E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM7®
Core Size	16/32-Bit
Speed	44MHz
Connectivity	EBI/EMI, I²C, SPI, UART/USART
Peripherals	PLA, PWM, PSM, Temp Sensor, WDT
Number of I/O	30
Program Memory Size	62KB (31K x16)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2K x 32
Voltage - Supply (Vcc/Vdd)	2.7V ~ 3.6V
Data Converters	A/D 12x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/analog-devices/aduc7025bstz62

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE OF CONTENTS

Features 1
Applications1
Functional Block Diagram 1
Revision History
General Description
Detailed Block Diagram9
Specifications10
Timing Specifications13
Absolute Maximum Ratings20
ESD Caution20
Pin Configurations and Function Descriptions
ADuC7019/ADuC7020/ADuC7021/ADuC7022
ADuC7024/ADuC7025
ADuC7026/ADuC7027
ADuC7028
ADuC7029
Typical Performance Characteristics
Terminology
ADC Specifications
DAC Specifications
Overview of the ARM7TDMI Core
Thumb Mode (T)
Long Multiply (M)
EmbeddedICE (I)
Exceptions
ARM Registers
Interrupt Latency
Memory Organization
Memory Access
Flash/EE Memory41
SRAM
Memory Mapped Registers 41
ADC Circuit Overview
Transfer Function
Typical Operation
MMRs Interface
Converter Operation
Driving the Analog Inputs

Calibration	50
Temperature Sensor	50
Band Gap Reference	50
Nonvolatile Flash/EE Memory	51
Programming	51
Security	52
Flash/EE Control Interface	52
Execution Time from SRAM and Flash/EE	54
Reset and Remap	54
Other Analog Peripherals	56
DAC	56
Power Supply Monitor	57
Comparator	57
Oscillator and PLL—Power Control	58
Digital Peripherals	61
3-Phase PWM	61
Description of the PWM Block	62
General-Purpose Input/Output	67
Serial Port Mux	70
UART Serial Interface	70
Serial Peripheral Interface	74
I ² C-Compatible Interfaces	76
Programmable Logic Array (PLA)	80
Processor Reference Peripherals	83
Interrupt System	83
Timers	84
External Memory Interfacing	89
Hardware Design Considerations	93
Power Supplies	93
Grounding and Board Layout Recommendations	94
Clock Oscillator	94
Power-On Reset Operation	95
Typical System Configuration	95
Development Tools	96
PC-Based Tools	96
In-Circuit Serial Downloader	96
Outline Dimensions	97
Ordering Guide	100

Figure 7.

Figure 8.

Table 3. External Memory Read Cycle

Parameter	Min	Тур	Max	Unit
CLK ¹	1/MD clock	ns typ × (POWCON[2:0] + 1)		
tms_after_clkh	4		ns	
t ADDR_AFTER_CLKH	4		ns	
t _{AE_H_AFTER_MS}		½ CLK		
t _{AE}		$(XMxPAR[14:12] + 1) \times CLK$		
thold_addr_after_ae_l		1/2 CLK + (! XMxPAR[10]) × CLK		
trd_l_after_ae_l		1/2 CLK + (! XMxPAR[10]+ ! XMxPAR[9]) × CLK		
t rd_h_after_clkh	0		4	
t _{RD}		$(XMxPAR[3:0] + 1) \times CLK$		
tdata_before_rd_h	16			ns
tdata_after_rd_h	8	+ (! XMxPAR[9]) \times CLK		
t _{RELEASE_MS_AFTER_RD_H}		1 × CLK		

¹ See Table 78.

Figure 13. External Memory Read Cycle (See Table 78)

ABSOLUTE MAXIMUM RATINGS

AGND = REFGND = DACGND = GND_{REF} , $T_A = 25$ °C, unless otherwise noted.

Table 10.

Parameter	Rating
AV _{DD} to IOV _{DD}	–0.3 V to +0.3 V
AGND to DGND	–0.3 V to +0.3 V
IOV _{DD} to IOGND, AV _{DD} to AGND	–0.3 V to +6 V
Digital Input Voltage to IOGND	–0.3 V to +5.3 V
Digital Output Voltage to IOGND	-0.3 V to IOV _{DD} + 0.3 V
V _{REF} to AGND	-0.3 V to AV _{DD} + 0.3 V
Analog Inputs to AGND	$-0.3V$ to $AV_{\text{DD}}+0.3V$
Analog Outputs to AGND	-0.3 V to AV _{DD} + 0.3 V
Operating Temperature Range, Industrial	–40°C to +125°C
Storage Temperature Range	–65°C to +150°C
Junction Temperature	150°C
θ _{JA} Thermal Impedance	
40-Lead LFCSP	26°C/W
49-Ball CSP_BGA	80°C/W
64-Lead LFCSP	24°C/W
64-Ball CSP_BGA	75°C/W
64-Lead LQFP	47°C/W
80-Lead LQFP	38°C/W
Peak Solder Reflow Temperature	
SnPb Assemblies (10 sec to 30 sec)	240°C
RoHS Compliant Assemblies (20 sec to 40 sec)	260°C

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

Only one absolute maximum rating can be applied at any one time.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

Pin No.	Mnemonic	Description
37	P3.6/PWM _{TRIP} /PLAI[14]	General-Purpose Input and Output Port 3.6/PWM Safety Cutoff/Programmable Logic Array Input Element 14.
38	P3.7/PWMsync/PLAI[15]	General-Purpose Input and Output Port 3.7/PWM Synchronization Input and Output/ Programmable Logic Array Input Element 15.
39	P1.7/SPM7/PLAO[0]	Serial Port Multiplexed. General-Purpose Input and Output Port 1.7/UART, SPI/Programmable Logic Array Output Element 0.
40	P1.6/SPM6/PLAI[6]	Serial Port Multiplexed. General-Purpose Input and Output Port 1.6/UART, SPI/Programmable Logic Array Input Element 6.
41	IOGND	Ground for GPIO (see Table 78). Typically connected to DGND.
42	IOV _{DD}	3.3 V Supply for GPIO (see Table 78) and Input of the On-Chip Voltage Regulator.
43	P4.0/PLAO[8]	General-Purpose Input and Output Port 4.0/Programmable Logic Array Output Element 8.
44	P4.1/PLAO[9]	General-Purpose Input and Output Port 4.1/Programmable Logic Array Output Element 9.
45	P1.5/SPM5/PLAI[5]/IRQ3	Serial Port Multiplexed. General-Purpose Input and Output Port 1.5/UART, SPI/Programmable Logic Array Input Element 5/External Interrupt Request 3, Active High.
46	P1.4/SPM4/PLAI[4]/IRQ2	Serial Port Multiplexed. General-Purpose Input and Output Port 1.4/UART, SPI/Programmable Logic Array Input Element 4/External Interrupt Request 2, Active High.
47	P1.3/SPM3/PLAI[3]	Serial Port Multiplexed. General-Purpose Input and Output Port 1.3/UART, I2C1/Programmable Logic Array Input Element 3.
48	P1.2/SPM2/PLAI[2]	Serial Port Multiplexed. General-Purpose Input and Output Port 1.2/UART, I2C1/Programmable Logic Array Input Element 2.
49	P1.1/SPM1/PLAI[1]	Serial Port Multiplexed. General-Purpose Input and Output Port 1.1/UART, I2CO/Programmable Logic Array Input Element 1.
50	P1.0/T1/SPM0/PLAI[0]	Serial Port Multiplexed. General-Purpose Input and Output Port 1.0/Timer1 Input/UART, I2C0/ Programmable Logic Array Input Element 0.
51	P4.2/PLAO[10]	General-Purpose Input and Output Port 4.2/Programmable Logic Array Output Element 10.
52	P4.3/PLAO[11]	General-Purpose Input and Output Port 4.3/Programmable Logic Array Output Element 11.
53	P4.4/PLAO[12]	General-Purpose Input and Output Port 4.4/Programmable Logic Array Output Element 12.
54	P4.5/PLAO[13]	General-Purpose Input and Output Port 4.5/Programmable Logic Array Output Element 13.
55	V _{REF}	2.5 V Internal Voltage Reference. Must be connected to a 0.47 μF capacitor when using the internal reference.
56	DAC _{REF}	External Voltage Reference for the DACs. Range: DACGND to $DACV_{DD}$.
57	DACGND	Ground for the DAC. Typically connected to AGND.
58	AGND	Analog Ground. Ground reference point for the analog circuitry.
59	AV _{DD}	3.3 V Analog Power.
60		3.3 V Power Supply for the DACs. Must be connected to AV_{DD} .
61	ADC0	Single-Ended or Differential Analog Input 0.
62	ADC1	Single-Ended or Differential Analog Input 1.
63	ADC2/CMP0	Single-Ended or Differential Analog Input 2/Comparator Positive Input.
64	ADC3/CMP1	Single-Ended or Differential Analog Input 3/Comparator Negative Input.
0	EP	Exposed Pad. The pin configuration for the ADuC7024/ADuC7025 LFCSP_VQ has an exposed pad that must be soldered for mechanical purposes and left unconnected.

Pin No.	Mnemonic	Description
D7	P1.6/SPM6/PLAI[6]	Serial Port Multiplexed. General-Purpose Input and Output Port 1.6/UART, SPI/Programmable Logic Array Input Element 6.
D8	IOV _{DD}	3.3 V Supply for GPIO (see Table 78) and Input of the On-Chip Voltage Regulator.
E1	DAC3/ADC15	DAC3 Voltage Output/ADC Input 15.
E2	DAC2/ADC14	DAC2 Voltage Output/ADC Input 14.
E3	DAC1/ADC13	DAC1 Voltage Output/ADC Input 13.
E4	P3.0/PWM0 _H /PLAI[8]	General-Purpose Input and Output Port 3.0/PWM Phase 0 High-Side Output/Programmable Logic Array Input Element 8.
E5	P3.2/PWM1 _H /PLAI[10]	General-Purpose Input and Output Port 3.2/PWM Phase 1 High-Side Output/Programmable Logic Array Input Element 10.
E6	P1.5/SPM5/PLAI[5]/IRQ3	Serial Port Multiplexed. General-Purpose Input and Output Port 1.5/UART, SPI/Programmable Logic Array Input Element 5/External Interrupt Request 3, Active High.
E7	P3.7/PWM _{SYNC} /PLAI[15]	General-Purpose Input and Output Port 3.7/PWM Synchronization/Programmable Logic Array Input Element 15.
E8	XCLKI	Input to the Crystal Oscillator Inverter and Input to the Internal Clock Generator Circuits.
F1	P4.6/PLAO[14]	General-Purpose Input and Output Port 4.6/Programmable Logic Array Output Element 14.
F2	TDI	JTAG Test Port Input, Test Data In. Debug and download access.
F3		DAC0 Voltage Output/ADC Input 12
F4	P3.1/PWM0L/PLAI[9]	General-Purpose Input and Output Port 3.1/PWM Phase 0 Low-Side Output/Programmable
F5	P3.3/PWM1_/PLAI[11]	General-Purpose Input and Output Port 3.3/PWM Phase 1 Low-Side Output/Programmable
F6	RST	Reset Input, Active Low.
F7	P0.7/ECLK/XCLK/SPM8/PLAO[4]	Serial Port Multiplexed. General-Purpose Input and Output Port 0.7/Output for External Clock Signal/Input to the Internal Clock Generator Circuits/UART/Programmable Logic Array Output Element 4.
F8	XCLKO	Output from the Crystal Oscillator Inverter.
G1	BM/P0.0/CMP _{out} /PLAI[7]	Multifunction I/O Pin. Boot mode. The ADuC7028 enters UART download mode if BM is low at reset and executes code if BM is pulled high at reset through a 1 k Ω resistor/General-Purpose Input and Output Port 0.0/Voltage Comparator Output/Programmable Logic Array Input Element 7.
G2	P4.7/PLAO[15]	General-Purpose Input and Output Port 4.7/Programmable Logic Array Output Element 15.
G3	TMS	JTAG Test Port Input, Test Mode Select. Debug and download access.
G4	TDO	JTAG Test Port Output, Test Data Out. Debug and download access.
G5	P0.3/TRST/ADC _{BUSY}	General-Purpose Input and Output Port 0.3/JTAG Test Port Input, Test Reset/ADC _{BUSY} Signal
66	Ρ3 4/Ρ\ΜΜ2/ΡΙ ΔΙ[12]	Output. General-Purpose Input and Output Port 3 4/PWM Phase 2 High-Side Output/Programmable
60		Logic Array Input 12.
G/	P3.5/PWM2L/PLAI[13]	General-Purpose Input and Output Port 3.5/PWM Phase 2 Low-Side Output/Programmable Logic Array Input Element 13.
G8	P2.0/SPM9/PLAO[5]/CONV _{START}	Serial Port Multiplexed. General-Purpose Input and Output Port 2.0/UART/Programmable Logic Array Output Element 5/Start Conversion Input Signal for ADC.
H1	P0.6/T1/MRST/PLAO[3]	Multifunction Pin, Driven Low After Reset. General-Purpose Output Port 0.6/Timer1 Input/ Power-On Reset Output/Programmable Logic Array Output Element 3.
H2	ТСК	JTAG Test Port Input, Test Clock. Debug and download access.
H3	IOGND	Ground for GPIO (see Table 78). Typically connected to DGND.
H4	IOV _{DD}	3.3 V Supply for GPIO (see Table 78) and Input of the On-Chip Voltage Regulator.
H5	LV _{DD}	2.6 V Output of the On-Chip Voltage Regulator. This output must be connected to a 0.47 μF capacitor to DGND only.
H6	DGND	Ground for Core Logic.
H7	IRQ0/P0.4/PWM _{TRIP} /PLAO[1]	Multifunction I/O Pin. External Interrupt Request 0, Active High/General-Purpose Input and Output Port 0.4/PWM Trip External Input/Programmable Logic Array Output Element 1.
H8	IRQ1/P0.5/ADC _{BUSY} /PLAO[2]	Multifunction I/O Pin. External Interrupt Request 1, Active High/General-Purpose Input and Output Port 0.5/ADC _{BUSY} Signal Output/Programmable Logic Array Output Element 2.

Address	Name	Byte	Access Type	Default Value	Page		
Reference	Reference Address Base = 0xFFF0480						
0x048C	REFCON	1	R/W	0x00	50		
ADC Addr	ess Base = 0xF	FFF050	0				
0x0500	ADCCON	2	R/W	0x0600	46		
0x0504	ADCCP	1	R/W	0x00	47		
0x0508	ADCCN	1	R/W	0x01	47		
0x050C	ADCSTA	1	R	0x00	48		
0x0510	ADCDAT	4	R	0x00000000	48		
0x0514	ADCRST	1	R/W	0x00	48		
0x0530	ADCGN	2	R/W	0x0200	48		
0x0534	ADCOF	2	R/W	0x0200	48		
DAC Addr	ess Base = 0xF	FFF060	0				
0x0600	DAC0CON	1	R/W	0x00	56		
0x0604	DAC0DAT	4	R/W	0x00000000	56		
0x0608	DAC1CON	1	R/W	0x00	56		
0x060C	DAC1DAT	4	R/W	0x00000000	56		
0x0610	DAC2CON	1	R/W	0x00	56		
0x0614	DAC2DAT	4	R/W	0x00000000	56		
0x0618	DAC3CON	1	R/W	0x00	56		
0x061C	DAC3DAT	4	R/W	0x00000000	56		
UART Base	e Address = 0x	FFFF07	00				
0x0700	COMTX	1	R/W	0x00	71		
	COMRX	1	R	0x00	71		
	COMDIV0	1	R/W	0x00	71		
0x0704	COMIEN0	1	R/W	0x00	71		
	COMDIV1	1	R/W	0x00	72		
0x0708	COMIID0	1	R	0x01	72		
0x070C	COMCON0	1	R/W	0x00	72		
0x0710	COMCON1	1	R/W	0x00	72		
0x0714	COMSTA0	1	R	0x60	72		
0x0718	COMSTA1	1	R	0x00	73		
0x071C	COMSCR	1	R/W	0x00	73		
0x0720	COMIEN1	1	R/W	0x04	73		
0x0724	COMIID1	1	R	0x01	73		
0x0728	COMADR	1	R/W	0xAA	74		
0x072C	COMDIV2	2	R/W	0x0000	73		

ADuC7019/20/21/22/24/25/26/27/28/29

I2C0 Base Address = 0xFFFF0800 0x0800 I2C0MSTA 1 R/W 0x00 0x0804 I2C0SSTA 1 R 0x01 0x0808 I2C0SSTA 1 R 0x01 0x0808 I2C0STX 1 R 0x00 0x080C I2C0STX 1 R 0x00 0x0810 I2C0MRX 1 R 0x00 0x0814 I2C0MTX 1 W 0x00 0x0818 I2C0CNT 1 R/W 0x00 0x0812 I2C0ADR 1 R/W 0x00 0x0812 I2C0ADR 1 R/W 0x00 0x0824 I2C0EYTE 1 R/W 0x00 0x0825 I2C0CFG 1 R/W 0x00 0x0830 I2C0DIV 2 R/W 0x1F1F 0x0838 I2C0ID0 1 R/W 0x00 0x0836 I2C0ID1 1 R/W 0x00 0x0840	76 76 77 77
0x0800 I2C0MSTA 1 R/W 0x00 0x0804 I2C0SSTA 1 R 0x01 0x0808 I2C0SRX 1 R 0x00 0x0808 I2C0SRX 1 R 0x00 0x080C I2C0STX 1 W 0x00 0x0810 I2C0MRX 1 R 0x00 0x0814 I2C0MTX 1 W 0x00 0x0818 I2C0CNT 1 R/W 0x00 0x081C I2C0ADR 1 R/W 0x00 0x0824 I2C0EYTE 1 R/W 0x00 0x0826 I2C0CFG 1 R/W 0x00 0x0830 I2C0DIV 2 R/W 0x1F1F 0x0838 I2C0ID0 1 R/W 0x00 0x0836 I2C0ID1 1 R/W 0x00 0x0836 I2C0ID2 1 R/W 0x00 0x0840 I2C0ID2 1 R/W	76 76 77 77
0x0804 I2C0SSTA 1 R 0x01 0x0808 I2C0SRX 1 R 0x00 0x080C I2C0STX 1 W 0x00 0x080C I2C0STX 1 W 0x00 0x0810 I2C0MRX 1 R 0x00 0x0814 I2C0MRX 1 R 0x00 0x0818 I2C0CNT 1 R/W 0x00 0x081C I2C0ADR 1 R/W 0x00 0x0824 I2C0BYTE 1 R/W 0x00 0x0828 I2C0ALT 1 R/W 0x00 0x0830 I2C0DIV 2 R/W 0x1F1F 0x0838 I2C0ID 1 R/W 0x00 0x0836 I2C0ID 1 R/W 0x00 0x0837 I2C0ID 1 R/W 0x00 0x0836 I2C0ID1 1 R/W 0x00 0x0840 I2C0ID2 1 R/W	76 77 77
0x0808 I2C0SRX 1 R 0x00 0x080C I2C0STX 1 W 0x00 0x0810 I2C0MRX 1 R 0x00 0x0810 I2C0MRX 1 R 0x00 0x0814 I2C0MTX 1 W 0x00 0x0818 I2C0CNT 1 R/W 0x00 0x0812 I2C0ADR 1 R/W 0x00 0x0824 I2C0BYTE 1 R/W 0x00 0x0825 I2C0CFG 1 R/W 0x00 0x0830 I2C0DIV 2 R/W 0x1F1F 0x0838 I2C0ID0 1 R/W 0x00 0x0836 I2C0ID1 1 R/W 0x00 0x0836 I2C0ID2 1 R/W 0x00 0x0840 I2C0ID2 1 R/W 0x00	77 77
0x080C I2C0STX 1 W 0x00 0x0810 I2C0MRX 1 R 0x00 0x0814 I2C0MTX 1 W 0x00 0x0818 I2C0CNT 1 R/W 0x00 0x081C I2C0ADR 1 R/W 0x00 0x0824 I2C0BYTE 1 R/W 0x00 0x0825 I2C0ALT 1 R/W 0x00 0x0830 I2C0DIV 2 R/W 0x1F1F 0x0838 I2C0ID0 1 R/W 0x00 0x0830 I2C0DIV 2 R/W 0x1F1F 0x0838 I2C0ID1 1 R/W 0x00 0x0836 I2C0ID2 1 R/W 0x00 0x0840 I2C0ID2 1 R/W 0x00	77
0x0810 I2C0MRX 1 R 0x00 0x0814 I2C0MTX 1 W 0x00 0x0818 I2C0CNT 1 R/W 0x00 0x0818 I2C0CNT 1 R/W 0x00 0x081C I2C0ADR 1 R/W 0x00 0x0824 I2C0BYTE 1 R/W 0x00 0x0825 I2C0ALT 1 R/W 0x00 0x0830 I2C0DIV 2 R/W 0x1F1F 0x0838 I2C0ID0 1 R/W 0x00 0x0836 I2C0ID1 1 R/W 0x00 0x0834 I2C0ID2 1 R/W 0x00 0x0834 I2C0ID1 1 R/W 0x00 0x0840 I2C0ID2 1 R/W 0x00 0x0844 I2C0ID3 1 R/W 0x00	
0x0814 I2C0MTX 1 W 0x00 0x0818 I2C0CNT 1 R/W 0x00 0x081C I2C0ADR 1 R/W 0x00 0x0824 I2C0BYTE 1 R/W 0x00 0x0828 I2C0ALT 1 R/W 0x00 0x0830 I2C0CFG 1 R/W 0x00 0x0830 I2C0DIV 2 R/W 0x1F1F 0x0838 I2C0ID0 1 R/W 0x00 0x0836 I2C0ID1 1 R/W 0x00 0x0840 I2C0ID2 1 R/W 0x00 0x0844 I2C0ID3 1 R/W 0x00	77
0x0818 I2C0CNT 1 R/W 0x00 0x081C I2C0ADR 1 R/W 0x00 0x0824 I2C0BYTE 1 R/W 0x00 0x0828 I2C0ALT 1 R/W 0x00 0x0830 I2C0CFG 1 R/W 0x00 0x0830 I2C0DIV 2 R/W 0x1F1F 0x0838 I2C0ID0 1 R/W 0x00 0x083C I2C0ID1 1 R/W 0x00 0x0840 I2C0ID2 1 R/W 0x00 0x0844 I2C0ID3 1 R/W 0x00	77
0x081C I2C0ADR 1 R/W 0x00 0x0824 I2C0BYTE 1 R/W 0x00 0x0828 I2C0ALT 1 R/W 0x00 0x0820 I2C0CFG 1 R/W 0x00 0x0830 I2C0DIV 2 R/W 0x1F1F 0x0838 I2C0ID0 1 R/W 0x00 0x083C I2C0ID1 1 R/W 0x00 0x0840 I2C0ID2 1 R/W 0x00 0x0844 I2C0ID3 1 R/W 0x00	77
0x0824 I2C0BYTE 1 R/W 0x00 0x0828 I2C0ALT 1 R/W 0x00 0x082C I2C0CFG 1 R/W 0x00 0x0830 I2C0DIV 2 R/W 0x1F1F 0x0838 I2C0ID0 1 R/W 0x00 0x083C I2C0ID1 1 R/W 0x00 0x0840 I2C0ID2 1 R/W 0x00 0x0844 I2C0ID3 1 R/W 0x00	77
0x0828 I2C0ALT 1 R/W 0x00 0x082C I2C0CFG 1 R/W 0x00 0x0830 I2C0DIV 2 R/W 0x1F1F 0x0838 I2C0ID0 1 R/W 0x00 0x083C I2C0ID1 1 R/W 0x00 0x0840 I2C0ID2 1 R/W 0x00 0x0844 I2C0ID3 1 R/W 0x00	77
0x082C 12C0CFG 1 R/W 0x00 0x0830 12C0DIV 2 R/W 0x1F1F 0x0838 12C0ID0 1 R/W 0x00 0x083C 12C0ID1 1 R/W 0x00 0x0840 12C0ID2 1 R/W 0x00 0x0844 12C0ID3 1 R/W 0x00	78
0x0830 I2C0DIV 2 R/W 0x1F1F 0x0838 I2C0ID0 1 R/W 0x00 0x083C I2C0ID1 1 R/W 0x00 0x0840 I2C0ID2 1 R/W 0x00 0x0844 I2C0ID3 1 R/W 0x00	78
0x0838 I2C0ID0 1 R/W 0x00 0x083C I2C0ID1 1 R/W 0x00 0x0840 I2C0ID2 1 R/W 0x00 0x0844 I2C0ID3 1 R/W 0x00	79
0x083C I2C0ID1 1 R/W 0x00 0x0840 I2C0ID2 1 R/W 0x00 0x0844 I2C0ID3 1 R/W 0x00	79
0x0840 I2C0ID2 1 R/W 0x00 0x0844 I2C0ID3 1 R/W 0x00	79
0x0844 I2C0ID3 1 R/W 0x00	79
	79
0x0848 I2C0CCNT 1 R/W 0x01	79
0x084C I2C0FSTA 2 R/W 0x0000	79
I2C1 Base Address = 0xFFFF0900	
0x0900 I2C1MSTA 1 R/W 0x00	76
0x0904 I2C1SSTA 1 R 0x01	76
0x0908 I2C1SRX 1 R 0x00	77
0x090C I2C1STX 1 W 0x00	77
0x0910 I2C1MRX 1 R 0x00	77
0x0914 I2C1MTX 1 W 0x00	77
0x0918 I2C1CNT 1 R/W 0x00	77
0x091C I2C1ADR 1 R/W 0x00	77
0x0924 I2C1BYTE 1 R/W 0x00	77
0x0928 I2C1ALT 1 R/W 0x00	78
0x092C I2C1CFG 1 R/W 0x00	78
0x0930 I2C1DIV 2 R/W 0x1F1F	79
0x0938 I2C1ID0 1 R/W 0x00	79
0x093C I2C1ID1 1 R/W 0x00	79
0x0940 I2C1ID2 1 R/W 0x00	79
0x0944 I2C1ID3 1 R/W 0x00	79
0x0948 I2C1CCNT 1 R/W 0x01	79
0x094C I2C1FSTA 2 R/W 0x0000	-
SPI Base Address = 0xFFFF0A00	79

0x0A00	SPISTA	1	R	0x00	75
0x0A04	SPIRX	1	R	0x00	75
0x0A08	SPITX	1	W	0x00	75
0x0A0C	SPIDIV	1	R/W	0x1B	75
0x0A10	SPICON	2	R/W	0x0000	75

TYPICAL OPERATION

Once configured via the ADC control and channel selection registers, the ADC converts the analog input and provides a 12-bit result in the ADC data register.

The top four bits are the sign bits. The 12-bit result is placed from Bit 16 to Bit 27, as shown in Figure 51. Again, it should be noted that, in fully differential mode, the result is represented in twos complement format. In pseudo differential and singleended modes, the result is represented in straight binary format.

The same format is used in DACxDAT, simplifying the software.

Current Consumption

The ADC in standby mode, that is, powered up but not converting, typically consumes 640 μ A. The internal reference adds 140 μ A. During conversion, the extra current is 0.3 μ A multiplied by the sampling frequency (in kilohertz (kHz)). Figure 43 shows the current consumption vs. the sampling frequency of the ADC.

Timing

Figure 52 gives details of the ADC timing. Users control the ADC clock speed and the number of acquisition clocks in the ADCCON MMR. By default, the acquisition time is eight clocks and the clock divider is 2. The number of extra clocks (such as bit trial or write) is set to 19, which gives a sampling rate of 774 kSPS. For conversion on the temperature sensor, the ADC acquisition time is automatically set to 16 clocks, and the ADC clock divider is set to 32. When using multiple channels, including the temperature sensor, the timing settings revert to the user-defined settings after reading the temperature sensor channel.

ADuC7019

The ADuC7019 is identical to the ADuC7020 except for one buffered ADC channel, ADC3, and it has only three DACs. The output buffer of the fourth DAC is internally connected to the ADC3 channel as shown in Figure 53.

Note that the DAC3 output pin must be connected to a 10 nF capacitor to AGND. This channel should be used to measure dc voltages only. ADC calibration may be necessary on this channel.

MMRS INTERFACE

The ADC is controlled and configured via the eight MMRs described in this section.

Table 17. ADCCON Register

Name	Address	Default Value	Access
ADCCON	0xFFFF0500	0x0600	R/W

ADCCON is an ADC control register that allows the programmer to enable the ADC peripheral, select the mode of operation of the ADC (in single-ended mode, pseudo differential mode, or fully differential mode), and select the conversion type. This MMR is described in Table 18.

Pseudo Differential Mode

In pseudo differential mode, Channel– is linked to the V_{IN}- pin of the ADuC7019/20/21/22/24/25/26/27/28/29. SW2 switches between A (Channel–) and B (V_{REF}). The V_{IN}- pin must be connected to ground or a low voltage. The input signal on V_{IN+} can then vary from V_{IN}- to V_{REF} + V_{IN}-. Note that V_{IN}- must be chosen so that V_{REF} + V_{IN}- does not exceed AV_{DD}.

Figure 56. ADC in Pseudo Differential Mode

Single-Ended Mode

In single-ended mode, SW2 is always connected internally to ground. The $V_{\rm IN-}$ pin can be floating. The input signal range on $V_{\rm IN+}$ is 0 V to $V_{\rm REF}.$

Figure 57. ADC in Single-Ended Mode

Analog Input Structure

Figure 58 shows the equivalent circuit of the analog input structure of the ADC. The four diodes provide ESD protection for the analog inputs. Care must be taken to ensure that the analog input signals never exceed the supply rails by more than 300 mV; exceeding 300 mV causes these diodes to become forwardbiased and start conducting into the substrate. These diodes can conduct up to 10 mA without causing irreversible damage to the part.

The C1 capacitors in Figure 58 are typically 4 pF and can be primarily attributed to pin capacitance. The resistors are lumped components made up of the on resistance of the switches. The value of these resistors is typically about 100 Ω . The C2 capacitors are the ADC's sampling capacitors and typically have a capacitance of 16 pF.

Figure 58. Equivalent Analog Input Circuit Conversion Phase: Switches Open, Track Phase: Switches Closed

For ac applications, removing high frequency components from the analog input signal is recommended by using an RC lowpass filter on the relevant analog input pins. In applications where harmonic distortion and signal-to-noise ratio are critical, the analog input should be driven from a low impedance source. Large source impedances significantly affect the ac performance of the ADC. This can necessitate the use of an input buffer amplifier. The choice of the op amp is a function of the particular application. Figure 59 and Figure 60 give an example of an ADC front end.

Figure 59. Buffering Single-Ended/Pseudo Differential Input

Figure 60. Buffering Differential Inputs

When no amplifier is used to drive the analog input, the source impedance should be limited to values lower than 1 k Ω . The maximum source impedance depends on the amount of total harmonic distortion (THD) that can be tolerated. The THD increases as the source impedance increases and the performance degrades.

DRIVING THE ANALOG INPUTS

Internal or external references can be used for the ADC. In the differential mode of operation, there are restrictions on the common-mode input signal (V_{CM}), which is dependent upon the reference value and supply voltage used to ensure that the signal remains within the supply rails. Table 28 gives some calculated V_{CM} minimum and V_{CM} maximum values.

Linearity degradation near ground and AV_{DD} is caused by saturation of the output amplifier, and a general representation of its effects (neglecting offset and gain error) is illustrated in Figure 64. The dotted line in Figure 64 indicates the ideal transfer function, and the solid line represents what the transfer function may look like with endpoint nonlinearities due to saturation of the output amplifier. Note that Figure 64 represents a transfer function in 0-to-AV_{DD} mode only. In 0-to-V_{REF} or 0-to-DAC_{REF} mode (with V_{REF} < AV_{DD} or DAC_{REF} < AV_{DD}), the lower nonlinearity is similar. However, the upper portion of the transfer function follows the ideal line right to the end (V_{REF} in this case, not AV_{DD}), showing no signs of endpoint linearity errors.

Figure 64. Endpoint Nonlinearities Due to Amplifier Saturation

The endpoint nonlinearities conceptually illustrated in Figure 64 get worse as a function of output loading. Most of the ADuC7019/20/21/22/24/25/26/27/28/29 data sheet specifications assume a 5 k Ω resistive load to ground at the DAC output. As the output is forced to source or sink more current, the nonlinear regions at the top or bottom (respectively) of Figure 64 become larger. With larger current demands, this can significantly limit output voltage swing.

POWER SUPPLY MONITOR

The power supply monitor regulates the IOV_{DD} supply on the ADuC7019/20/21/22/24/25/26/27/28/29. It indicates when the IOV_{DD} supply pin drops below one of two supply trip points. The monitor function is controlled via the PSMCON register. If enabled in the IRQEN or FIQEN register, the monitor interrupts the core using the PSMI bit in the PSMCON MMR. This bit is immediately cleared after CMP goes high.

This monitor function allows the user to save working registers to avoid possible data loss due to low supply or brown-out conditions. It also ensures that normal code execution does not resume until a safe supply level is established.

Table 53. PSMCON Register

Name	Address	Default Value	Access
PSMCON	0xFFFF0440	0x0008	R/W

ADuC7019/20/21/22/24/25/26/27/28/29

Table 54. PSMCON MMR Bit Descriptions

Bit	Name	Description
3	СМР	Comparator bit. This is a read-only bit that directly reflects the state of the comparator. Read 1 indicates that the IOV _{DD} supply is above its selected trip point or that the PSM is in power-down mode. Read 0 indicates that the IOV _{DD} supply is below its selected trip point. This bit should be set before leaving the interrupt service routine.
2	TP	Trip point selection bit. $0 = 2.79 \text{ V}$, $1 = 3.07 \text{ V}$.
1	PSMEN	Power supply monitor enable bit. Set to 1 to enable the power supply monitor circuit. Cleared to 0 to disable the power supply monitor circuit.
0	PSMI	Power supply monitor interrupt bit. This bit is set high by the MicroConverter after CMP goes low, indicating low I/O supply. The PSMI bit can be used to interrupt the processor. After CMP returns high, the PSMI bit can be cleared by writing a 1 to this location. A 0 write has no effect. There is no timeout delay; PSMI can be immediately cleared after CMP goes high.

COMPARATOR

The ADuC7019/20/21/22/24/25/26/27/28/29 integrate voltage comparators. The positive input is multiplexed with ADC2, and the negative input has two options: ADC3 and DAC0. The output of the comparator can be configured to generate a system interrupt, be routed directly to the programmable logic array, start an ADC conversion, or be on an external pin, CMP_{OUT}, as shown in Figure 65.

Note that because the ADuC7022, ADuC7025, and ADu7027 parts do not support a DAC0 output, it is not possible to use DAC0 as a comparator input on these parts.

Hysteresis

Figure 66 shows how the input offset voltage and hysteresis terms are defined.

Figure 66. Comparator Hysteresis Transfer Function

The GDCLK value can range from 0 to 255, corresponding to a programmable chopping frequency rate of 40.8 kHz to 10.44 MHz for a 41.78 MHz core frequency. The gate drive features must be programmed before operation of the PWM controller and are typically not changed during normal operation of the PWM controller. Following a reset, all bits of the PWMCFG register are cleared so that high frequency chopping is disabled, by default.

Figure 72. Typical PWM Signals with High Frequency Gate Chopping Enabled on Both High-Side and Low-Side Switches

PWM Shutdown

In the event of external fault conditions, it is essential that the PWM system be instantaneously shut down in a safe fashion. A low level on the PWM_{TRIP} pin provides an instantaneous, asynchronous (independent of the MicroConverter core clock) shutdown of the PWM controller. All six PWM outputs are placed in the off state, that is, in low state. In addition, the PWMSYNC pulse is disabled. The PWM_{TRIP} pin has an internal pull-down resistor to disable the PWM if the pin becomes disconnected. The state of the PWM_{TRIP} pin can be read from Bit 3 of the PWMSTA register.

If a PWM shutdown command occurs, a PWMTRIP interrupt is generated, and internal timing of the 3-phase timing unit of the PWM controller is stopped. Following a PWM shutdown, the PWM can be reenabled (in a PWMTRIP interrupt service routine, for example) only by writing to all of the PWMDAT0, PWMCH0, PWMCH1, and PWMCH2 registers. Provided that the external fault is cleared and the PWMTRIP is returned to a high level, the internal timing of the 3-phase timing unit resumes, and new duty-cycle values are latched on the next PWMSYNC boundary.

Note that the PWMTRIP interrupt is available in IRQ only, and the PWMSYNC interrupt is available in FIQ only. Both interrupts share the same bit in the interrupt controller. Therefore, only one of the interrupts can be used at a time. See the Interrupt System section for further details.

PWM MMRs Interface

The PWM block is controlled via the MMRs described in this section.

Table 66. PWMCON Register

Name Address		Default Value	Access
PWMCON	0xFFFFFC00	0x0000	R/W

PWMCON is a control register that enables the PWM and chooses the update rate.

Table 67. PWMCON MMR Bit Descriptions

Bit	Name	Description
7:5		Reserved.
4	PWM_SYNCSEL	External sync select. Set to use external sync. Cleared to use internal sync.
3	PWM_EXTSYNC	External sync select. Set to select external synchronous sync signal. Cleared for asynchronous sync signal.
2	PWMDBL	Double update mode. Set to 1 by user to enable double update mode. Cleared to 0 by the user to enable single update mode.
1	PWM_SYNC_EN	PWM synchronization enable. Set by user to enable synchronization. Cleared by user to disable synchronization.
0	PWMEN	PWM enable bit. Set to 1 by user to enable the PWM. Cleared to 0 by user to disable the PWM. Also cleared automatically with PWMTRIP (PWMSTA MMR).

Table 68. PWMSTA Register

Name	Address	Default Value	Access
PWMSTA	0xFFFFFC04	0x0000	R/W

PWMSTA reflects the status of the PWM.

Table 69. PWMSTA MMR Bit Descriptions

Bit	Name	Description
15:10		Reserved.
9	PWMSYNCINT	PWM sync interrupt bit. Writing a 1 to this bit clears this interrupt.
8	PWMTRIPINT	PWM trip interrupt bit. Writing a 1 to this bit clears this interrupt.
3	PWMTRIP	Raw signal from the PWM _{TRIP} pin.
2:1		Reserved.
0	PWMPHASE	PWM phase bit. Set to 1 by the Micro- Converter when the timer is counting down (first half). Cleared to 0 by the MicroConverter when the timer is counting up (second half).

		Configuration			
Port	Pin	00	01	10	11
0	P0.0	GPIO	CMP	MS0	PLAI[7]
	P0.1	GPIO	PWM2 _H	BLE	
	P0.2	GPIO	PWM2 _L	BHE	
	P0.3	GPIO	TRST	A16	ADCBUSY
	P0.4	GPIO/IRQ0	PWM _{TRIP}	MS1	PLAO[1]
	P0.5	GPIO/IRQ1	ADCBUSY	MS2	PLAO[2]
	P0.6	GPIO/T1	MRST		PLAO[3]
	P0.7	GPIO	ECLK/XCLK ¹	SIN	PLAO[4]
1	P1.0	GPIO/T1	SIN	SCL0	PLAI[0]
	P1.1	GPIO	SOUT	SDA0	PLAI[1]
	P1.2	GPIO	RTS	SCL1	PLAI[2]
	P1.3	GPIO	CTS	SDA1	PLAI[3]
	P1.4	GPIO/IRQ2	RI	SCLK	PLAI[4]
	P1.5	GPIO/IRQ3	DCD	MISO	PLAI[5]
	P1.6	GPIO	DSR	MOSI	PLAI[6]
	P1.7	GPIO	DTR	CS	PLAO[0]
2	P2.0	GPIO		SOUT	PLAO[5]
	P2.1	GPIO	PWM0 _H	WS	PLAO[6]
	P2.2	GPIO	PWM0L	RS	PLAO[7]
	P2.3	GPIO		AE	
	P2.4	GPIO	PWM0 _H	MS0	
	P2.5	GPIO	PWM0⊾	MS1	
	P2.6	GPIO	PWM1 _H	MS2	
	P2.7	GPIO	PWM1∟	MS3	
3	P3.0	GPIO	PWM0 _H	AD0	PLAI[8]
	P3.1	GPIO	PWM0L	AD1	PLAI[9]
	P3.2	GPIO	PWM1 _H	AD2	PLAI[10]
	P3.3	GPIO	PWM1∟	AD3	PLAI[11]
	P3.4	GPIO	PWM2 _H	AD4	PLAI[12]
	P3.5	GPIO	PWM2⊾	AD5	PLAI[13]
	P3.6	GPIO	PWM _{TRIP}	AD6	PLAI[14]
	P3.7	GPIO	PWM _{SYNC}	AD7	PLAI[15]
4	P4.0	GPIO		AD8	PLAO[8]
	P4.1	GPIO		AD9	PLAO[9]
	P4.2	GPIO		AD10	PLAO[10]
	P4.3	GPIO		AD11	PLAO[11]
	P4.4	GPIO		AD12	PLAO[12]
	P4.5	GPIO		AD13	PLAO[13]
	P4.6	GPIO		AD14	PLAO[14]
	P4.7	GPIO		AD15	PLAO[15]

Table 78. GPIO Pin Function Descriptions

¹When configured in Mode 1, P0.7 is ECLK by default, or core clock output. To configure it as a clock input, the MDCLK bits in PLLCON must be set to 11. ² The CONV_{START} signal is active in all modes of P2.0.

Table 79. GPxCON Registers

Name	Address	Default Value	Access
GP0CON	0xFFFFF400	0x0000000	R/W
GP1CON	0xFFFFF404	0x0000000	R/W
GP2CON	0xFFFFF408	0x0000000	R/W
GP3CON	0xFFFFF40C	0x0000000	R/W
GP4CON	0xFFFFF410	0x0000000	R/W

GPxCON are the Port x control registers, which select the function of each pin of Port x as described in Table 80.

Table 80. GPxCON MMR Bit Descriptions

Bit	Description
31:30	Reserved.
29:28	Select function of the Px.7 pin.
27:26	Reserved.
25:24	Select function of the Px.6 pin.
23:22	Reserved.
21:20	Select function of the Px.5 pin.
19:18	Reserved.
17:16	Select function of the Px.4 pin.
15:14	Reserved.
13:12	Select function of the Px.3 pin.
11:10	Reserved.
9:8	Select function of the Px.2 pin.
7:6	Reserved.
5:4	Select function of the Px.1 pin.
3:2	Reserved.
1:0	Select function of the Px.0 pin.

Table 81. GPxPAR Registers

Name	Address	Default Value	Access
GP0PAR	0xFFFFF42C	0x20000000	R/W
GP1PAR	0xFFFFF43C	0x0000000	R/W

GPxPAR program the parameters for Port 0 and Port 1. Note that the GPxDAT MMR must always be written after changing the GPxPAR MMR.

Table 82. GPxPAR MMR Bit Descriptions

Bit	Description
31	Reserved.
30:29	Drive strength Px.7.
28	Pull-Up Disable Px.7.
27	Reserved.
26:25	Drive strength Px.6.
24	Pull-Up Disable Px.6.
23	Reserved.
22:21	Drive strength Px.5.
20	Pull-Up Disable Px.5.
19	Reserved.
18:17	Drive strength Px.4.
16	Pull-Up Disable Px.4.
15	Reserved.
14:13	Drive strength Px.3.
12	Pull-Up Disable Px.3.
11	Reserved.
10:9	Drive strength Px.2.
8	Pull-Up Disable Px.2.
7	Reserved.
6:5	Drive strength Px.1.
4	Pull-Up Disable Px.1.
3	Reserved.
2:1	Drive strength Px.0.
0	Pull-Up Disable Px.0.

The serial communication adopts an asynchronous protocol, which supports various word lengths, stop bits, and parity generation options selectable in the configuration register.

Baud Rate Generation

There are two ways of generating the UART baud rate, normal 450 UART baud rate generation and the fractional divider.

Normal 450 UART Baud Rate Generation

The baud rate is a divided version of the core clock using the values in the COMDIV0 and COMDIV1 MMRs (16-bit value, DL).

Baud Rate =
$$\frac{41.78 \text{ MHz}}{2^{\text{CD}} - 16 \times 2 \times \text{DL}}$$

Table 93 gives some common baud rate values.

Table 93. Baud Rate Using the Normal Baud Rate Generator
--

Baud Rate	CD	DL	Actual Baud Rate	% Error
9600	0	0x88	9600	0
19,200	0	0x44	19,200	0
115,200	0	0x0B	118,691	3
9600	3	0x11	9600	0
19,200	3	0x08	20,400	6.25
115,200	3	0x01	163,200	41.67

Fractional Divider

The fractional divider, combined with the normal baud rate generator, produces a wider range of more accurate baud rates.

Figure 75. Baud Rate Generation Options

Calculation of the baud rate using fractional divider is as follows:

Baud Rate =
$$\frac{41.78 \text{ MHz}}{2^{CD} \times 16 \times DL \times 2 \times \left(M + \frac{N}{2048}\right)}$$
$$M + \frac{N}{2048} = \frac{41.78 \text{ MHz}}{\text{Baud Rate} \times 2^{CD} \times 16 \times \text{DL} \times 2}$$

For example, generation of 19,200 baud with CD bits = 3 (Table 93 gives DL = 0x08) is

$$M + \frac{N}{2048} = \frac{41.78 \text{ MHz}}{19200 \times 2^3 \times 16 \times 8 \times 2}$$

$$M + \frac{N}{2048} = 1.06$$

where:

M = 1 $N = 0.06 \times 2048 = 128$

ADuC7019/20/21/22/24/25/26/27/28/29

Baud Rate =
$$\frac{41.78 \text{ MHz}}{2}$$

$$2^{3} \times 16 \times 8 \times 2 \times \frac{128}{2048}$$

where:

Baud Rate = 19,200 bps

Error = 0%, compared to 6.25% with the normal baud rate generator.

UART Register Definitions

The UART interface consists of 12 registers: COMTX, COMRX, COMDIV0, COMIEN0, COMDIV1, COMIID0, COMCON0, COMCON1, COMSTA0, COMSTA1, COMSCR, and COMDIV2.

Table 94. COMTX Register

Name	Address	Default Value	Access
COMTX	0xFFFF0700	0x00	R/W

COMTX is an 8-bit transmit register.

Table 95. COMRX Register

Name	Address	Default Value	Access
COMRX	0xFFFF0700	0x00	R

COMRX is an 8-bit receive register.

Table 96. COMDIV0 Register

Name	Address	Default Value	Access
COMDIV0	0xFFFF0700	0x00	R/W

COMDIV0 is a low byte divisor latch. COMTX, COMRX, and COMDIV0 share the same address location. COMTX and COMRX can be accessed when Bit 7 in the COMCON0 register is cleared. COMDIV0 can be accessed when Bit 7 of COMCON0 is set.

Table 97. COMIEN0 Register

Name	Address	Default Value	Access
COMIEN0	0xFFFF0704	0x00	R/W

COMIEN0 is the interrupt enable register.

Table 98. COMIEN0 MMR Bit Descriptions

Bit	Name	Description
7:4	N/A	Reserved.
3	EDSSI	Modem status interrupt enable bit. Set by user to enable generation of an interrupt if any of COMSTA1[3:1] is set. Cleared by user.
2	ELSI	Rx status interrupt enable bit. Set by user to enable generation of an interrupt if any of COMSTA0[4:1] is set. Cleared by user.
1	ETBEI	Enable transmit buffer empty interrupt. Set by user to enable interrupt when buffer is empty during a transmission. Cleared by user.
0	ERBFI	Enable receive buffer full interrupt. Set by user to enable interrupt when buffer is full during a reception. Cleared by user.

I²C-COMPATIBLE INTERFACES

The ADuC7019/20/21/22/24/25/26/27/28/29 support two

licensed I²C interfaces. The I²C interfaces are both implemented as a hard-ware master and a full slave interface. Because the two I²C inter-faces are identical, this data sheet describes only I2C0 in detail. Note that the two masters and one of the slaves have individual interrupts (see the Interrupt System section).

Note that when configured as an I²C master device, the ADuC7019/20/21/22/24/25/26/27/28/29 cannot generate a repeated start condition.

The two GPIO pins used for data transfer, SDAx and SCLx, are configured in a wired-AND format that allows arbitration in a multimaster system. These pins require external pull-up resistors. Typical pull-up values are 10 k Ω .

The I²C bus peripheral address in the I²C bus system is programmed by the user. This ID can be modified any time a transfer is not in progress. The user can configure the interface to respond to four slave addresses.

The transfer sequence of an I²C system consists of a master device initiating a transfer by generating a start condition while the bus is idle. The master transmits the slave device address and the direction of the data transfer during the initial address transfer. If the master does not lose arbitration and the slave acknowledges, the data transfer is initiated. This continues until the master issues a stop condition and the bus becomes idle.

The I²C peripheral can be configured only as a master or slave at any given time. The same I²C channel cannot simultaneously support master and slave modes.

Serial Clock Generation

The I²C master in the system generates the serial clock for a transfer. The master channel can be configured to operate in fast mode (400 kHz) or standard mode (100 kHz).

The bit rate is defined in the I2C0DIV MMR as follows:

$$f_{SERIAL CLOCK} = \frac{f_{UCLK}}{(2 + DIVH) + (2 + DIVL)}$$

where:

 f_{UCLK} = clock before the clock divider. DIVH = the high period of the clock. DIVL = the low period of the clock.

Thus, for 100 kHz operation,

DIVH = DIVL = 0xCF

and for 400 kHz,

$$DIVH = 0x28, DIVL = 0x3C$$

The I2CxDIV registers correspond to DIVH:DIVL.

Slave Addresses

The registers I2C0ID0, I2C0ID1, I2C0ID2, and I2C0ID3 contain the device IDs. The device compares the four I2C0IDx registers to the address byte. To be correctly addressed, the seven MSBs of either ID register must be identical to that of the seven MSBs of the first received address byte. The LSB of the ID registers (the transfer direction bit) is ignored in the process of address recognition.

I²C Registers

The I²C peripheral interface consists of 18 MMRs, which are discussed in this section.

Table 126. I2CxMSTA Registers

Name	Address	Default Value	Access
I2C0MSTA	0xFFFF0800	0x00	R/W
I2C1MSTA	0xFFFF0900	0x00	R/W

I2CxMSTA are status registers for the master channel.

Table 127. I2C0MSTA MMR Bit Descriptions

	Access	
Bit	Туре	Description
7	R/W	Master transmit FIFO flush. Set by user to flush the master Tx FIFO. Cleared automatically after the master Tx FIFO is flushed. This bit also flushes the slave receive FIFO.
6	R	Master busy. Set automatically if the master is busy. Cleared automatically.
5	R	Arbitration loss. Set in multimaster mode if another master has the bus. Cleared when the bus becomes available.
4	R	No ACK. Set automatically if there is no acknowledge of the address by the slave device. Cleared automatically by reading the I2C0MSTA register.
3	R	Master receive IRQ. Set after receiving data. Cleared automatically by reading the I2C0MRX register.
2	R	Master transmit IRQ. Set at the end of a transmission. Cleared automatically by writing to the I2C0MTX register.
1	R	Master transmit FIFO underflow. Set automatically if the master transmit FIFO is underflowing. Cleared automatically by writing to the I2COMTX register
0	R	Master TX FIFO not full. Set automatically if the slave transmit FIFO is not full. Cleared automatically by writing twice to the I2C0STX register.

Table 128. I2CxSSTA Registers

Name	Address	Default Value	Access
I2C0SSTA	0xFFFF0804	0x01	R
I2C1SSTA	0xFFFF0904	0x01	R

I2CxSSTA are status registers for the slave channel.

FIQ

The fast interrupt request (FIQ) is the exception signal to enter the FIQ mode of the processor. It is provided to service data transfer or communication channel tasks with low latency. The FIQ interface is identical to the IRQ interface providing the second-level interrupt (highest priority). Four 32-bit registers are dedicated to FIQ: FIQSIG, FIQEN, FIQCLR, and FIQSTA.

Table 165. FIQSTA Register

Name	Address	Default Value	Access
FIQSTA	0xFFFF0100	0x0000000	R

Table 166. FIQSIG Register

Name	Address	Default Value	Access
FIQSIG	0xFFFF0104	0x00XXX0001	R
A			

¹X indicates an undefined value.

Table 167. FIQEN Register

Name	Address	Default Value	Access
FIQEN	0xFFFF0108	0x0000000	R/W

Table 168. FIQCLR Register

Name	Address	Default Value	Access
FIQCLR	0xFFFF010C	0x0000000	W

Bit 31 to Bit 1 of FIQSTA are logically OR'd to create the FIQ signal to the core and to Bit 0 of both the FIQ and IRQ registers (FIQ source).

The logic for FIQEN and IRQEN does not allow an interrupt source to be enabled in both IRQ and FIQ masks. A bit set to 1 in FIQEN does, as a side effect, clear the same bit in IRQEN. Also, a bit set to 1 in IRQEN does, as a side effect, clear the same bit in FIQEN. An interrupt source can be disabled in both the IRQEN and FIQEN masks.

Note that to clear an already enabled FIQ source, the user must set the appropriate bit in the FIQCLR register. Clearing an interrupt's FIQEN bit does not disable the interrupt.

Programmed Interrupts

Because the programmed interrupts are nonmaskable, they are controlled by another register, SWICFG, which simultaneously writes into the IRQSTA and IRQSIG registers and/or the FIQSTA and FIQSIG registers. The 32-bit SWICFG register is dedicated to software interrupts(see Table 170). This MMR allows the control of a programmed source interrupt.

Table 169. SWICFG Register

Name	Address	Default Value	Access
SWICFG	0xFFFF0010	0x0000000	W

Table 170. SWICFG MMR Bit Descriptions

Bit	Description
31:3	Reserved.
2	Programmed interrupt (FIQ). Setting/clearing this bit corresponds with setting/clearing Bit 1 of FIQSTA and FIQSIG.
1	Programmed interrupt (IRQ). Setting/clearing this bit corresponds with setting/clearing Bit 1 of IRQSTA and IRQSIG.
0	Reserved.

Note that any interrupt signal must be active for at least the equivalent of the interrupt latency time, which is detected by the interrupt controller and by the user in the IRQSTA/FIQSTA register.

TIMERS

The ADuC7019/20/21/22/24/25/26/27/28/29 have four general-purpose timer/counters.

- Timer0
- Timer1
- Timer2 or wake-up timer
- Timer3 or watchdog timer

These four timers in their normal mode of operation can be either free running or periodic.

In free-running mode, the counter decreases from the maximum value until zero scale and starts again at the minimum value. (It also increases from the minimum value until full scale and starts again at the maximum value.)

In periodic mode, the counter decrements/increments from the value in the load register (TxLD MMR) until zero/full scale and starts again at the value stored in the load register.

The timer interval is calculated as follows:

If the timer is set to count down then

$$Interval = \frac{(TxLD) \times Prescaler}{Source Clock}$$

If the timer is set to count up, then

$$Interval = \frac{(Fs - TxLD) \times Prescaler}{Source Clock}$$

The value of a counter can be read at any time by accessing its value register (TxVAL). Note that when a timer is being clocked from a clock other than core clock, an incorrect value may be read (due to an asynchronous clock system). In this configuration, TxVAL should always be read twice. If the two readings are different, it should be read a third time to get the correct value.

Timers are started by writing in the control register of the corresponding timer (TxCON).

In normal mode, an IRQ is generated each time the value of the counter reaches zero when counting down. It is also generated each time the counter value reaches full scale when counting up. An IRQ can be cleared by writing any value to clear the register of that particular timer (TxCLRI).

When using an asynchronous clock-to-clock timer, the interrupt in the timer block may take more time to clear than the time it takes for the code in the interrupt routine to execute. Ensure that the interrupt signal is cleared before leaving the interrupt service routine. This can be done by checking the IRQSTA MMR.

Hour:Minute:Second:1/128 Format

To use the timer in hour:minute:second:hundredths format, select the 32,768 kHz clock and prescaler of 256. The hundredths field does not represent milliseconds but 1/128 of a second (256/32,768). The bits representing the hour, minute, and second are not consecutive in the register. This arrangement applies to TxLD and TxVAL when using the hour:minute:second:hundredths format as set in TxCON[5:4]. See Table 171 for additional details.

Table 171. Hour:Minnute:Second:Hundredths Format

Bit	Value	Description
31:24	0 to 23 or 0 to 255	Hours
23:22	0	Reserved
21:16	0 to 59	Minutes
15:14	0	Reserved
13.8	0 to 59	Seconds
7	0	Reserved
6:0	0 to 127	1/128 second

Timer0 (RTOS Timer)

Timer0 is a general-purpose, 16-bit timer (count down) with a programmable prescaler (see Figure 77). The prescaler source is the core clock frequency (HCLK) and can be scaled by factors of 1, 16, or 256.

Timer0 can be used to start ADC conversions as shown in the block diagram in Figure 77.

Figure 77. Timer0 Block Diagram

ADuC7019/20/21/22/24/25/26/27/28/29

The Timer0 interface consists of four MMRs: T0LD, T0VAL, T0CON, and T0CLRI.

Table 172. T0LD Register

Name	Address	Default Value	Access
TOLD	0xFFFF0300	0x0000	R/W

T0LD is a 16-bit load register.

Table 173. TOVAL Register

Name	Address	Default Value	Access
TOVAL	0xFFFF0304	0xFFFF	R

TOVAL is a 16-bit read-only register representing the current state of the counter.

Table 174. TOCON Register

Name	Address	Default Value	Access
T0CON	0xFFFF0308	0x0000	R/W

T0CON is the configuration MMR described in Table 175.

Table 175. TOCON MMR Bit Descriptions

Bit	Value	Description
15:8		Reserved.
7		Timer0 enable bit. Set by user to enable Timer0. Cleared by user to disable Timer0 by default.
6		Timer0 mode. Set by user to operate in periodic mode. Cleared by user to operate in free-running mode. Default mode.
5:4		Reserved.
3:2		Prescale.
	00	Core Clock/1. Default value.
	01	Core Clock/16.
	10	Core Clock/256.
	11	Undefined. Equivalent to 00.
1:0		Reserved.

Table 176. T0CLRI Register

Name	Address	Default Value	Access
TOCLRI	0xFFFF030C	0xFF	W

TOCLRI is an 8-bit register. Writing any value to this register clears the interrupt.

Bit	Value	Description
31:11		Reserved.
10:9		Clock source.
	00	External crystal.
	01	External crystal.
	10	Internal oscillator.
	11	Core clock (41 MHz/2 ^{CD}).
8		Count up. Set by user for Timer2 to count up. Cleared by user for Timer2 to count down by default.
7		Timer2 enable bit. Set by user to enable Timer2. Cleared by user to disable Timer2 by default.
6		Timer2 mode. Set by user to operate in periodic mode. Cleared by user to operate in free-running mode. Default mode.
5:4		Format.
	00	Binary.
	01	Reserved.
	10	Hr: min: sec: Hundredths (23 hours to 0 hour).
	11	Hr: min: sec: Hundredths (255 hours to 0 hour).
3:0		Prescale.
	0000	Source Clock/1 by default.
	0100	Source Clock/16.
	1000	Source Clock/256 expected for Format 2 and Format 3.
	1111	Source Clock/32,768.

Table 186. T2CON MMR Bit Descriptions

Table 187. T2CLRI Register

Name	Address	Default Value	Access
T2CLRI	0xFFFF034C	0xFF	W

T2CLRI is an 8-bit register. Writing any value to this register clears the Timer2 interrupt.

Timer3 (Watchdog Timer)

Timer3 has two modes of operation: normal mode and watchdog mode. The watchdog timer is used to recover from an illegal software state. Once enabled, it requires periodic servicing to prevent it from forcing a processor reset.

Normal Mode

Timer3 in normal mode is identical to Timer0, except for the clock source and the count-up functionality. The clock source is 32 kHz from the PLL and can be scaled by a factor of 1, 16, or 256 (see Figure 80).

Watchdog Mode

Watchdog mode is entered by setting Bit 5 in the T3CON MMR. Timer3 decreases from the value present in the T3LD register to 0. T3LD is used as the timeout. The maximum timeout can be 512 sec, using the prescaler/256, and full scale in T3LD. Timer3 is clocked by the internal 32 kHz crystal when operating in watchdog mode. Note that to enter watchdog mode successfully, Bit 5 in the T3CON MMR must be set after writing to the T3LD MMR.

If the timer reaches 0, a reset or an interrupt occurs, depending on Bit 1 in the T3CON register. To avoid reset or interrupt, any value must be written to T3CLRI before the expiration period. This reloads the counter with T3LD and begins a new timeout period.

When watchdog mode is entered, T3LD and T3CON are writeprotected. These two registers cannot be modified until a reset clears the watchdog enable bit, which causes Timer3 to exit watchdog mode.

The Timer3 interface consists of four MMRs: T3LD, T3VAL, T3CON, and T3CLRI.

Table 188. T3LD Register

Name	Address	Default Value	Access
T3LD	0xFFFF0360	0x0000	R/W

T3LD is a 16-bit register load register.

Table 189. T3VAL Register

Name	Address	Default Value	Access
T3VAL	0xFFFF0364	0xFFFF	R

T3VAL is a 16-bit read-only register that represents the current state of the counter.

Table 190. T3CON Register

Name	Address	Default Value	Access	
T3CON	0xFFFF0368	0x0000	R/W	

T3CON is the configuration MMR described in Table 191.

OUTLINE DIMENSIONS

(ST-80-1) Dimensions shown in millimeters

ADuC7019/20/21/22/24/25/26/27/28/29

Model ^{1, 2}	ADC Channels ³	DAC Channels	FLASH/ RAM	GPIO	Down- loader	Temperature Range	Package Description	Package Option	Ordering Quantity
EVAL-ADuC7020MKZ							ADuC7020 MiniKit		
EVAL-ADuC7020QSZ							ADuC7020 QuickStart		
							Development System		
EVAL-ADuC7020QSPZ							ADuC7020 QuickStart		
							Development System		
EVAL-ADuC7024QSZ							ADuC7024 QuickStart		
							Development System		
EVAL-ADuC7026QSZ							ADuC7026 QuickStar		
							Development System		
EVAL-ADuC7026QSPZ							ADuC7026 QuickStart Plus		
							Development System		
EVAL-ADuC7028QSZ							ADuC7028 QuickStart		
							Development System		
EVAL-ADUC7029QSZ							ADuC7029 QuickStart		
							Development System		

 1 Z = RoHS Compliant Part. 2 Models ADuC7026 and ADuC7027 include an external memory interface.

³ One of the ADC channels is internally buffered for ADuC7019 models.

I²C refers to a communications protocol originally developed by Phillips Semiconductors (now NXP Semiconductors).

©2005–2015 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D04955-0-12/15(G)

www.analog.com

Rev. G | Page 101 of 101