programmable Logic Array Input Element 7.			
11	11	10	P0.6/T1/MRST/PLAO[3]	Multifunction Pin. Driven low after reset. General-Purpose Output Port 0.6/ Timer1 Input/Power-On Reset Output/Programmable Logic Array Output Element 3.			
12	12	11	тск	Test Clock, JTAG Test Port Input. Debug and download access. This pin has an internal pull-up resistor to IOV_{DD} . In some cases an external pull-up resistor (~100K) is also required to ensure that the part does not enter an erroneous state.			
13	13	12	TDO	Test Data Out, JTAG Test Port Output. Debug and download access.			
14	14	13	IOGND	Ground for GPIO (see Table 78). Typically connected to DGND.			
15	15	14	IOV _{DD}	3.3 V Supply for GPIO (see Table 78) and Input of the On-Chip Voltage Regulator.			
16	16	15	LV _{DD}	2.6 V Output of the On-Chip Voltage Regulator. This output must be connected to a 0.47 μF capacitor to DGND only.			
17	17	16	DGND	Ground for Core Logic.			
18	18	17	P0.3/TRST/ADC _{BUSY}	General-Purpose Input and Output Port 0.3/Test Reset, JTAG Test Port Input/ ADC _{BUSY} Signal Output.			
19	19	18	RST	Reset Input, Active Low.			
20	20	19	IRQ0/P0.4/PWM _{TRIP} /PLAO[1]	Multifunction I/O Pin. External Interrupt Request 0, Active High/General- Purpose Input and Output Port 0.4/PWM Trip External Input/Programmable Logic Array Output Element 1.			
21	21	20	IRQ1/P0.5/ADC _{BUSY} /PLAO[2]	Multifunction I/O Pin. External Interrupt Request 1, Active High/General- Purpose Input and Output Port 0.5/ADC _{BUSY} Signal Output/Programmable Logic Array Output Element 2.			

Table 11. Pin Function Descriptions (ADuC7019/ADuC7020/ADuC7021/ADuC7022)

Figure 39. Current Consumption vs. Temperature @ CD = 0

TERMINOLOGY ADC SPECIFICATIONS

Integral Nonlinearity (INL)

The maximum deviation of any code from a straight line passing through the endpoints of the ADC transfer function. The endpoints of the transfer function are zero scale, a point ½ LSB below the first code transition, and full scale, a point ½ LSB above the last code transition.

Differential Nonlinearity (DNL)

The difference between the measured and the ideal 1 LSB change between any two adjacent codes in the ADC.

Offset Error

The deviation of the first code transition (0000 . . . 000) to (0000 . . . 001) from the ideal, that is, $+\frac{1}{2}$ LSB.

Gain Error

The deviation of the last code transition from the ideal AIN voltage (full scale -1.5 LSB) after the offset error has been adjusted out.

Signal to (Noise + Distortion) Ratio (SINAD)

The measured ratio of signal to (noise + distortion) at the output of the ADC. The signal is the rms amplitude of the fundamental. Noise is the rms sum of all nonfundamental signals up to half the sampling frequency ($f_s/2$), excluding dc.

The ratio is dependent upon the number of quantization levels in the digitization process; the more levels, the smaller the quantization noise.

The theoretical signal to (noise + distortion) ratio for an ideal N-bit converter with a sine wave input is given by

Signal to (Noise + Distortion) = (6.02 N + 1.76) dB

Thus, for a 12-bit converter, this is 74 dB.

Total Harmonic Distortion (THD)

The ratio of the rms sum of the harmonics to the fundamental.

DAC SPECIFICATIONS

Relative Accuracy

Otherwise known as endpoint linearity, relative accuracy is a measure of the maximum deviation from a straight line passing through the endpoints of the DAC transfer function. It is measured after adjusting for zero error and full-scale error.

Voltage Output Settling Time

The amount of time it takes the output to settle to within a 1 LSB level for a full-scale input change.

MEMORY ORGANIZATION

The ADuC7019/20/21/22/24/25/26/27/28/29 incorporate two separate blocks of memory: 8 kB of SRAM and 64 kB of on-chip Flash/EE memory. The 62 kB of on-chip Flash/EE memory is available to the user, and the remaining 2 kB are reserved for the factory-configured boot page. These two blocks are mapped as shown in Figure 45.

Figure 45. Physical Memory Map

Note that by default, after a reset, the Flash/EE memory is mirrored at Address 0x00000000. It is possible to remap the SRAM at Address 0x00000000 by clearing Bit 0 of the REMAP MMR. This remap function is described in more detail in the Flash/EE Memory section.

MEMORY ACCESS

The ARM7 core sees memory as a linear array of a 2^{32} byte location where the different blocks of memory are mapped as outlined in Figure 45.

The ADuC7019/20/21/22/24/25/26/27/28/29 memory organizations are configured in little endian format, which means that the least significant byte is located in the lowest byte address, and the most significant byte is in the highest byte address.

FLASH/EE MEMORY

The total 64 kB of Flash/EE memory is organized as $32 \text{ k} \times 16$ bits; 31 k × 16 bits is user space and 1 k × 16 bits is reserved for the on-chip kernel. The page size of this Flash/EE memory is 512 bytes.

Sixty-two kilobytes of Flash/EE memory are available to the user as code and nonvolatile data memory. There is no distinction between data and program because ARM code shares the same space. The real width of the Flash/EE memory is 16 bits, which means that in ARM mode (32-bit instruction), two accesses to the Flash/EE are necessary for each instruction fetch. It is therefore recommended to use thumb mode when executing from Flash/EE memory for optimum access speed. The maximum access speed for the Flash/EE memory is 41.78 MHz in thumb mode and 20.89 MHz in full ARM mode. More details about Flash/EE access time are outlined in the Execution Time from SRAM and Flash/EE section.

SRAM

Eight kilobytes of SRAM are available to the user, organized as $2 \text{ k} \times 32$ bits, that is, two words. ARM code can run directly from SRAM at 41.78 MHz, given that the SRAM array is configured as a 32-bit wide memory array. More details about SRAM access time are outlined in the Execution Time from SRAM and Flash/EE section.

MEMORY MAPPED REGISTERS

The memory mapped register (MMR) space is mapped into the upper two pages of the memory array and accessed by indirect addressing through the ARM7 banked registers.

The MMR space provides an interface between the CPU and all on-chip peripherals. All registers, except the core registers, reside in the MMR area. All shaded locations shown in Figure 47 are unoccupied or reserved locations and should not be accessed by user software. Table 16 shows the full MMR memory map.

The access time for reading from or writing to an MMR depends on the advanced microcontroller bus architecture (AMBA) bus used to access the peripheral. The processor has two AMBA buses: the advanced high performance bus (AHB) used for system modules and the advanced peripheral bus (APB) used for lower performance peripheral. Access to the AHB is one cycle, and access to the APB is two cycles. All peripherals on the ADuC7019/20/21/22/24/25/26/27/28/29 are on the APB except the Flash/EE memory, the GPIOs (see Table 78), and the PWM.

Data Sheet

	1	1				
Address	Name	Byte	Access Type	Default Value	Page	
Reference Address Base = 0xFFFF0480						
0x048C	REFCON	1	R/W	0x00	50	
ADC Addr	ess Base = 0xF	FFF050	0			
0x0500	ADCCON	2	R/W	0x0600	46	
0x0504	ADCCP	1	R/W	0x00	47	
0x0508	ADCCN	1	R/W	0x01	47	
0x050C	ADCSTA	1	R	0x00	48	
0x0510	ADCDAT	4	R	0x00000000	48	
0x0514	ADCRST	1	R/W	0x00	48	
0x0530	ADCGN	2	R/W	0x0200	48	
0x0534	ADCOF	2	R/W	0x0200	48	
DAC Addr	ess Base = 0xF	FFF060	0			
0x0600	DAC0CON	1	R/W	0x00	56	
0x0604	DAC0DAT	4	R/W	0x00000000	56	
0x0608	DAC1CON	1	R/W	0x00	56	
0x060C	DAC1DAT	4	R/W	0x00000000	56	
0x0610	DAC2CON	1	R/W	0x00	56	
0x0614	DAC2DAT	4	R/W	0x00000000	56	
0x0618	DAC3CON	1	R/W	0x00	56	
0x061C	DAC3DAT	4	R/W	0x00000000	56	
UART Base	e Address = 0x	FFFF07	00			
0x0700	COMTX	1	R/W	0x00	71	
	COMRX	1	R	0x00	71	
	COMDIV0	1	R/W	0x00	71	
0x0704	COMIEN0	1	R/W	0x00	71	
	COMDIV1	1	R/W	0x00	72	
0x0708	COMIID0	1	R	0x01	72	
0x070C	COMCON0	1	R/W	0x00	72	
0x0710	COMCON1	1	R/W	0x00	72	
0x0714	COMSTA0	1	R	0x60	72	
0x0718	COMSTA1	1	R	0x00	73	
0x071C	COMSCR	1	R/W	0x00	73	
0x0720	COMIEN1	1	R/W	0x04	73	
0x0724	COMIID1	1	R	0x01	73	
0x0728	COMADR	1	R/W	0xAA	74	
0x072C	COMDIV2	2	R/W	0x0000	73	

I2C0 Base Address = 0xFFFF0800 0x0800 I2C0MSTA 1 R/W 0x00 0x0804 I2C0SSTA 1 R 0x01 0x0808 I2C0SSTA 1 R 0x01 0x0808 I2C0STX 1 R 0x00 0x080C I2C0STX 1 R 0x00 0x0810 I2C0MRX 1 R 0x00 0x0814 I2C0MTX 1 W 0x00 0x0818 I2C0CNT 1 R/W 0x00 0x0812 I2C0ADR 1 R/W 0x00 0x0812 I2C0ADR 1 R/W 0x00 0x0824 I2C0EYTE 1 R/W 0x00 0x0825 I2C0CFG 1 R/W 0x00 0x0830 I2C0DIV 2 R/W 0x1F1F 0x0838 I2C0ID0 1 R/W 0x00 0x0836 I2C0ID1 1 R/W 0x00 0x0840	76 76 77 77				
0x0800 I2C0MSTA 1 R/W 0x00 0x0804 I2C0SSTA 1 R 0x01 0x0808 I2C0SRX 1 R 0x00 0x0808 I2C0SRX 1 R 0x00 0x080C I2C0STX 1 W 0x00 0x0810 I2C0MRX 1 R 0x00 0x0814 I2C0MTX 1 W 0x00 0x0818 I2C0CNT 1 R/W 0x00 0x081C I2C0ADR 1 R/W 0x00 0x0824 I2C0EVTE 1 R/W 0x00 0x0828 I2C0ALT 1 R/W 0x00 0x0830 I2C0DIV 2 R/W 0x1F1F 0x0830 I2C0DIV 2 R/W 0x00 0x0838 I2C0ID0 1 R/W 0x00 0x083C I2C0ID1 1 R/W 0x00 0x0840 I2C0ID2 1 R/W	76 76 77 77				
0x0804 I2C0SSTA 1 R 0x01 0x0808 I2C0SRX 1 R 0x00 0x080C I2C0STX 1 W 0x00 0x080C I2C0STX 1 W 0x00 0x0810 I2C0MRX 1 R 0x00 0x0814 I2C0MRX 1 R 0x00 0x0818 I2C0CNT 1 R/W 0x00 0x081C I2C0ADR 1 R/W 0x00 0x0824 I2C0BYTE 1 R/W 0x00 0x0828 I2C0ALT 1 R/W 0x00 0x0830 I2C0DIV 2 R/W 0x1F1F 0x0838 I2C0ID 1 R/W 0x00 0x0836 I2C0ID 1 R/W 0x00 0x0837 I2C0ID 1 R/W 0x00 0x0836 I2C0ID1 1 R/W 0x00 0x0840 I2C0ID2 1 R/W	76 77 77				
0x0808 I2C0SRX 1 R 0x00 0x080C I2C0STX 1 W 0x00 0x0810 I2C0MRX 1 R 0x00 0x0810 I2C0MRX 1 R 0x00 0x0814 I2C0MTX 1 W 0x00 0x0818 I2C0CNT 1 R/W 0x00 0x0812 I2C0ADR 1 R/W 0x00 0x0824 I2C0BYTE 1 R/W 0x00 0x0825 I2C0CFG 1 R/W 0x00 0x0830 I2C0DIV 2 R/W 0x1F1F 0x0838 I2C0ID0 1 R/W 0x00 0x0836 I2C0ID1 1 R/W 0x00 0x0836 I2C0ID2 1 R/W 0x00 0x0840 I2C0ID2 1 R/W 0x00	77 77				
0x080C I2C0STX 1 W 0x00 0x0810 I2C0MRX 1 R 0x00 0x0814 I2C0MTX 1 W 0x00 0x0818 I2C0CNT 1 R/W 0x00 0x081C I2C0ADR 1 R/W 0x00 0x0824 I2C0BYTE 1 R/W 0x00 0x0825 I2C0ALT 1 R/W 0x00 0x0830 I2C0DIV 2 R/W 0x1F1F 0x0838 I2C0ID0 1 R/W 0x00 0x0830 I2C0DIV 2 R/W 0x1F1F 0x0838 I2C0ID1 1 R/W 0x00 0x0836 I2C0ID2 1 R/W 0x00 0x0840 I2C0ID2 1 R/W 0x00	77				
0x0810 I2C0MRX 1 R 0x00 0x0814 I2C0MTX 1 W 0x00 0x0818 I2C0CNT 1 R/W 0x00 0x0818 I2C0CNT 1 R/W 0x00 0x081C I2C0ADR 1 R/W 0x00 0x0824 I2C0BYTE 1 R/W 0x00 0x0825 I2C0ALT 1 R/W 0x00 0x0830 I2C0DIV 2 R/W 0x1F1F 0x0838 I2C0ID0 1 R/W 0x00 0x0836 I2C0ID1 1 R/W 0x00 0x0834 I2C0ID2 1 R/W 0x00 0x0834 I2C0ID1 1 R/W 0x00 0x0840 I2C0ID2 1 R/W 0x00 0x0844 I2C0ID3 1 R/W 0x00					
0x0814 I2C0MTX 1 W 0x00 0x0818 I2C0CNT 1 R/W 0x00 0x081C I2C0ADR 1 R/W 0x00 0x0824 I2C0BYTE 1 R/W 0x00 0x0828 I2C0ALT 1 R/W 0x00 0x0830 I2C0CFG 1 R/W 0x00 0x0830 I2C0DIV 2 R/W 0x1F1F 0x0838 I2C0ID0 1 R/W 0x00 0x0836 I2C0ID1 1 R/W 0x00 0x0840 I2C0ID2 1 R/W 0x00 0x0844 I2C0ID3 1 R/W 0x00	77				
0x0818 I2C0CNT 1 R/W 0x00 0x081C I2C0ADR 1 R/W 0x00 0x0824 I2C0BYTE 1 R/W 0x00 0x0828 I2C0ALT 1 R/W 0x00 0x0830 I2C0CFG 1 R/W 0x00 0x0830 I2C0DIV 2 R/W 0x1F1F 0x0838 I2C0ID0 1 R/W 0x00 0x083C I2C0ID1 1 R/W 0x00 0x0840 I2C0ID2 1 R/W 0x00 0x0844 I2C0ID3 1 R/W 0x00	77				
0x081C I2C0ADR 1 R/W 0x00 0x0824 I2C0BYTE 1 R/W 0x00 0x0828 I2C0ALT 1 R/W 0x00 0x0820 I2C0CFG 1 R/W 0x00 0x0830 I2C0DIV 2 R/W 0x1F1F 0x0838 I2C0ID0 1 R/W 0x00 0x083C I2C0ID1 1 R/W 0x00 0x0840 I2C0ID2 1 R/W 0x00 0x0844 I2C0ID3 1 R/W 0x00	77				
0x0824 I2C0BYTE 1 R/W 0x00 0x0828 I2C0ALT 1 R/W 0x00 0x082C I2C0CFG 1 R/W 0x00 0x0830 I2C0DIV 2 R/W 0x1F1F 0x0838 I2C0ID0 1 R/W 0x00 0x083C I2C0ID1 1 R/W 0x00 0x0840 I2C0ID2 1 R/W 0x00 0x0844 I2C0ID3 1 R/W 0x00	77				
0x0828 I2C0ALT 1 R/W 0x00 0x082C I2C0CFG 1 R/W 0x00 0x0830 I2C0DIV 2 R/W 0x1F1F 0x0838 I2C0ID0 1 R/W 0x00 0x083C I2C0ID1 1 R/W 0x00 0x0840 I2C0ID2 1 R/W 0x00 0x0844 I2C0ID3 1 R/W 0x00	77				
0x082C 12C0CFG 1 R/W 0x00 0x0830 12C0DIV 2 R/W 0x1F1F 0x0838 12C0ID0 1 R/W 0x00 0x083C 12C0ID1 1 R/W 0x00 0x0840 12C0ID2 1 R/W 0x00 0x0844 12C0ID3 1 R/W 0x00	78				
0x0830 I2C0DIV 2 R/W 0x1F1F 0x0838 I2C0ID0 1 R/W 0x00 0x083C I2C0ID1 1 R/W 0x00 0x0840 I2C0ID2 1 R/W 0x00 0x0844 I2C0ID3 1 R/W 0x00	78				
0x0838 I2C0ID0 1 R/W 0x00 0x083C I2C0ID1 1 R/W 0x00 0x0840 I2C0ID2 1 R/W 0x00 0x0844 I2C0ID3 1 R/W 0x00	79				
0x083C I2C0ID1 1 R/W 0x00 0x0840 I2C0ID2 1 R/W 0x00 0x0844 I2C0ID3 1 R/W 0x00	79				
0x0840 I2C0ID2 1 R/W 0x00 0x0844 I2C0ID3 1 R/W 0x00	79				
0x0844 I2C0ID3 1 R/W 0x00	79				
	79				
0x0848 I2C0CCNT 1 R/W 0x01	79				
0x084C I2C0FSTA 2 R/W 0x0000	79				
I2C1 Base Address = 0xFFFF0900					
0x0900 I2C1MSTA 1 R/W 0x00	76				
0x0904 I2C1SSTA 1 R 0x01	76				
0x0908 I2C1SRX 1 R 0x00	77				
0x090C I2C1STX 1 W 0x00	77				
0x0910 I2C1MRX 1 R 0x00	77				
0x0914 I2C1MTX 1 W 0x00	77				
0x0918 I2C1CNT 1 R/W 0x00	77				
0x091C I2C1ADR 1 R/W 0x00	77				
0x0924 I2C1BYTE 1 R/W 0x00	77				
0x0928 I2C1ALT 1 R/W 0x00	78				
0x092C I2C1CFG 1 R/W 0x00	78				
0x0930 I2C1DIV 2 R/W 0x1F1F	79				
0x0938 I2C1ID0 1 R/W 0x00	79				
0x093C I2C1ID1 1 R/W 0x00	79				
0x0940 I2C1ID2 1 R/W 0x00	79				
0x0944 I2C1ID3 1 R/W 0x00	79				
0x0948 I2C1CCNT 1 R/W 0x01	79				
0x094C I2C1FSTA 2 R/W 0x0000	-				
SPI Base Address = 0xFFFF0A00					

0x0A00	SPISTA	1	R	0x00	75
0x0A04	SPIRX	1	R	0x00	75
0x0A08	SPITX	1	W	0x00	75
0x0A0C	SPIDIV	1	R/W	0x1B	75
0x0A10	SPICON	2	R/W	0x0000	75

Table 28. V_{CM} Ranges

	-	0		
AV _{DD}	VREF	V _{CM} Min	V см Мах	Signal Peak-to-Peak
3.3 V	2.5 V	1.25 V	2.05 V	2.5 V
	2.048 V	1.024 V	2.276 V	2.048 V
	1.25 V	0.75 V	2.55 V	1.25 V
3.0 V	2.5 V	1.25 V	1.75 V	2.5 V
	2.048 V	1.024 V	1.976 V	2.048 V
	1.25 V	0.75 V	2.25 V	1.25 V

CALIBRATION

By default, the factory-set values written to the ADC offset (ADCOF) and gain coefficient registers (ADCGN) yield optimum performance in terms of end-point errors and linearity for standalone operation of the part (see the Specifications section). If system calibration is required, it is possible to modify the default offset and gain coefficients to improve end-point errors, but note that any modification to the factory-set ADCOF and ADCGN values can degrade ADC linearity performance.

For system offset error correction, the ADC channel input stage must be tied to AGND. A continuous software ADC conversion loop must be implemented by modifying the value in ADCOF until the ADC result (ADCDAT) reads Code 0 to Code 1. If the ADCDAT value is greater than 1, ADCOF should be decremented until ADCDAT reads 0 to 1. Offset error correction is done digitally and has a resolution of 0.25 LSB and a range of $\pm 3.125\%$ of V_{REF}.

For system gain error correction, the ADC channel input stage must be tied to V_{REF} . A continuous software ADC conversion loop must be implemented to modify the value in ADCGN until the ADC result (ADCDAT) reads Code 4094 to Code 4095. If the ADCDAT value is less than 4094, ADCGN should be incremented until ADCDAT reads 4094 to 4095. Similar to the offset calibration, the gain calibration resolution is 0.25 LSB with a range of $\pm 3\%$ of V_{REF}.

TEMPERATURE SENSOR

The ADuC7019/20/21/22/24/25/26/27/28/29 provide voltage output from on-chip band gap references proportional to absolute temperature. This voltage output can also be routed through the front-end ADC multiplexer (effectively an additional ADC channel input) facilitating an internal temperature sensor channel, measuring die temperature to an accuracy of $\pm 3^{\circ}$ C.

The following is an example routine showing how to use the internal temperature sensor:

```
int main(void)
{
float a = 0;
   short b;
   ADCCON = 0x20; // power-on the ADC
   delay(2000);
```

```
ADCCP = 0x10; // Select Temperature
Sensor as an // input to the ADC
     REFCON = 0x01; // connect internal 2.5V
reference // to Vref pin
     ADCCON = 0xE4; // continuous conversion
     while(1)
     {
             while (!ADCSTA){};
     // wait for end of conversion
             b = (ADCDAT >> 16);
     // To calculate temperature in °C, use
the formula:
             a = 0x525 - b;
     // ((Temperature = 0x525 - Sensor
Voltage) / 1.3)
             a /= 1.3;
             b = floor(a);
             printf("Temperature: %d
oC\n",b);
     }
     return 0;
}
```

BAND GAP REFERENCE

Each ADuC7019/20/21/22/24/25/26/27/28/29 provides an onchip band gap reference of 2.5 V, which can be used for the ADC and DAC. This internal reference also appears on the V_{REF} pin. When using the internal reference, a 0.47 μ F capacitor must be connected from the external V_{REF} pin to AGND to ensure stability and fast response during ADC conversions. This reference can also be connected to an external pin (V_{REF}) and used as a reference for other circuits in the system. An external buffer is required because of the low drive capability of the V_{REF} output. A programmable option also allows an external reference input on the V_{REF} pin. Note that it is not possible to disable the internal reference. Therefore, the external reference source must be capable of overdriving the internal reference source.

Table 29. REFCON Register

Name	Address	Default Value	Access
REFCON	0xFFFF048C	0x00	R/W

The band gap reference interface consists of an 8-bit MMR REFCON, described in Table 30.

Table 30. REFCON MMR Bit Designations

Bit	Description
7:1	Reserved.
0	Internal reference output enable. Set by user to connect the internal 2.5 V reference to the V _{REF} pin. The reference can be used for an external component but must be buffered. Cleared by user to disconnect the reference from the V _{REF} pin.

NONVOLATILE FLASH/EE MEMORY

The ADuC7019/20/21/22/24/25/26/27/28/29 incorporate Flash/EE memory technology on-chip to provide the user with nonvolatile, in-circuit reprogrammable memory space.

Like EEPROM, flash memory can be programmed in-system at a byte level, although it must first be erased. The erase is performed in page blocks. As a result, flash memory is often and more correctly referred to as Flash/EE memory.

Overall, Flash/EE memory represents a step closer to the ideal memory device that includes nonvolatility, in-circuit programmability, high density, and low cost. Incorporated in the ADuC7019/20/21/22/24/25/26/27/28/29, Flash/EE memory technology allows the user to update program code space in-circuit, without the need to replace one-time programmable (OTP) devices at remote operating nodes.

Each part contains a 64 kB array of Flash/EE memory. The lower 62 kB is available to the user and the upper 2 kB contain permanently embedded firmware, allowing in-circuit serial download. These 2 kB of embedded firmware also contain a power-on configuration routine that downloads factorycalibrated coefficients to the various calibrated peripherals (such as ADC, temperature sensor, and band gap references). This 2 kB embedded firmware is hidden from user code.

Flash/EE Memory Reliability

The Flash/EE memory arrays on the parts are fully qualified for two key Flash/EE memory characteristics: Flash/EE memory cycling endurance and Flash/EE memory data retention.

Endurance quantifies the ability of the Flash/EE memory to be cycled through many program, read, and erase cycles. A single endurance cycle is composed of four independent, sequential events, defined as

- 1. Initial page erase sequence
- 2. Read/verify sequence (single Flash/EE)
- 3. Byte program sequence memory
- 4. Second read/verify sequence (endurance cycle)

In reliability qualification, every half word (16-bit wide) location of the three pages (top, middle, and bottom) in the Flash/EE memory is cycled 10,000 times from 0x0000 to 0xFFFF. As indicated in Table 1, the Flash/EE memory endurance qualification is carried out in accordance with JEDEC Retention Lifetime Specification A117 over the industrial temperature range of -40° to $+125^{\circ}$ C. The results allow the specification of a minimum endurance figure over a supply temperature of 10,000 cycles.

Retention quantifies the ability of the Flash/EE memory to retain its programmed data over time. Again, the parts are qualified in accordance with the formal JEDEC Retention Lifetime Specification (A117) at a specific junction temperature ($T_J = 85^{\circ}$ C). As part of this qualification procedure, the Flash/EE memory is cycled to its specified endurance limit, described in Table 1, before data retention is characterized. This means that the Flash/EE memory is guaranteed to retain its data for its fully specified retention lifetime every time the Flash/EE memory is reprogrammed. In addition, note that retention lifetime, based on an activation energy of 0.6 eV, derates with T_J as shown in Figure 61.

Figure 61. Flash/EE Memory Data Retention

PROGRAMMING

The 62 kB of Flash/EE memory can be programmed in-circuit, using the serial download mode or the provided JTAG mode.

Serial Downloading (In-Circuit Programming)

The ADuC7019/20/21/22/24/25/26/27/28/29 facilitate code download via the standard UART serial port or via the I²C port. The parts enter serial download mode after a reset or power cycle if the BM pin is pulled low through an external 1 k Ω resistor. After a part is in serial download mode, the user can download code to the full 62 kB of Flash/EE memory while the device is in-circuit in its target application hardware. An executable PC serial download is provided as part of the development system for serial downloading via the UART. The AN-806 Application Note describes the protocol for serial downloading via the I²C.

JTAG Access

The JTAG protocol uses the on-chip JTAG interface to facilitate code download and debug.

SECURITY

The 62 kB of Flash/EE memory available to the user can be read and write protected.

Bit 31 of the FEEPRO/FEEHIDE MMR (see Table 42) protects the 62 kB from being read through JTAG programming mode. The other 31 bits of this register protect writing to the flash memory. Each bit protects four pages, that is, 2 kB. Write protection is activated for all types of access.

Three Levels of Protection

- Protection can be set and removed by writing directly into FEEHIDE MMR. This protection does not remain after reset.
- Protection can be set by writing into the FEEPRO MMR. It takes effect only after a save protection command (0x0C) and a reset. The FEEPRO MMR is protected by a key to avoid direct access. The key is saved once and must be entered again to modify FEEPRO. A mass erase sets the key back to 0xFFFF but also erases all the user code.
- Flash can be permanently protected by using the FEEPRO MMR and a particular value of key: 0xDEADDEAD. Entering the key again to modify the FEEPRO register is not allowed.

Sequence to Write the Key

- 1. Write the bit in FEEPRO corresponding to the page to be protected.
- 2. Enable key protection by setting Bit 6 of FEEMOD (Bit 5 must equal 0).
- 3. Write a 32-bit key in FEEADR and FEEDAT.
- 4. Run the write key command 0x0C in FEECON; wait for the read to be successful by monitoring FEESTA.
- 5. Reset the part.

To remove or modify the protection, the same sequence is used with a modified value of FEEPRO. If the key chosen is the value 0xDEAD, the memory protection cannot be removed. Only a mass erase unprotects the part, but it also erases all user code.

The sequence to write the key is illustrated in the following example (this protects writing Page 4 to Page 7 of the Flash):

o 7
.d
: :

The same sequence should be followed to protect the part permanently with FEEADR = 0xDEAD and FEEDAT = 0xDEAD.

FLASH/EE CONTROL INTERFACE

Serial and JTAG programming use the Flash/EE control interface, which includes the eight MMRs outlined in this section.

Table 31. FEESTA Register

Name	Address	Default Value	Access
FEESTA	0xFFFFF800	0x20	R

FEESTA is a read-only register that reflects the status of the flash control interface as described in Table 32.

Table 32. FEESTA MMR Bit Designations

Bit	Description
15:6	Reserved.
5	Reserved.
4	Reserved.
3	Flash interrupt status bit. Set automatically when an interrupt occurs, that is, when a command is complete and the Flash/EE interrupt enable bit in the FEEMOD register is set. Cleared when reading the FEESTA register.
2	Flash/EE controller busy. Set automatically when the controller is busy. Cleared automatically when the controller is not busy.
1	Command fail. Set automatically when a command completes unsuccessfully. Cleared automatically when reading the FEESTA register.
0	Command pass. Set by the MicroConverter when a command completes successfully. Cleared automatic-ally when reading the FEESTA register.

Table 33. FEEMOD Register

Name	Address	Default Value	Access
FEEMOD	0xFFFFF804	0x0000	R/W

FEEMOD sets the operating mode of the flash control interface. Table 34 shows FEEMOD MMR bit designations.

Table 34. FEEMOD MMR Bit Designations

Bit	Description
15:9	Reserved.
8	Reserved. This bit should always be set to 0.
7:5	Reserved. These bits should always be set to 0 except when writing keys. See the Sequence to Write the Key section.
4	Flash/EE interrupt enable. Set by user to enable the Flash/EE interrupt. The interrupt occurs when a command is complete. Cleared by user to disable the Flash/EE interrupt.
3	Erase/write command protection. Set by user to enable the erase and write commands. Cleared to protect the Flash against the erase/write command.
2:0	Reserved. These bits should always be set to 0.

OTHER ANALOG PERIPHERALS

DAC

The ADuC7019/20/21/22/24/25/26/27/28/29 incorporate two, three, or four 12-bit voltage output DACs on-chip, depending on the model. Each DAC has a rail-to-rail voltage output buffer capable of driving 5 k Ω /100 pF.

Each DAC has three selectable ranges: 0 V to V_{REF} (internal band gap 2.5 V reference), 0 V to DAC_{REF}, and 0 V to AV_{DD}. DAC_{REF} is equivalent to an external reference for the DAC. The signal range is 0 V to AV_{DD}.

MMRs Interface

Each DAC is independently configurable through a control register and a data register. These two registers are identical for the four DACs. Only DAC0CON (see Table 50) and DAC0DAT (see Table 52) are described in detail in this section.

Table 49. DACxCON Registers

Name	Address	Default Value	Access
DAC0CON	0xFFFF0600	0x00	R/W
DAC1CON	0xFFFF0608	0x00	R/W
DAC2CON	0xFFFF0610	0x00	R/W
DAC3CON	0xFFFF0618	0x00	R/W

Table 50. DACOCON MMR Bit Designations

Bit	Name	Value	Description
7:6			Reserved.
5	DACCLK		DAC update rate. Set by user to update the DAC using Timer1. Cleared by user to update the DAC using HCLK (core clock).
4	DACCLR		DAC clear bit. Set by user to enable normal DAC operation. Cleared by user to reset data register of the DAC to 0.
3			Reserved. This bit should be left at 0.
2			Reserved. This bit should be left at 0.
1:0			DAC range bits.
		00	Power-down mode. The DAC output is in three-state.
		01	0 V to DAC _{REF} range.
		10	0 V to V _{REF} (2.5 V) range.
		11	0 V to AV _{DD} range.

Table 51. DACxDAT Registers

Name	Address	Default Value	Access	
DAC0DAT	0xFFFF0604	0x0000000	R/W	
DAC1DAT	0xFFFF060C	0x0000000	R/W	
DAC2DAT	0xFFFF0614	0x0000000	R/W	
DAC3DAT	0xFFFF061C	0x0000000	R/W	

Table 52. DAC0DAT MMR Bit Designations

Bit	Description
31:28	Reserved.
27:16	12-bit data for DAC0.
15:0	Reserved.

Using the DACs

The on-chip DAC architecture consists of a resistor string DAC followed by an output buffer amplifier. The functional equivalent is shown in Figure 63.

Figure 63. DAC Structure

As illustrated in Figure 63, the reference source for each DAC is user-selectable in software. It can be AV_{DD} , V_{REF} , or DAC_{REF} . In 0-to- AV_{DD} mode, the DAC output transfer function spans from 0 V to the voltage at the AV_{DD} pin. In 0-to- DAC_{REF} mode, the DAC output transfer function spans from 0 V to the voltage at the DAC_{REF} pin. In 0-to- V_{REF} mode, the DAC output transfer function spans from 0 V to the voltage at the pin. In 0-to- V_{REF} mode, the DAC output transfer function spans from 0 V to the internal 2.5 V reference, V_{REF} .

The DAC output buffer amplifier features a true, rail-to-rail output stage implementation. This means that when unloaded, each output is capable of swinging to within less than 5 mV of both AV_{DD} and ground. Moreover, the DAC's linearity specification (when driving a 5 k Ω resistive load to ground) is guaranteed through the full transfer function, except Code 0 to Code 100, and, in 0-to-AV_{DD} mode only, Code 3995 to Code 4095.

Table 108. COMSTA1 Register

Name	Address	Default Value	Access
COMSTA1	0xFFFF0718	0x00	R

COMSTA1 is a modem status register.

Table 109. COMSTA1 MMR Bit Descriptions

Bit	Name	Description
7	DCD	Data carrier detect.
6	RI	Ring indicator.
5	DSR	Data set ready.
4	CTS	Clear to send.
3	DDCD	Delta DCD. Set automatically if DCD changed state since last COMSTA1 read. Cleared automati-cally by reading COMSTA1.
2	TERI	Trailing edge RI. Set if RI changed from 0 to 1 since COMSTA1 was last read. Cleared automatically by reading COMSTA1.
1	DDSR	Delta DSR. Set automatically if DSR changed state since COMSTA1 was last read. Cleared automatically by reading COMSTA1.
0	DCTS	Delta CTS. Set automatically if CTS changed state since COMSTA1 was last read. Cleared automatically by reading COMSTA1.

Table 110. COMSCR Register

Name	Address	Default Value	Access
COMSCR	0xFFFF071C	0x00	R/W

COMSCR is an 8-bit scratch register used for temporary storage. It is also used in network addressable UART mode.

Table 111. COMDIV2 Register

Name	Address	Default Value	Access
COMDIV2	0xFFFF072C	0x0000	R/W

COMDIV2 is a 16-bit fractional baud divide register.

Table 112. COMDIV2 MMR Bit Descriptions

Bit	Name	Description
15	FBEN	Fractional baud rate generator enable bit. Set by user to enable the fractional baud rate generator. Cleared by user to generate baud rate using the standard 450 UART baud rate generator.
14:13		Reserved.
12:11	FBM[1:0]	M if FBM = 0, M = 4 (see the Fractional Divider section).
10:0	FBN[10:0]	N (see the Fractional Divider section).

Network Addressable UART Mode

This mode connects the MicroConverter to a 256-node serial network, either as a hardware single master or via software in a multimaster network. Bit 7 (ENAM) of the COMIEN1 register must be set to enable UART in network addressable mode (see Table 114). Note that there is no parity check in this mode.

ADuC7019/20/21/22/24/25/26/27/28/29

Network Addressable UART Register Definitions

Four additional registers, COMIEN0, COMIEN1, COMIID1, and COMADR are used in network addressable UART mode only.

In network address mode, the least significant bit of the COMIEN1 register is the transmitted network address control bit. If set to 1, the device is transmitting an address. If cleared to 0, the device is transmitting data. For example, the following masterbased code transmits the slave's address followed by the data:

COMIEN1 = 0xE7; //Setting ENAM, E9BT, E9BR, ETD, NABP COMTX = 0xA0; // Slave address is 0xA0 while(!(0x020==(COMSTA0 & 0x020))){} // wait for adr tx to finish. COMIEN1 = 0xE6; // Clear NAB bit to indicate Data is coming COMTX = 0x55; // Tx data to slave: 0x55

Table 113. COMIEN1 Register

Name	Address	Default Value	Access
COMIEN1	0xFFFF0720	0x04	R/W

COMIEN1 is an 8-bit network enable register.

Table 114. COMIEN1 MMR Bit Descriptions

Bit	Name	Description
7	ENAM	Network address mode enable bit. Set by user to enable network address mode. Cleared by user to disable network address mode.
6	E9BT	9-bit transmit enable bit. Set by user to enable 9-bit transmit. ENAM must be set. Cleared by user to disable 9-bit transmit.
5	E9BR	9-bit receive enable bit. Set by user to enable 9-bit receive. ENAM must be set. Cleared by user to disable 9-bit receive.
4	ENI	Network interrupt enable bit.
3	E9BD	Word length. Set for 9-bit data. E9BT has to be cleared. Cleared for 8-bit data.
2	ETD	Transmitter pin driver enable bit. Set by user to enable SOUT pin as an output in slave mode or multimaster mode. Cleared by user; SOUT is three-state.
1	NABP	Network address bit. Interrupt polarity bit.
0	NAB	Network address bit (if NABP = 1). Set by user to transmit the slave address. Cleared by user to transmit data.

Table 115. COMIID1 Register

Name	Address	Default Value	Access
COMIID1	0xFFFF0724	0x01	R

COMIID1 is an 8-bit network interrupt register. Bit 7 to Bit 4 are reserved (see Table 116).

Table 116. COMIID1 MMR Bit Descriptions

Bit 3:1 Status	Bit 0			Clearing
Bits	NINT	Priority	Definition	Operation
000	1		No interrupt	
110	0	2	Matching network address	Read COMRX
101	0	3	Address transmitted, buffer empty	Write data to COMTX or read COMIID0
011	0	1	Receive line status interrupt	Read COMSTA0
010	0	2	Receive buffer full interrupt	Read COMRX
001	0	3	Transmit buffer empty interrupt	Write data to COMTX or read COMIID0
000	0	4	Modem status interrupt	Read COMSTA1

Note that to receive a network address interrupt, the slave must ensure that Bit 0 of COMIEN0 (enable receive buffer full interrupt) is set to 1.

Table 117. COMADR Register

Name	Address	Default Value	Access
COMADR	0xFFFF0728	0xAA	R/W

COMADR is an 8-bit, read/write network address register that holds the address checked for by the network addressable UART. Upon receiving this address, the device interrupts the processor and/or sets the appropriate status bit in COMIID1.

SERIAL PERIPHERAL INTERFACE

The ADuC7019/20/21/22/24/25/26/27/28/29 integrate a complete hardware serial peripheral interface (SPI) on-chip. SPI is an industry standard, synchronous serial interface that allows eight bits of data to be synchronously transmitted and simultaneously received, that is, full duplex up to a maximum bit rate of 3.48 Mb, as shown in Table 118. The SPI interface is not operational with core clock divider (CD) bits. POWCON[2:0] = 6 or 7 in master mode.

The SPI port can be configured for master or slave operation. and typically consists of four pins: MISO (P1.5), MOSI (P1.6), SCLK (P1.4), and \overline{CS} (P1.7).

On the transmit side, the SPITX register (and a TX shift register outside it) loads data onto the transmit pin (in slave mode, MISO; in master mode, MOSI). The transmit status bit, Bit 0, in SPISTA indicates whether there is valid data in the SPITX register.

Similarly, the receive data path consists of the SPIRX register (and an RX shift register). SPISTA, Bit 3 indicates whether there is valid data in the SPIRX register. If valid data in the SPIRX register is overwritten or if valid data in the RX shift register is discarded, SPISTA, Bit 5 (the overflow bit) is set.

MISO (Master In, Slave Out) Pin

The MISO pin is configured as an input line in master mode and an output line in slave mode. The MISO line on the master (data in) should be connected to the MISO line in the slave device (data out). The data is transferred as byte wide (8-bit) serial data, MSB first.

MOSI (Master Out, Slave In) Pin

The MOSI pin is configured as an output line in master mode and an input line in slave mode. The MOSI line on the master (data out) should be connected to the MOSI line in the slave device (data in). The data is transferred as byte wide (8-bit) serial data, MSB first.

SCLK (Serial Clock I/O) Pin

The master serial clock (SCLK) is used to synchronize the data being transmitted and received through the MOSI SCLK period. Therefore, a byte is transmitted/received after eight SCLK periods. The SCLK pin is configured as an output in master mode and as an input in slave mode.

In master mode, the polarity and phase of the clock are controlled by the SPICON register, and the bit rate is defined in the SPIDIV register as follows:

$$f_{SERIAL CLOCK} = \frac{f_{UCLK}}{2 \times (1 + SPIDIV)}$$

The maximum speed of the SPI clock is dependent on the clock divider bits and is summarized in Table 118.

Table 118. SPI	Speed vs. (Clock Divider	Bits in 1	Master Mode
----------------	-------------	---------------	-----------	-------------

CD Bits	0	1	2	3	4	5
SPIDIV in Hex	0x05	0x0B	0x17	0x2F	0x5F	0xBF
SPI dpeed in MHz	3.482	1.741	0.870	0.435	0.218	0.109

In slave mode, the SPICON register must be configured with the phase and polarity of the expected input clock. The slave accepts data from an external master up to 10.4 Mb at CD = 0. The formula to determine the maximum speed is as follows:

$$f_{SERIAL CLOCK} = \frac{f_{HCLK}}{4}$$

In both master and slave modes, data is transmitted on one edge of the SCL signal and sampled on the other. Therefore, it is important that the polarity and phase be configured the same for the master and slave devices.

Chip Select (CS Input) Pin

In SPI slave mode, a transfer is initiated by the assertion of CS, which is an active low input signal. The SPI port then transmits and receives 8-bit data until the transfer is concluded by deassertion of $\overline{\text{CS}}$. In slave mode, $\overline{\text{CS}}$ is always an input.

I²C-COMPATIBLE INTERFACES

The ADuC7019/20/21/22/24/25/26/27/28/29 support two

licensed I²C interfaces. The I²C interfaces are both implemented as a hard-ware master and a full slave interface. Because the two I²C inter-faces are identical, this data sheet describes only I2C0 in detail. Note that the two masters and one of the slaves have individual interrupts (see the Interrupt System section).

Note that when configured as an I²C master device, the ADuC7019/20/21/22/24/25/26/27/28/29 cannot generate a repeated start condition.

The two GPIO pins used for data transfer, SDAx and SCLx, are configured in a wired-AND format that allows arbitration in a multimaster system. These pins require external pull-up resistors. Typical pull-up values are 10 k Ω .

The I²C bus peripheral address in the I²C bus system is programmed by the user. This ID can be modified any time a transfer is not in progress. The user can configure the interface to respond to four slave addresses.

The transfer sequence of an I²C system consists of a master device initiating a transfer by generating a start condition while the bus is idle. The master transmits the slave device address and the direction of the data transfer during the initial address transfer. If the master does not lose arbitration and the slave acknowledges, the data transfer is initiated. This continues until the master issues a stop condition and the bus becomes idle.

The I²C peripheral can be configured only as a master or slave at any given time. The same I²C channel cannot simultaneously support master and slave modes.

Serial Clock Generation

The I²C master in the system generates the serial clock for a transfer. The master channel can be configured to operate in fast mode (400 kHz) or standard mode (100 kHz).

The bit rate is defined in the I2C0DIV MMR as follows:

$$f_{SERIAL CLOCK} = \frac{f_{UCLK}}{(2 + DIVH) + (2 + DIVL)}$$

where:

 f_{UCLK} = clock before the clock divider. DIVH = the high period of the clock. DIVL = the low period of the clock.

Thus, for 100 kHz operation,

DIVH = DIVL = 0xCF

and for 400 kHz,

$$DIVH = 0x28, DIVL = 0x3C$$

The I2CxDIV registers correspond to DIVH:DIVL.

Slave Addresses

The registers I2C0ID0, I2C0ID1, I2C0ID2, and I2C0ID3 contain the device IDs. The device compares the four I2C0IDx registers to the address byte. To be correctly addressed, the seven MSBs of either ID register must be identical to that of the seven MSBs of the first received address byte. The LSB of the ID registers (the transfer direction bit) is ignored in the process of address recognition.

I²C Registers

The I²C peripheral interface consists of 18 MMRs, which are discussed in this section.

Table 126. I2CxMSTA Registers

Name	Address	Default Value	Access
I2C0MSTA	0xFFFF0800	0x00	R/W
I2C1MSTA	0xFFFF0900	0x00	R/W

I2CxMSTA are status registers for the master channel.

Table 127. I2C0MSTA MMR Bit Descriptions

	Access	
Bit	Туре	Description
7	R/W	Master transmit FIFO flush. Set by user to flush the master Tx FIFO. Cleared automatically after the master Tx FIFO is flushed. This bit also flushes the slave receive FIFO.
6	R	Master busy. Set automatically if the master is busy. Cleared automatically.
5	R	Arbitration loss. Set in multimaster mode if another master has the bus. Cleared when the bus becomes available.
4	R	No ACK. Set automatically if there is no acknowledge of the address by the slave device. Cleared automatically by reading the I2C0MSTA register.
3	R	Master receive IRQ. Set after receiving data. Cleared automatically by reading the I2C0MRX register.
2	R	Master transmit IRQ. Set at the end of a transmission. Cleared automatically by writing to the I2C0MTX register.
1	R	Master transmit FIFO underflow. Set automatically if the master transmit FIFO is underflowing. Cleared automatically by writing to the I2COMTX register
0	R	Master TX FIFO not full. Set automatically if the slave transmit FIFO is not full. Cleared automatically by writing twice to the I2C0STX register.

Table 128. I2CxSSTA Registers

Name	Address	Default Value	Access
I2C0SSTA	0xFFFF0804	0x01	R
I2C1SSTA	0xFFFF0904	0x01	R

I2CxSSTA are status registers for the slave channel.

Data Sheet

In normal mode, an IRQ is generated each time the value of the counter reaches zero when counting down. It is also generated each time the counter value reaches full scale when counting up. An IRQ can be cleared by writing any value to clear the register of that particular timer (TxCLRI).

When using an asynchronous clock-to-clock timer, the interrupt in the timer block may take more time to clear than the time it takes for the code in the interrupt routine to execute. Ensure that the interrupt signal is cleared before leaving the interrupt service routine. This can be done by checking the IRQSTA MMR.

Hour:Minute:Second:1/128 Format

To use the timer in hour:minute:second:hundredths format, select the 32,768 kHz clock and prescaler of 256. The hundredths field does not represent milliseconds but 1/128 of a second (256/32,768). The bits representing the hour, minute, and second are not consecutive in the register. This arrangement applies to TxLD and TxVAL when using the hour:minute:second:hundredths format as set in TxCON[5:4]. See Table 171 for additional details.

Table 171. Hour:Minnute:Second:Hundredths Format

Bit	Value	Description
31:24	0 to 23 or 0 to 255	Hours
23:22	0	Reserved
21:16	0 to 59	Minutes
15:14	0	Reserved
13.8	0 to 59	Seconds
7	0	Reserved
6:0	0 to 127	1/128 second

Timer0 (RTOS Timer)

Timer0 is a general-purpose, 16-bit timer (count down) with a programmable prescaler (see Figure 77). The prescaler source is the core clock frequency (HCLK) and can be scaled by factors of 1, 16, or 256.

Timer0 can be used to start ADC conversions as shown in the block diagram in Figure 77.

Figure 77. Timer0 Block Diagram

ADuC7019/20/21/22/24/25/26/27/28/29

The Timer0 interface consists of four MMRs: T0LD, T0VAL, T0CON, and T0CLRI.

Table 172. T0LD Register

Name	Address	Default Value	Access
TOLD	0xFFFF0300	0x0000	R/W

T0LD is a 16-bit load register.

Table 173. TOVAL Register

Name	Address	Default Value	Access
TOVAL	0xFFFF0304	0xFFFF	R

TOVAL is a 16-bit read-only register representing the current state of the counter.

Table 174. TOCON Register

Name	Address	Default Value	Access
T0CON	0xFFFF0308	0x0000	R/W

T0CON is the configuration MMR described in Table 175.

Table 175. TOCON MMR Bit Descriptions

Bit	Value	Description
15:8		Reserved.
7		Timer0 enable bit. Set by user to enable Timer0. Cleared by user to disable Timer0 by default.
6		Timer0 mode. Set by user to operate in periodic mode. Cleared by user to operate in free-running mode. Default mode.
5:4		Reserved.
3:2		Prescale.
	00	Core Clock/1. Default value.
	01	Core Clock/16.
	10	Core Clock/256.
	11	Undefined. Equivalent to 00.
1:0		Reserved.

Table 176. T0CLRI Register

Name Address		Default Value	Access
TOCLRI	0xFFFF030C	0xFF	W

TOCLRI is an 8-bit register. Writing any value to this register clears the interrupt.

POWER-ON RESET OPERATION

An internal power-on reset (POR) is implemented on the ADuC7019/20/21/22/24/25/26/27/28/29. For LV_{DD} below 2.35 V typical, the internal POR holds the part in reset. As LV_{DD} rises above 2.35 V, an internal timer times out for, typically, 128 ms before the part is released from reset. The user must ensure that the power supply IOV_{DD} reaches a stable 2.7 V minimum level by this time. Likewise, on power-down, the internal POR holds the part in reset until LV_{DD} drops below 2.35 V.

Figure 94 illustrates the operation of the internal POR in detail.

TYPICAL SYSTEM CONFIGURATION

A typical ADuC7020 configuration is shown in Figure 95. It summarizes some of the hardware considerations discussed in the previous sections. The bottom of the CSP package has an exposed pad that must be soldered to a metal plate on the board for mechanical reasons. The metal plate of the board can be connected to ground.

Figure 94. Internal Power-On Reset Operation

ORDERING GUIDE

		DAC			Down	Tomporaturo	Package	Packago	Ordering
Model ^{1, 2}	Channels ³	Channels	RAM	GPIO	loader	Range	Description	Option	Quantity
ADuC7019BCPZ62I	5	3	62 kB/8 kB	14	I ² C	-40°C to +125°C	40-Lead LFCSP_WQ	CP-40-9	
ADuC7019BCPZ62I-RL	5	3	62 kB/8 kB	14	I ² C	-40°C to +125°C	40-Lead LFCSP_WQ	CP-40-9	2,500
ADuC7019BCPZ62IRL7	5	3	62 kB/8 kB	14	I ² C	-40°C to +125°C	40-Lead LFCSP_WQ	CP-40-9	750
ADuC7020BCPZ62	5	4	62 kB/8 kB	14	UART	-40°C to +125°C	40-Lead LFCSP_WQ	CP-40-9	
ADuC7020BCPZ62-RL7	5	4	62 kB/8 kB	14	UART	-40°C to +125°C	40-Lead LFCSP_WQ	CP-40-9	750
ADuC7020BCPZ62I	5	4	62 kB/8 kB	14	I ² C	-40°C to +125°C	40-Lead LFCSP_WQ	CP-40-9	
ADuC7020BCPZ62I-RL	5	4	62 kB/8 kB	14	I ² C	-40°C to +125°C	40-Lead LFCSP_WQ	CP-40-9	2,500
ADuC7020BCPZ62IRL7	5	4	62 kB/8 kB	14	I ² C	-40°C to +125°C	40-Lead LFCSP_WQ	CP-40-9	750
ADuC7021BCPZ62	8	2	62 kB/8 kB	13	UART	-40°C to +125°C	40-Lead LFCSP_WQ	CP-40-9	
ADuC7021BCPZ62-RL	8	2	62 kB/8 kB	13	UART	-40°C to +125°C	40-Lead LFCSP_WQ	CP-40-9	2,500
ADuC7021BCPZ62-RL7	8	2	62 kB/8 kB	13	UART	-40°C to +125°C	40-Lead LFCSP_WQ	CP-40-9	750
ADuC7021BCPZ62I	8	2	62 kB/8 kB	13	I ² C	-40°C to +125°C	40-Lead LFCSP_WQ	CP-40-9	
ADuC7021BCPZ62I-RL	8	2	62 kB/8 kB	13	I ² C	-40°C to +125°C	40-Lead LFCSP_WQ	CP-40-9	2,500
ADuC7021BCPZ32	8	2	32 kB/4 kB	13	UART	-40°C to +125°C	40-Lead LFCSP_WQ	CP-40-9	
ADuC7021BCPZ32-RL7	8	2	32 kB/4 kB	13	UART	-40°C to +125°C	40-Lead LFCSP_WQ	CP-40-9	750
ADuC7022BCPZ62	10		62 kB/8 kB	13	UART	-40°C to +125°C	40-Lead LFCSP_WQ	CP-40-9	
ADuC7022BCPZ62-RL7	10		62 kB/8 kB	13	UART	-40°C to +125°C	40-Lead LFCSP_WQ	CP-40-9	750
ADuC7022BCPZ32	10		32 kB/4 kB	13	UART	-40°C to +125°C	40-Lead LFCSP_WQ	CP-40-9	
ADuC7022BCPZ32-RL	10		32 kB/4 kB	13	UART	-40°C to +125°C	40-Lead LFCSP_WQ	CP-40-9	2,500
ADuC7024BCPZ62	10	2	62 kB/8 kB	30	UART	-40°C to +125°C	64-Lead LFCSP_VQ	CP-64-1	
ADuC7024BCPZ62-RL7	10	2	62 kB/8 kB	30	UART	-40°C to +125°C	64-Lead LFCSP_VQ	CP-64-1	750
ADuC7024BCPZ62I	10	2	62 kB/8 kB	30	I ² C	-40°C to +125°C	64-Lead LFCSP_VQ	CP-64-1	
ADuC7024BCPZ62I-RL	10	2	62 kB/8 kB	30	I ² C	-40°C to +125°C	64-Lead LFCSP_VQ	CP-64-1	2,500
ADuC7024BSTZ62	10	2	62 kB/8 kB	30	UART	-40°C to +125°C	64-Lead LQFP	ST-64-2	
ADuC7024BSTZ62-RL	10	2	62 kB/8 kB	30	UART	-40°C to +125°C	64-Lead LQFP	ST-64-2	1,000
ADuC7025BCPZ62	12		62 kB/8 kB	30	UART	-40°C to +125°C	64-Lead LFCSP_VQ	CP-64-1	
ADuC7025BCPZ62-RL	12		62 kB/8 kB	30	UART	-40°C to +125°C	64-Lead LFCSP_VQ	CP-64-1	2,500
ADuC7025BCPZ32	12		32 kB/4 kB	30	UART	-40°C to +125°C	64-Lead LFCSP_VQ	CP-64-1	
ADuC7025BCPZ32-RL	12		32 kB/4 kB	30	UART	-40°C to +125°C	64-Lead LFCSP_VQ	CP-64-1	2,500
ADuC7025BSTZ62	12		62 kB/8 kB	30	UART	-40°C to +125°C	64-Lead LQFP	ST-64-2	
ADuC7025BSTZ62-RL	12		62 kB/8 kB	30	UART	-40°C to +125°C	64-Lead LQFP	ST-64-2	1,000
ADuC7026BSTZ62	12	4	62 kB/8 kB	40	UART	-40°C to +125°C	80-Lead LQFP	ST-80-1	
ADuC7026BSTZ62-RL	12	4	62 kB/8 kB	40	UART	-40°C to +125°C	80-Lead LQFP	ST-80-1	1,000
ADuC7026BSTZ62I	12	4	62 kB/8 kB	40	I ² C	-40°C to +125°C	80-Lead LQFP	ST-80-1	
ADuC7026BSTZ62I-RL	12	4	62 kB/8 kB	40	I ² C	-40°C to +125°C	80-Lead LQFP	ST-80-1	1,000
ADuC7027BSTZ62	16		62 kB/8 kB	40	UART	-40°C to +125°C	80-Lead LQFP	ST-80-1	
ADuC7027BSTZ62-RL	16		62 kB/8 kB	40	UART	-40°C to +125°C	80-Lead LQFP	ST-80-1	1,000
ADuC7027BSTZ62I	16		62 kB/8 kB	40	I ² C	-40°C to +125°C	80-Lead LQFP	ST-80-1	
ADuC7027BSTZ62I-RL	16		62 kB/8 kB	40	I ² C	-40°C to +125°C	80-Lead LQFP	ST-80-1	1,000
ADuC7028BBCZ62	8	4	62 kB/8 kB	30	UART	-40°C to +125°C	64-Ball CSP_BGA	BC-64-4	
ADuC7028BBCZ62-RL	8	4	62 kB/8 kB	30	UART	-40°C to +125°C	64-Ball CSP_BGA	BC-64-4	2,500
ADuC7029BBCZ62	7	4	62 kB/8 kB	22	UART	-40°C to +125°C	49-Ball CSP_BGA	BC-49-1	
ADuC7029BBCZ62-RL	7	4	62 kB/8 kB	22	UART	-40°C to +125°C	49-Ball CSP_BGA	BC-49-1	4,000
ADuC7029BBCZ62I	7	4	62 kB/8 kB	22	I ² C	-40°C to +125°C	49-Ball CSP_BGA	BC-49-1	
ADuC7029BBCZ62I-RL	7	4	62 kB/8 kB	22	I ² C	-40°C to +125°C	49-Ball CSP BGA	BC-49-1	4,000