

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM7®
Core Size	16/32-Bit
Speed	44MHz
Connectivity	EBI/EMI, I ² C, SPI, UART/USART
Peripherals	PLA, PWM, PSM, Temp Sensor, WDT
Number of I/O	22
Program Memory Size	62KB (31K x16)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2K x 32
Voltage - Supply (Vcc/Vdd)	2.7V ~ 3.6V
Data Converters	A/D 7x12b; D/A 4x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	49-TFBGA, CSPBGA
Supplier Device Package	49-CSPBGA (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/analog-devices/aduc7029bbcz62i-rl

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

SPECIFICATIONS

 $AV_{DD} = IOV_{DD} = 2.7 V$ to 3.6 V, $V_{REF} = 2.5 V$ internal reference, $f_{CORE} = 41.78 MHz$, $T_A = -40^{\circ}C$ to $+125^{\circ}C$, unless otherwise noted.

ParameterMinTypMaxUnitTest Conditions/CommentsADC CHANNEL SPECIFICATIONS5 μ sFight acquisition clocks and fADC/2ADC Power-Up Time5 μ sFight acquisition clocks and fADC/2DC Accuracy'*12Bits1.0Resolution11 10 SDifferential Nonlinearity** 20.6 ± 1.5 LSB2.5 V internal referenceDifferential Nonlinearity** ± 0.6 ± 1.5 LSB1.0 V external referenceDC Code Distribution1 ± 2.5 LSB1.0 V external referenceDC Code Distribution ± 1 ± 2.5 LSB1.0 V external referenceD'ffset Eror ± 1 ± 2.5 LSB1.0 V external referenceOffset Eror Match ± 1 ± 2.5 LSBIncludes distortion and noise componentsOffset Eror Match ± 1 LSBfn = 10 MHz sine wave, funnt = 1 MSPSNUMMIC PERPRIMACE -75 dBfn = 10 MHz sine wave, funnt = 1 MSPSOrland Locks Ratio (SNR) -75 dBfn = 10 MHz sine wave, funnt = 1 MSPSInput Voltage Ranges -75 dBfpInput Voltage Ranges -75 match -75 Input Voltage Ranges -75 -76 -76 Input Voltage Ranges -76 -76 -76 In	Table 1.	Fable 1.					
ADC Characy 1° Eight acquisition clocks and IADC/2 DC Accuracy' ² Bits Resolution 12 Bits Integral Nonlinearity ±0.6 ±1.5 LS8 2.5 Vinternal reference Differential Nonlinearity ±0.5 ±1.4 LS8 2.5 Vinternal reference Differential Nonlinearity ±0.5 ±1.4 LS8 2.5 Vinternal reference DC Code Distribution 1 LS8 2.5 Vinternal reference Offset Error Match ±1 LS8 ADC input is a dc voltage Gain Error Match ±1 LS8 Internal reference Gain Error Match ±1 LS8 Internal reference Signal-to-Noise Ratio (SNR) 69 LS8 Internal reference Signal-to-Noise Ratio (SNR) 69 LS8 Internal reference Total Harmonic Distorion (TND) -78 KB Internal reference Single-to-Match -11 ±6 MA Internal reference Differential Node -75 KB Intududes distortion and noise components	Parameter	Min	Тур	Max	Unit	Test Conditions/Comments	
ADC Power-Up Time5 μs Besolution12BitsResolution12BitsIntegral Nonlinearity ± 0.6 ± 1.5 LSB2.5 V internal referenceDifferential Nonlinearity ^{1,4} ± 0.5 ± 19 LSB1.0 V external referenceDC Code Distribution1LSB1.0 V external referenceDC Code Distribution1LSBADC input is a dc voltageENDPONT ERRORS ¹ LLSBADC input is a dc voltageCode Distribution ± 1 ± 2 LSBCode Distribution ± 1 ± 2 LSBOffset Error Match ± 1 ± 2 LSBGain Error Match ± 1 LSBIncludes distortion and noise componentsONAMIC ERRORMANCE -75 dBSignal-to-Noise Ratio (SNR)69dBPeak Hamonic Distortion (THD) -78 dBPeak Hamonic Costalk -80 dBMANLOG INPUT -75 dBInput Voltage Ranges $prprDifferential Mode\sqrt{\alpha_1^2} \pm w_2^2VSingle-Ended Mode0 to V_{tar}prOutryut Voltage Ranges2.5NVNC-HIP VOLTAGE REFERENCE2.5NVOutryut Voltage Range0.625Nv_{eo}DIC Councel REFERENCE2.5NVDAC Chancel Coefficient44058DAC Chancel Coefficient2.458Differential Nonlinearity158Differencial Non$	ADC CHANNEL SPECIFICATIONS					Eight acquisition clocks and fADC/2	
DC Accuracy' ^{1,2} Resolution12IIResolution ± 0.6 ± 1.5 LSB2.5 V internal referenceDifferential Nonlinearity ^{1,4} ± 0.5 ± 1.7 LSB1.0 V external referenceDC Code Distribution ± 0.7 LSB1.0 V external referenceDC Code Distribution ± 1.1 ± 2.5 LSBNOC input is a d voltageENDPOINT ERRORS'ILSBNOC input is a d voltageCoffset Error ± 1.1 ± 2.5 LSBOffset Error Match ± 1.1 LSBGain Error Match ± 1.1 LSBDYNAMIC PERFORMANCE ± 1.1 LSBSignal-to-Nose Ratio (SNR)6.9HBTotal Harmonic Distortion (HD) -78 HBPeak Harmonic of Syntous Noise (PHSN) -75 HBMALOG INPUTInput Voltage RangesInput Varge' $\pm V_{an'}^2 \pm V_{an'}^2$ VDifferential Mode $V_{Ca'}^2 \pm V_{an'}^2$ VDifferential Mode $V_{Ca'}^2 \pm V_{an'}^2$ VDifferential Mode $V_{Ca'}^2 \pm V_{an'}^2$ VDifferential Mode $U_{Ca'}^2$ VDifference Inperature Coefficient ± 4.0 μA Difference Inperature Coefficient ± 4.0 μA During ADC acquisitionInternal Var Power-On Time ± 1.1 Difference Inperature Coefficient ± 4.0 μA Durung ADC acquisitionInternal Var Power-On Time ± 1.1 Difference Information ± 2.5 ΨB Difference Informat	ADC Power-Up Time		5		μs		
Resolution12Bits ± 0.6 ± 1.5 LSB LSB2.5 V internal referenceIntegral Nonlinearity ^{1,4} ± 0.6 ± 1.0 LSB1.0 V external referenceDIfferential Nonlinearity ^{1,4} $\pm 0.7 - 0.5$ LSB2.5 V internal referenceDC Code Distribution1LSB2.5 V internal referenceDC Code Distribution1 ± 2.7 LSBENDPOINT ERRORS'-LSBADC input is a dc voltageCriste Error Match ± 1 ± 2.2 LSBGain Error Match ± 1 LSBfm = 10 kHz sine wave, fsumt = 1 MSPSSignal-to-Noise Ratio (SNR)69KBfm = 10 kHz sine wave, fsumt = 1 MSPSTotal Harmonic Distortion (THD) -75 KBMeasured on adjacent channelsPack Harmonic Cristralik -80 KBMeasured on adjacent channelsANALOG INPUT-75KBKBLincludes distortion and noise componentsInput Voltage Ranges -75 KBVDifferential Mode -75 KBVSingle-Ended Mode 2.5 VVLeakage Current ± 1 ± 6 μA Input Capacitance 2.5 V $7 \pm 25^{\circ}C$ Reference Temperature Coefficient ± 40 $\gamma = 5$ Output Voltage Range 0.625 AV_{00} VInternal Valge Range 0.625 AV_{00} Y Differential Modi1 $\pi = 25^{\circ}C$ Input Voltage Range 0.625 AV_{00} Y Differe	DC Accuracy ^{1, 2}						
$ \begin{array}{ c c c c } \mbox{Internal reference} & \pm 1.0 & \pm 1.5 & \pm 1.5 & \pm 2.5 V internal reference \\ \pm 1.0 & \pm 1.0 & \pm 5 & \pm 1.0 & \pm 5 &$	Resolution	12			Bits		
Life ential Nonlinearity $^{1.4}$ ± 1.0 ± 0.5 LS8 $\pm 1.7 - 0.9$ LS8 LS9 L	Integral Nonlinearity		±0.6	±1.5	LSB	2.5 V internal reference	
Differential Nonlinearity3-4 ± 0.5 $\pm 1/-0.9$ LSB2.5 V internal reference 1.0 V external reference 1.0 V external reference 1.0 V external referenceDC Code Distribution1LSBADC input is a dx voltageENDPOINT ERNOR5'Offset Error Gain Error ± 1 ± 2 LSBDYNAMIC PERFORMANCE ± 1 LSB-Signal-to-Noise Ratio (SNR)69-dBTotal Harmonic Distortion (THD)-78dBPeak Harmonic or Spurious Noise (PHSN)-75dBMALOG INPUT Input Voltage RangesDifferential Mode $V_{Cin}^4 \pm V_{Kir/2}$ VSingle-Ended Mode0 to V_{inr} VOutput Voltage Reference Ermerature Coefficient ± 40 ppm/*COutput Voltage Ranges2.5VT_a = 25°COutput Voltage Ranges $T_a = 25°C$ Output Voltage Ranges0.625AV _{con} VDAC CHANNEL SPECIFICATIONS $T_a = 25°C$ Output Ingelarea0.625AV _{con} VDAC CHANNEL SPECIFICATIONSR_a = 5 kΩ, CL = 100 pFDAC CHANNEL SPECIFICATIONSDAC CHANNEL SPECIFICATIONSDAC CHANNEL SPECIFICATIONSDAC CHANNEL SPECIFICATIONSDAC CHANNEL SPECIFICATIONSDAC CHANNEL SPECIFICATIONSDIfferential			±1.0		LSB	1.0 V external reference	
DC Code Distribution $+0.7/-0.6$ LSB1.0 V external reference ADC input is a dc voltageENDPOINT LERRORS'LSBADC input is a dc voltageOffset Error Match ± 1 ± 2 LSBGain Error ± 1 ± 2 ± 5 LSBGain Error Match ± 1 LSB $f_N = 10 \text{ kHz sine wave, fourner = 1 MSPSDYNAMIC PERFORMANCEf_N = 10 \text{ kHz sine wave, fourner = 1 MSPSDYNAMIC PERFORMANCEf_N = 10 \text{ kHz sine wave, fourner = 1 MSPSDYNAMIC PERFORMANCE-75dBPeak Harmonic Distortion (THD)-78dBPeak Harmonic or Spurious Noise(PHSN)-75dBChannel to Channel Crosstalk-80dBMALOG INPUT\mu\muInput Voltage RangesV_{Cx}^{A} \pm V_{W7}/2VDifferential Mode0 \text{ to Vierr}VON-CHIP VOLTAGE REFERENCEVT_a = 25^{\circ}COutput Voltage2.5VT_a = 25^{\circ}COutput Voltage RangesT_a = 25^{\circ}COutput Voltage Range0.625AV_{00}DUT Coltage REFERENCET_a = 25^{\circ}COutput Voltage Range0.625AV_{00}DAC CHANNEL SPECIFICATIONSF_aF_aDC Accuracy\pm 11596Gain Error Mismath0.1F_aDAC CHANNEL SPECIFICATIONSF_aF_aDC Accuracy\pm 11596Gain Error Mismath0.1F_aDifferential Nonl$	Differential Nonlinearity ^{3, 4}		±0.5	+1/-0.9	LSB	2.5 V internal reference	
DC Code Distribution1LSBADC input is a dc voltageENDPOINT ERRORS'Offset Error Match ± 1 -LSBGain Error Match ± 1 -LSBGain Error Match ± 1 -LSBDYNAMIC PERFORMANCEfn = 10 kHz sine wave, fswerd = 1 MSPSSignal-to-Noise Ratio (SNR)69-dBTotal Harmonic Distortion (THD)-78dB-Peak Harmonic Or Spurious Noise-77dBMeasured on adjacent channelsANALOG INPUTdBMeasured on adjacent channelsInput Voltage Ranges-VV-Differential ModeVoit* ± Ver/2VVLeakage Current ± 1 ± 6 V/4Input Voltage Ranges0.47 µE from Vare to AGNDOntCHIP VOLTAGE REFERENCE-0.47 µE from Vare to AGNDOutput Voltage2.5rVTa = 25°CReference Temperature Coefficient ± 40 Power Supply Rejection Ratio75-MBDIC Accuracy'Differential NonlinearityDifferential NonlinearityOutput Voltage Range0.625NV ₄₀₀ V-Duting ADC acquisition Ratio75Output Voltage Range0.625NV ₄₀₀ V-Differential Nonlinearity±1 <t< td=""><td></td><td></td><td>+0.7/-0.6</td><td></td><td>LSB</td><td>1.0 V external reference</td></t<>			+0.7/-0.6		LSB	1.0 V external reference	
ENDPOINT ERRORS* ± 1 ± 2 ± 3 ± 3 ± 2 ± 3 ± 3 Offset Error Match ± 1 ± 2 ± 5 ± 5 ± 5 ± 5 ± 5 Gain Error Match ± 1 ± 2 ± 5 ± 5 ± 5 ± 5 ± 1 ± 5 ± 5 ± 1 ± 6 ± 6 ± 1 ± 1 ± 6 ± 1 ± 6 ± 1 ± 6 ± 1 <td>DC Code Distribution</td> <td></td> <td>1</td> <td></td> <td>LSB</td> <td>ADC input is a dc voltage</td>	DC Code Distribution		1		LSB	ADC input is a dc voltage	
Offset Error ± 1 ± 2 LSBOffset Error Match ± 1 LSBGain Error ± 2 ± 5 Gain Error Match ± 1 LSBDTMAMIC PERFORMANCE ± 1 LSBSignal-to-Noise Ratio (SNR)69dBTotal Harmonic Distortion (THD) -78 dBPeak Harmonic or Spurious Noise -75 dB(PHSN) -78 dBChannel-to-Channel Crosstalk -80 dBANALOG INPUT -78 dB Input Voltage Ranges 0 to $V_{ex}^{0} \pm V_{exr/2}$ VSingle-Ended Mode $V_{ex}^{0} \pm V_{exr/2}$ VLeakage Current ± 1 0 to V_{trer} μA Input Voltage Ranges 0 to V_{trer} μA Input Voltage Ranges 0 to V_{trer} μA Input Voltage Ranges 0 to V_{trer} μA Input Capacitance 20 pF During ADC acquisitionON-CHIP VOLTAGE REFERENCE V $T_x = 25^{\circ}C$ Reference Temperature Coefficient ± 40 pg Power Supply Rejection Ratio 75 dB Output Voltage Range 0.625 AV_{co} DAC CHANNEL SPECIFICATIONS $T_x = 15$ DC Acturacy' $E1$ $E3$ Relative Accuracy ± 1 $E3$ Relative Accuracy ± 1 $S6$ Gain Error Mismatch 0.1 $\%$ Michage Range_0 0 to DAC_{axi} V Output Voltage Range_1 0 to DAC_{xir} V	ENDPOINT ERRORS ⁵						
Offset Error Match ± 1 LLSBGain Error Match ± 2 ± 5 LSBDYNAMIC PERFORMANCE ± 2 ± 5 LSBSignal-to-Noise Ratio (SNR)69dBIncludes distortion and noise componentsTotal Harmonic Distortion (THD) -78 dBPeak Harmonic or Spurious Noise -75 dB(PHSN)Channel-to-Channel Crosstalk -80 dBChannel-to-Channel Crosstalk -80 dBANALOG INPUT -75 dBInput Voltage Ranges $V_{CR}^0 \pm V_{KR}^0 \pm V_{KR}^0/2$ VLeakage Current ± 1 ± 6 Input Capacitance 20 pF Output Voltage 2.5 NV Accuracy ± 5 mV Reference Temperature Coefficient ± 40 ppr/C Power Supply Rejection REFERENCE NV_{CR} NV_{CR} Output Voltage Range 0.625 AV_{DD} V Input Voltage Range 0.625 AV_{DD} V Difference Temperature Coefficient ± 40 ppr/C Reference Temperature Coefficient ± 40 ppr/C Reference Temperature Coefficient ± 2 K_{DD} DAC CHANNEL SPECIPICATIONS K_{DD} K_{DD} DC Accuracy' E K_{DD} Relative Accuracy ± 1 K_{B} Gain Error Mismatch 0.1 $\%$ Model Guide Range_0 0 to DAC_{RP} Output Voltage Range_1 0 to 2.5 V Output Voltage Range_2	Offset Error		±1	±2	LSB		
Gain Error 1.2 1.5 LSBGain Error Match ± 1 LSBDYNAMIC PERFORMANCE f_{11} LSBSignal-to-Noise Ratio (SNR) 69 dBPeak Harmonic Of Spurious Noise (PHSN) -75 dBReak Harmonic Of Spurious Noise (PHSN) -75 dBChannel-to-Channel Crosstalk -80 dBMANLOG INPUTInput Voltage Ranges $V_{CN}^6 \pm V_{Rer/Z}$ V Input Voltage Ranges $V_{CN}^6 \pm V_{Rer/Z}$ V Differential Mode $V_{CN}^6 \pm V_{Rer/Z}$ V Leakage Current ± 1 ± 6 μA Input Capacitance 20 pF During ADC acquisitionON-CHIP VOLTAGE REFRENCE $0.47 \mu F$ from Veer to AGND $0.47 \mu F$ from Veer to AGNDOutput Voltage 2.5 V $T_a = 25^{\circ}C$ Output Voltage 2.5 V_{V} $T_a = 25^{\circ}C$ Output Voltage Range 0.625 AV_{oo} V Power Supply Rejection Ratio 75 dB $T_a = 25^{\circ}C$ Output Voltage Range 0.625 AV_{oo} V DAC CHANNEL SPECIFICATIONS DC P_{T} $R_L = 5 k\Omega, C_L = 100 pF$ DC Accuracy' ± 1 LSBGuaranteed monotonicRelative Accuracy ± 1 LSB Guaranteed monotonicDIfferential Nonlinearity ± 1 LSBGuaranteed monotonicDC Accuracy' R_{T} H_{T} S_{T} Resolution 12 ESB S_{T} Differential Nonl	Offset Error Match		±1		LSB		
Call Error Match1LLSBDYNAMIC PERFORMANCE1LSBSignal-to-Noise Ratio (SNR)69dBTotal Harmonic Obstortion (THD)-78dBPeak Harmonic of Spurious Noise (PHSN)-75dBChannel-to-Channel Crosstalk-80dBMALCG INPUT-78dBInput Voltage Ranges $V_{Ce}^{6} \pm V_{Ee/Z}$ VDifferential Mode $V_{Ce}^{6} \pm V_{Ee/Z}$ VSingle-Ended Mode0 to V_{arr} VLeakage Current ± 1 ± 6 μA Input Voltage REFERENCE $V_{Ce}^{6} \pm V_{Ee/Z}$ V_{A} Output Voltage REFERENCE $V_{Ce}^{6} \pm V_{Ee/Z}$ V_{A} Output Voltage2.5 V_{A} V_{A} Reference Temperature Coefficient ± 40 $ppm^{n}CC$ $T_{A} = 25^{\circ}C$ Internal Viez Power-On Time1ms $T_{A} = 5^{\circ}C$ Internal Viez Power-On Time12Bits $R_{a} = 5 kQ, C_{a} = 100 pF$ DCAccuracy' ± 1 LSBGuaranteed monotonicDifferential Nonlinearity ± 1 LSBGuaranteed monotonicDifferential Nonlinearity ± 1 LSBGuaranteed monotonicOutput Hodage Range_00.625 AV_{DO} V DAC CHANNEL SPECIFICATIONS E_{A} E_{A} E_{A} Differential Nonlinearity ± 1 LSBGuaranteed monotonicOffset Error ± 1 E_{A} $2.5 V$ internal referenceGain Error A E_{A} V_{A} <td>Gain Error</td> <td></td> <td>+2</td> <td>+5</td> <td>LSB</td> <td></td>	Gain Error		+2	+5	LSB		
DYNAMIC PERFORMANCE $=1$ <th< td=""><td>Gain Error Match</td><td></td><td>+1</td><td></td><td>I SB</td><td></td></th<>	Gain Error Match		+1		I SB		
Signal-to-Noise Ratio (SNR)69dBIncludes distortion and noise componentsSignal-to-Noise Ratio (SNR)-78dBPeak Harmonic Distortion (THD)-78dBPeak Harmonic Distortion (THD)-78dBPeak Harmonic Or Spurious Noise (PHSN)-75dBMalboard-75dBANALOG INPUT Input Voltage Ranges-80dBMeasured on adjacent channels-80dBANALOG INPUT Input Voltage Ranges±1±6Differential Mode0 to V _{REF} VLeakage Current±1±6Leakage Current±1±6Accuracy±5WOutput Voltage2.5VAccuracy±40ppm/°CAccuracy±440ppm/°CPower Supply Rejection Ratio750Output Impedance70 Ω Input Voltage Range0.625AV ₀₀ DAC CHANNEL SPECIFICATIONS					250	$f_{\rm IN} = 10 \rm kHz$ sine wave $f_{\rm CAMPLE} = 1 \rm MSPS$	
DigrationDigramDigramDigramDigramDigramTotal Harmonic Distortion (THD) -73 dBPeak Harmonic Or Spurious Noise (PHSN) -75 dBChannel-to-Channel Crosstalk -80 dBANLOG INPUT Input Voltage RangesdBDifferential Mode $V_{Cu}^4 \pm V_{igs}/2$ VSingle-Ended Mode 0 to V_{ker} VLeakage Current ± 1 ± 6 μA Input Capacitance20 pF During ADC acquisitionOutput Voltage2.5 V $Accuracy$ Reference Temperature Coefficient ± 40 $pm/°C$ Power Supply Rejection Ratio75dBOutput Voltage Range0.625 AV_{00} Internal Varge Power-On Time1msInput Voltage Range0.625 AV_{00} DC Accuracy' ± 1 ± 1 Relative Accuracy ± 2 LSBDifferential Monlinearity ± 1 $Bits$ Relative Accuracy ± 1 $\%$ Relative Accuracy ± 1 $\%$ Differential Nonlinearity ± 1 $\%$ Duty Uvoltage Range_0 0 to DACstr V Output Voltage Range_1 0 to 2.5 V Output Voltage Rang	Signal-to-Noise Batio (SNB)		69		dB	Includes distortion and noise components	
Numeric of Spurious Noise (PHSN)-75dbPeak Harmonic of Spurious Noise (PHSN)-75dBChannel-to-Channel Crosstalk-80dBANLOG INPUT Input Voltage Ranges-80dBDifferential Mode $Vcx^6 \pm Vart/2$ Single-Ended ModeVSingle-Ended Mode0 to V_{RF} VLeakage Current ± 11 ± 6 Input Capacitance20pFDuring ADC acquisitionON-CHIP VOLTAGE REFERENCE0.47 µF from V_{RF} to AGND0.47 µF from V_{RF} to AGNDOutput Voltage2.5w $X_a = 25^\circ C$ Accuracy ± 5 mV $T_a = 25^\circ C$ Reference Temperature Coefficient ± 40 ppm/°CPower Supply Rejection Ratio75GOutput Voltage Range0.625 AV_{00} DAC CHANNEL SPECIFICATIONS $C_{accuracy^7}$ $R_L = 5 k\Omega, C_L = 100 pF$ DAC CHANNEL SPECIFICATIONS L SBDAC CHANNEL SPECIFICATIONS L SBDifferential Nonlinearity ± 11 SB Offset Error ± 15 mVGain Error ⁸ 11 $\%$ Output Voltage Range_00 to DACkerVOutput Voltage Range_00 to DACkerVOutput Voltage Range_00 to DACkerVOutput Voltage Range_10 to 2.5VOutput Voltage Range_20 to DACkerVOutput Voltage Range_20 to DACkerVOutput Voltage Range_20 to DACkerVOutput Voltage Ra	Total Harmonic Distortion (THD)		-78		dB	includes distortion and holse components	
PreservationChannel-to-Channel Crosstalk-R0dBMeasured on adjacent channelsANALOG INPUTImput Voltage Ranges $V_{CA}^6 \pm V_{RF/2}$ VInput Voltage Ranges $0 \text{ to } V_{ter}$ VLeakage Current ± 1 ± 6 μA Input Voltage Ranges $0 \text{ to } V_{ter}$ VLeakage Current ± 1 ± 6 μA Input Voltage Range 2.5 V $0.47 \ \mu F \text{ from } V_{ser}$ to AGNDON-CHIP VOLTAGE REFERENCE V $1 \times 25^{\circ}\text{C}$ Output Voltage 2.5 V $T_{A} = 25^{\circ}\text{C}$ Reference Temperature Coefficient ± 40 ppm/°CPower Supply Rejection Ratio 75 dB Output Voltage Range 0.625 AV_{00} VTa = 25°CTa = 25°CInternal Varge Power-On TimemsEXTERNAL REFERENCE INPUTmsInput Voltage Range 0.625 DC Accuracy ⁷ ExternalResolution12Relative Accuracy ± 1 Relative Accuracy ± 1 Relative Accuracy ± 1 Gain Error ⁸ 0.1 Gain Error Mismatch 0.1 Output Voltage Range_0 $0 \text{ to } DAC_{SEF}$ Output Voltage Range_1 $0 \text{ to } DAC_{SEF}$ Output Voltage Range_2 $0 \text{ to } DAC_{V_{00}$ Output Voltage Range_2 $0 \text{ to } DAC_{V_{00}$ Output Voltage Range_2 $0 \text{ to } DAC_{V_{00}$ Output Voltage Range_2 $0 \text{ to } DAC_{SEF}$ Output Voltage Range_2 <td>Poak Harmonic or Spurious Noiso</td> <td></td> <td>_76 _75</td> <td></td> <td>dB</td> <td></td>	Poak Harmonic or Spurious Noiso		_76 _75		dB		
$\begin{array}{c c c c } Channel-to-Channel Crosstalk & -80 & dB & Measured on adjacent channels \\ \hline ANALOG INPUT & & & & & & & & & & & & & & & & & & &$	(PHSN)		-75		uв		
ANALOG INPUT Input Voltage Ranges Input Voltage Ranges Vcm 4 Vser/2 V Differential Mode $Vcm^4 \pm Vser/2$ V Single-Ended Mode 0 to $Vser/2$ V Leakage Current ± 1 ± 6 μA Input Capacitance 20 pF During ADC acquisition ON-CHIP VOLTAGE REFERENCE V $A^2 \mu F$ from V_{BEF} to AGND Output Voltage 2.5 V $T_a = 25^\circ$ C Accuracy ± 40 pgm/C $T_a = 25^\circ$ C Reference Temperature Coefficient ± 40 pgm/C $T_a = 25^\circ$ C Output Impedance 70 G $T_a = 25^\circ$ C Internal V_{BEF} Power-On Time 1 ms $T_a = 25^\circ$ C Input Voltage Range 0.625 AV_{DD} V $T_a = 25^\circ$ C Input Voltage Range 0.625 AV_{DD} V $T_a = 25^\circ$ C Input Voltage Range 0.625 AV_{DD} V $T_a = 25^\circ$ C Input Voltage Range 0.625 AV_{DD} V $T_a = 25^\circ$ C DAC CHANNEL SPECIFICATIONS $T_a = 16^\circ$ <	Channel-to-Channel Crosstalk		-80		dB	Measured on adjacent channels	
$\begin{array}{ c c c } \mbox{Input Voltage Ranges} & V_{Cvh}^{6} \pm V_{Cvh}^{6} \pm V_{Err}/2 & V_{Cvh}^{6} \pm V$	ANALOG INPUT						
Differential Mode $V_{CM}^{4} \pm V_{REF}/2$ VSingle-Ended Mode0 to V_{REF} VLeakage Current ± 1 ± 6 μA Input Capacitance20 pF During ADC acquisitionON-CHIP VOLTAGE REFERENCE V $0.47 \ \mu F \ from V_{REF}$ to AGNDOutput Voltage2.5 V $Accuracy$ Reference Temperature Coefficient ± 40 $ppm/^{CC}$ Power Supply Rejection Ratio75 dB Output Impedance70 Ω $T_A = 25^{\circ}C$ Internal Vasie Fover-On Time1 ms EXTERNAL REFERENCE INPUT ms $T_A = 25^{\circ}C$ Input Voltage Range0.625 AV_{DO} V DAC CHANNEL SPECIFICATIONS K_{DO} V DC Accuracy' ± 2 LSBGuaranteed monotonicDifferential Nonlinearity ± 11 LSBGuaranteed monotonicOffset Error ± 1 M S° Virrenal referenceGain Error ⁸ 0.1 M S° Virrenal referenceGain Error ⁸ 0.1 M M Output Voltage Range_0 0 to DAC_{REF} V Output Voltage Range_1 0 to 2.5 V Output Voltage Range_1 0 to 2.5 V Output Voltage Range_2 0 to DAC_{MEF} V Output Voltage Range_1 0 to 2.5 V Output Voltage Range_1 0 to 2.5 V Output Voltage Range_1 0 to 2.5 V Output Voltage Range_2 0 to $DAC_{$	Input Voltage Ranges						
$ \begin{array}{ c c c } Single-Ended Mode & 0 to V_{REF} & V \\ Leakage Current & \pm 1 & \pm 6 & \mu A \\ Input Capacitance & 20 & \mu A \\ On-CHIP VOLTAGE REFERENCE & 2.5 & V \\ Accuracy & \pm 5 & mV & T_A = 25^\circ C \\ Accuracy & \pm 5 & mV & T_A = 25^\circ C \\ Power Supply Rejection Ratio & 75 & dB \\ Output Impedance & 70 & M & T_A = 25^\circ C \\ Internal V_{REF} Power-On Time & 1 & ms \\ EXTERNAL REFERENCE INPUT & T_A = 25^\circ C \\ Internal V_{REF} Power-On Time & 1 & ms \\ EXTERNAL REFERENCE INPUT & T_A = 25^\circ C \\ Input Voltage Range & 0.625 & AV_{DD} & V \\ DAC CHANNEL SPECIFICATIONS & V \\ DC Accuracy^7 & H & H \\ Relative Accuracy & \pm 2 & LSB \\ Differential Nonlinearity & \pm 1 \\ Relative Accuracy & \pm 1 & LSB \\ Differential Nonlinearity & \pm 1 \\ Offset Error & 1 & mV \\ Gain Error Mismatch & 0.1 & W & MV \\ Gain Error Mismatch & 0.1 & W & MV \\ Output Voltage Range_0 & 0 to DAC_{REF} & V \\ Output Voltage Range_1 & 0 to 2.5 & V \\ Output Voltage Range_2 & 0 to DACV_{DD} & V \\ \end{array}$	Differential Mode			$V_{CM}^6 \pm V_{REF}/2$	V		
Leakage Current ± 1 ± 6 μA Input Capacitance20pFDuring ADC acquisitionON-CHIP VOLTAGE REFERENCE2.5V0.47 μ F from V _{REF} to AGNDOutput Voltage2.5VTA = 25°CAccuracy ± 40 ppm/°CPower Supply Rejection Ratio75dBOutput Impedance70 Ω $T_A = 25°C$ Internal V _{REF} Power-On Time1msEXTERNAL REFERENCE INPUTmsImput Voltage RangeInput Voltage Range0.625AV _{oD} VDAC CHANNEL SPECIFICATIONS $E^{\pm 1}$ LSBDC Accuracy ⁷ 12BitsRelative Accuracy ± 1 LSBOffset Error ± 1 LSBGain Error Mismatch0.1%Output Voltage Range_10 to DACserVDALGG OUTPUTSVDACser range: DACGND to DACV _{DO} Output Voltage Range_20 to DACV _{DO} VOutput Voltage Range_10 to DACV _{DO} VOutput Voltage Range_10 to DACV _{DO} V	Single-Ended Mode			$0 \text{ to } V_{\text{REF}}$	V		
Input Capacitance20pFDuring ADC acquisitionON-CHIP VOLTAGE REFERENCE0.47 μF from Vner to AGNDOutput Voltage2.5V $Accuracy ± 5$ NPAccuracy±40ppm/°CReference Temperature Coefficient±40 $ppm/°C$ Power Supply Rejection Ratio75dBOutput Impedance70 Ω $T_A = 25°C$ Internal Vare Power-On Time1msEXTERNAL REFERENCE INPUTmsInput Voltage Range0.625AV _{DD} VDAC CHANNEL SPECIFICATIONS $C_{ACcuracy'}$ RL = 5 kΩ, CL = 100 pFDC Accuracy'±1LSBGaranteed monotonicOffset Error±1KS2.5 V internal referenceGain Error ⁶ ±1%% of full scale on DACOANALOG OUTPUTS C_{ACL} VDAC _{REF} range: DACGND to DACV _{DD} Output Voltage Range_00 to DAC _{REF} VDAC _{REF} range: DACGND to DACV _{DD} Output Voltage Range_10 to 2.5VDAC _{REF} range: DACGND to DACV _{DD} Output Voltage Range_20 to DACV _{DD} VDAC _{REF} range: DACGND to DACV _{DD}	Leakage Current		±1	±б	μΑ		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Input Capacitance		20		pF	During ADC acquisition	
Output Voltage2.5VAccuracy ± 5 mVT_A = 25°CReference Temperature Coefficient ± 40 ppm/°CPower Supply Rejection Ratio75dBOutput Impedance70 Ω T_A = 25°CInternal V _{REF} Power-On Time1msEXTERNAL REFERENCE INPUTmsInput Voltage Range0.625AV _{DD} VDAC CHANNEL SPECIFICATIONSVDC Accuracy71BitsResolution12BitsRelative Accuracy ± 1 LSBDifferential Nonlinearity ± 15 mVOffset Error0.1%Gain Error ⁸ 0.1%Output Voltage Range_00 to DAC _{REF} VOutput Voltage Range_10 to DAC _{REF} VOutput Voltage Range_20 to DAC _{NEF} VOutput Voltage Range_20 to DAC _{NEF} VOutput Voltage Range_20 to DAC _{NDO} V	ON-CHIP VOLTAGE REFERENCE					0.47 μF from V _{REF} to AGND	
Accuracy ± 5 mV $T_A = 25^{\circ}$ CReference Temperature Coefficient ± 40 ppm/°CPower Supply Rejection Ratio75dBOutput Impedance70 Ω $T_A = 25^{\circ}$ CInternal V _{REF} Power-On Time1msEXTERNAL REFERENCE INPUTmsInput Voltage Range0.625AV _{DD} VDAC CHANNEL SPECIFICATIONS $K_{EF} = 5 k\Omega, C_L = 100 \text{ pF}$ DC Accuracy ⁷ 12BitsResolution12BitsRelative Accuracy ± 2 LSBDifferential Nonlinearity ± 1 LSBGain Error ⁸ 0.1%Gain Error Mismatch0.1%Output Voltage Range_00 to DAC _{REF} VOutput Voltage Range_10 to DAC _{NEF} VOutput Voltage Range_20 to DACV _{DD} VOutput Voltage Range_20 to DACV _{DD} V	Output Voltage		2.5		V		
Reference Temperature Coefficient ± 40 ppm/°CPower Supply Rejection Ratio75dBOutput Impedance70 Ω $T_A = 25^{\circ}$ CInternal V _{REF} Power-On Time1msEXTERNAL REFERENCE INPUTmsInput Voltage Range0.625AV _{DD} VDAC CHANNEL SPECIFICATIONS $R_L = 5 k\Omega, C_L = 100 pF$ DC Accuracy ⁷ 12BitsResolution12LSBDifferential Nonlinearity ± 1 LSBOffset Error ± 1 LSBGain Error ⁸ 0.1%Output Voltage Range_00 to DAC _{REF} VOutput Voltage Range_10 to DAC _{REF} VOutput Voltage Range_20 to DAC _{ND} V	Accuracy			±5	mV	$T_A = 25^{\circ}C$	
Power Supply Rejection Ratio75dBOutput Impedance70 Ω $T_A = 25^{\circ}C$ Internal VREF Power-On Time1msEXTERNAL REFERENCE INPUTms $T_A = 25^{\circ}C$ Input Voltage Range0.625 AV_{DD} VDAC CHANNEL SPECIFICATIONS V V DAC CHANNEL SPECIFICATIONS $R_L = 5 k\Omega, C_L = 100 pF$ DC Accuracy7 E^2 BitsResolution12BitsDifferential Nonlinearity ± 1 LSBOffset Error ± 1 SB Gain Error ⁸ 0.1%Gain Error Mismatch0.1%Output Voltage Range_00 to DAC_{REF}VOutput Voltage Range_10 to 2.5VOutput Voltage Range_20 to DACVDDVOutput Voltage Range_10 to 2.5VOutput Voltage Range_10 to 2.5VOutput Voltage Range_20 to DACVDDVOutput Impedance2 Ω	Reference Temperature Coefficient		±40		ppm/°C		
Output Impedance70 Ω TA = 25°CInternal VREF Power-On Time1msEXTERNAL REFERENCE INPUTmsInput Voltage Range0.625AV _{DD} VDAC CHANNEL SPECIFICATIONSVVDAC CHANNEL SPECIFICATIONSImput Voltage RangeNDAC CHANNEL SPECIFICATIONSImput Voltage RangeNDAC CHANNEL SPECIFICATIONSImput Voltage RangeNDAC CHANNEL SPECIFICATIONSImput Voltage RangeNDAC CHANNEL SPECIFICATIONSImput Voltage RangeNDifferential Nonlinearity12BitsDifferential Nonlinearity±1LSBDifferential Nonlinearity±1LSBGain Error ⁸ ±1%Gain Error Mismatch0.1%Output Voltage Range_00 to DACREFVOutput Voltage Range_10 to 2.5VOutput Voltage Range_20 to DACREFVOutput Voltage Range_20 to DACVDDVOutput Impedance2 Ω	Power Supply Rejection Ratio		75		dB		
Internal V _{REF} Power-On Time1msEXTERNAL REFERENCE INPUT Input Voltage Range0.625 AV_{DD} VDAC CHANNEL SPECIFICATIONSVVDAC CHANNEL SPECIFICATIONSIRt = 5 k Ω , CL = 100 pFDC Accuracy7IIIResolution12BitsRelative Accuracy ± 2 LSBDifferential Nonlinearity ± 1 LSBOffset Error ± 15 mVGain Error Mismatch0.1%Output Voltage Range_00 to DAC_{REF}VOutput Voltage Range_10 to 2.5VOutput Voltage Range_20 to DACV_DDVOutput Impedance2 Ω	Output Impedance		70		Ω	$T_A = 25^{\circ}C$	
EXTERNAL REFERENCE INPUT Input Voltage Range0.625 AV_{DD} VDAC CHANNEL SPECIFICATIONS DC Accuracy7RL = 5 kQ, CL = 100 pFDC Accuracy712BitsResolution12LSBDifferential Nonlinearity ± 2 LSBDifferential Nonlinearity ± 1 LSBGain Error 6 ± 1 %Gain Error 80.1%MALOG OUTPUTS0 to DAC_REFVOutput Voltage Range_00 to 2.5VOutput Voltage Range_10 to 2.5VOutput Voltage Range_20 to DACV_DDVOutput Impedance2Quitput Impedance	Internal V _{REF} Power-On Time		1		ms		
Input Voltage Range0.625 AV_{DD} VDAC CHANNEL SPECIFICATIONS $R_L = 5 k\Omega, C_L = 100 pF$ DC Accuracy7 $R_L = 5 k\Omega, C_L = 100 pF$ Resolution12BitsRelative Accuracy ± 2 LSBDifferential Nonlinearity ± 1 LSBGain Error8 ± 1 SB Gain Error8 0.1 $\%$ Output Voltage Range_0 $0 \text{ to } DAC_{REF}$ V Output Voltage Range_1 $0 \text{ to } 2.5$ V Output Voltage Range_2 $0 \text{ to } DAC_{ND}$ V Output Voltage Range_2 $0 \text{ to } DAC_{ND}$ V Output Voltage Range_2 $0 \text{ to } DAC_{ND}$ V	EXTERNAL REFERENCE INPUT						
DAC CHANNEL SPECIFICATIONS $R_L = 5 k\Omega, C_L = 100 pF$ DC Accuracy712BitsResolution12LSBRelative Accuracy ± 2 LSBDifferential Nonlinearity ± 1 LSBOffset Error ± 15 mV2.5 V internal referenceGain Error ⁸ ± 1 %Gain Error Mismatch0.1%% of full scale on DAC0ANALOG OUTPUTSVDAC _{REF} range: DACGND to DACV _{DD} VOutput Voltage Range_10 to 2.5VDAC _{REF} range: DACGND to DACV _{DD} Output Voltage Range_20 to DACV _{DD} VOutput Impedance2 Ω Ω	Input Voltage Range	0.625		AV _{DD}	V		
DC Accuracy7IIIResolution12BitsRelative Accuracy±2LSBDifferential Nonlinearity±1LSBOffset Error±15mVGain Error ⁸ ±1%Gain Error Mismatch0.1%Output Voltage Range_00 to DAC_REFVOutput Voltage Range_10 to 2.5VOutput Voltage Range_20 to DACV_DDVOutput Impedance2Ω	DAC CHANNEL SPECIFICATIONS					$R_L = 5 \text{ k}\Omega$, $C_L = 100 \text{ pF}$	
Resolution12BitsRelative Accuracy±2LSBDifferential Nonlinearity±1LSBOffset Error±15mVGain Error ⁸ ±1%Gain Error Mismatch0.1%Output Voltage Range_00 to DACREFVOutput Voltage Range_10 to 2.5VOutput Voltage Range_20 to DACVDDOutput Impedance2	DC Accuracy ⁷						
Relative Accuracy±2LSBLSBDifferential Nonlinearity±1LSBGuaranteed monotonicOffset Error±15mV2.5 V internal referenceGain Error ⁸ ±1%%Gain Error Mismatch0.1%% of full scale on DAC0ANALOG OUTPUTSVDACREF range: DACGND to DACV_DDOutput Voltage Range_00 to DACREFVOutput Voltage Range_10 to 2.5VOutput Voltage Range_20 to DACV_DDVOutput Impedance2Ω	Resolution		12		Bits		
Differential Nonlinearity±1LSBGuaranteed monotonicOffset Error±15mV2.5 V internal referenceGain Error ⁸ ±1%Gain Error Mismatch0.1%% of full scale on DAC0ANALOG OUTPUTSV%Output Voltage Range_00 to DACREFVOutput Voltage Range_10 to 2.5VOutput Voltage Range_20 to DACVDDVOutput Impedance2Ω	Relative Accuracy		±2		LSB		
Offset Error±15mV2.5 V internal referenceGain Error ⁸ ±1%Gain Error Mismatch0.1%% of full scale on DAC0ANALOG OUTPUTSV%Output Voltage Range_00 to DACREFVOutput Voltage Range_10 to 2.5VOutput Voltage Range_20 to DACVDDOutput Impedance2Ω	Differential Nonlinearity			±1	LSB	Guaranteed monotonic	
Gain Error ⁸ ±1%Gain Error Mismatch0.1%% of full scale on DAC0ANALOG OUTPUTSOutput Voltage Range_00 to DACREFVDACREF range: DACGND to DACVDDOutput Voltage Range_10 to 2.5VOutput Voltage Range_20 to DACVDDVOutput Impedance2Ω	Offset Error			±15	mV	2.5 V internal reference	
Gain Error Mismatch0.1%% of full scale on DAC0ANALOG OUTPUTS </td <td>Gain Error⁸</td> <td></td> <td></td> <td>±1</td> <td>%</td> <td></td>	Gain Error ⁸			±1	%		
ANALOG OUTPUTS V DAC _{REF} range: DACGND to DACV _{DD} Output Voltage Range_0 0 to DAC _{REF} V DAC _{REF} range: DACGND to DACV _{DD} Output Voltage Range_1 0 to 2.5 V Output Voltage Range_2 0 to DACV _{DD} V Output Impedance 2 Ω	Gain Error Mismatch		0.1		%	% of full scale on DAC0	
Output Voltage Range_00 to DACREFVDACREF range: DACGND to DACVDDOutput Voltage Range_10 to 2.5VOutput Voltage Range_20 to DACVDDVOutput Impedance2Ω	ANALOG OUTPUTS						
Output Voltage Range_1 0 to 2.5 V Output Voltage Range_2 0 to DACV _{DD} V Output Impedance 2 Ω	Output Voltage Range_0		0 to DAC _{REF}		V	DAC _{REF} range: DACGND to DACV _{DD}	
Output Voltage Range_2 0 to DACV _{DD} V Output Impedance 2 Ω	Output Voltage Range_1		0 to 2.5		V	-	
Output Impedance 2 Ω	Output Voltage Range_2		0 to DACV _{DD}		V		
	Output Impedance		2		Ω		

Parameter	Description	Min	Тур	Max	Unit
t _{sL}	SCLK low pulse width ¹		$(SPIDIV + 1) \times t_{HCLK}$		ns
t _{sн}	SCLK high pulse width ¹		$(SPIDIV + 1) \times t_{HCLK}$		ns
t _{DAV}	Data output valid after SCLK edge			25	ns
t _{DSU}	Data input setup time before SCLK edge ²	$1 \times t_{\text{UCLK}}$			ns
t DHD	Data input hold time after SCLK edge ²	$2 \times t_{\text{UCLK}}$			ns
t _{DF}	Data output fall time		5	12.5	ns
t _{DR}	Data output rise time		5	12.5	ns
t _{sr}	SCLK rise time		5	12.5	ns
t _{SF}	SCLK fall time		5	12.5	ns

Table 6. SPI Master Mode Timing (Phase Mode = 1)

¹ t_{HCLK} depends on the clock divider or CD bits in the POWCONMMR. t_{HCLK} = $t_{UCLK}/2^{CD}$; see Figure 67. ² t_{UCLK} = 23.9 ns. It corresponds to the 41.78 MHz internal clock from the PLL before the clock divider; see Figure 67.

Tuble / Of Fillade Filling (Fillade Fillade O)					
Parameter	Description	Min	Тур	Max	Unit
tsL	SCLK low pulse width ¹		$(SPIDIV + 1) \times t_{HCLK}$		ns
tsн	SCLK high pulse width ¹		$(SPIDIV + 1) \times t_{HCLK}$		ns
t _{DAV}	Data output valid after SCLK edge			25	ns
tdosu	Data output setup before SCLK edge			75	ns
t dsu	Data input setup time before SCLK edge ²	$1 \times t_{UCLK}$			ns
t dhd	Data input hold time after SCLK edge ²	$2 \times t_{UCLK}$			ns
t _{DF}	Data output fall time		5	12.5	ns
t _{DR}	Data output rise time		5	12.5	ns
t _{sr}	SCLK rise time		5	12.5	ns
t _{SF}	SCLK fall time		5	12.5	ns

Table 7. SPI Master Mode Timing (Phase Mode = 0)

 1 t_{HCLK} depends on the clock divider or CD bits in the POWCONMMR. t_{HCLK} = t_{UCLK}/2^{CD}; see Figure 67.

 2 t_{UCLK} = 23.9 ns. It corresponds to the 41.78 MHz internal clock from the PLL before the clock divider; see Figure 67.

Figure 16. SPI Master Mode Timing (Phase Mode = 0)

Parameter	Description	Min	Тур	Max	Unit
t _{cs}	CS to SCLK edge ¹	$(2 \times t_{HCLK}) + (2 \times t_{UCLK})$			ns
t _{sL}	SCLK low pulse width ²		$(SPIDIV + 1) \times t_{HCLK}$		ns
t _{sн}	SCLK high pulse width ²		$(SPIDIV + 1) \times t_{HCLK}$		ns
t _{DAV}	Data output valid after SCLK edge			25	ns
t _{DSU}	Data input setup time before SCLK edge ¹	1 × tuclk			ns
t _{DHD}	Data input hold time after SCLK edge ¹	$2 \times t_{UCLK}$			ns
t _{DF}	Data output fall time		5	12.5	ns
t _{DR}	Data output rise time		5	12.5	ns
t _{sr}	SCLK rise time		5	12.5	ns
t _{sF}	SCLK fall time		5	12.5	ns
t _{SFS}	CS high after SCLK edge	0			ns

Table 8. SPI Slave Mode Timing (Phsae Mode = 1)

¹ t_{UCLK} = 23.9 ns. It corresponds to the 41.78 MHz internal clock from the PLL before the clock divider; see Figure 67. ² t_{HCLK} depends on the clock divider or CD bits in the POWCONMMR. t_{HCLK} = t_{UCLK}/2^{CD}; see Figure 67.

Figure 17. SPI Slave Mode Timing (Phase Mode = 1)

PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS

ADuC7019/ADuC7020/ADuC7021/ADuC7022

Pin No.				
7019/7020	7021	7022	Mnemonic	Description
22	22	21	P2.0/SPM9/PLAO[5]/CONV _{START}	Serial Port Multiplexed. General-Purpose Input and Output Port 2.0/UART/ Programmable Logic Array Output Element 5/Start Conversion Input Signal for ADC.
23	23	22	P0.7/ECLK/XCLK/SPM8/PLAO[4]	Serial Port Multiplexed. General-Purpose Input and Output Port 0.7/ Output for External Clock Signal/Input to the Internal Clock Generator Circuits/UART/ Programmable Logic Array Output Element 4.
24	24	23	XCLKO	Output from the Crystal Oscillator Inverter.
25	25	24	XCLKI	Input to the Crystal Oscillator Inverter and Input to the Internal Clock Generator Circuits.
26	26	25	P1.7/SPM7/PLAO[0]	Serial Port Multiplexed. General-Purpose Input and Output Port 1.7/UART, SPI/Programmable Logic Array Output Element 0.
27	27	26	P1.6/SPM6/PLAI[6]	Serial Port Multiplexed. General-Purpose Input and Output Port 1.6/UART, SPI/Programmable Logic Array Input Element 6.
28	28	27	P1.5/SPM5/PLAI[5]/IRQ3	Serial Port Multiplexed. General-Purpose Input and Output Port 1.5/UART, SPI/Programmable Logic Array Input Element 5/External Interrupt Request 3, Active High.
29	29	28	P1.4/SPM4/PLAI[4]/IRQ2	Serial Port Multiplexed. General-Purpose Input and Output Port 1.4/UART, SPI/Programmable Logic Array Input Element 4/External Interrupt Request 2, Active High.
30	30	29	P1.3/SPM3/PLAI[3]	Serial Port Multiplexed. General-Purpose Input and Output Port 1.3/UART, I2C1/Programmable Logic Array Input Element 3.
31	31	30	P1.2/SPM2/PLAI[2]	Serial Port Multiplexed. General-Purpose Input and Output Port 1.2/UART, I2C1/Programmable Logic Array Input Element 2.
32	32	31	P1.1/SPM1/PLAI[1]	Serial Port Multiplexed. General-Purpose Input and Output Port 1.1/UART, I2C0/Programmable Logic Array Input Element 1.
33	33	32	P1.0/T1/SPM0/PLAI[0]	Serial Port Multiplexed. General-Purpose Input and Output Port 1.0/ Timer1 Input/UART, I2C0/Programmable Logic Array Input Element 0.
34	-	-	P4.2/PLAO[10]	General-Purpose Input and Output Port 4.2/Programmable Logic Array Output Element 10.
35	34	33	V _{REF}	2.5 V Internal Voltage Reference. Must be connected to a 0.47 μF capacitor when using the internal reference.
36	35	34	AGND	Analog Ground. Ground reference point for the analog circuitry.
37	36	35	AV _{DD}	3.3 V Analog Power.
0	0	0	EP	Exposed Pad. The pin configuration for the ADuC7019/ADuC7020/ ADuC7021/ADuC7022 has an exposed pad that must be soldered for mechanical purposes and left unconnected.

Table 12. Pin Function Descriptions (ADuC7024/ADuC7025 64-Lead LFCSP_VQ and 64-Lead LQFP)

Pin No.	Mnemonic	Description
1	ADC4	Single-Ended or Differential Analog Input 4.
2	ADC5	Single-Ended or Differential Analog Input 5.
3	ADC6	Single-Ended or Differential Analog Input 6.
4	ADC7	Single-Ended or Differential Analog Input 7.
5	ADC8	Single-Ended or Differential Analog Input 8.
6	ADC9	Single-Ended or Differential Analog Input 9.
7	GND	Ground Voltage Reference for the ADC. For optimal performance, the analog power supply
		should be separated from IOGND and DGND.
8	ADCNEG	to the ground of the signal to convert. This bias point must be between 0 V and 1 V.
9	DAC0/ADC12	DAC0 Voltage Output/Single-Ended or Differential Analog Input 12. DAC outputs are not present on the ADuC7025.
10	DAC1/ADC13	DAC1 Voltage Output/Single-Ended or Differential Analog Input 13. DAC outputs are not present on the ADuC7025.
11	TMS	JTAG Test Port Input. Test Mode Select. Debug and download access.
12	TDI	ITAG Test Port Input, Test Data In Debug and download access
13		General-Purpose Input and Output Port 4 6/Programmable Logic Array Output Element 14
12	P4 7/PL AO[15]	General-Purpose Input and Output Port 4.7/Programmable Logic Array Output Element 15
15		Multifunction $1/O$ Pin Boot mode The ADuC7024/ADuC7025 enter download mode if BM is low at
15		reset and execute code if BM is pulled high at reset through a 1 k Ω resistor/General-Purpose Input and Output Port 0.0/Voltage Comparator Output/Programmable Logic Array Input Element 7.
16	P0.6/T1/MRST/PLAO[3]	Multifunction Pin, Driven Low After Reset. General-Purpose Output Port 0.6/Timer1 Input/Power- On Reset Output/Programmable Logic Array Output Element 3.
17	ТСК	JTAG Test Port Input, Test Clock. Debug and download access.
18	TDO	JTAG Test Port Output, Test Data Out. Debug and download access.
19	IOGND	Ground for GPIO (see Table 78). Typically connected to DGND.
20	IOV _{DD}	3.3 V Supply for GPIO (see Table 78) and Input of the On-Chip Voltage Regulator.
21	LV _{DD}	2.6 V Output of the On-Chip Voltage Regulator. This output must be connected to a 0.47 μ F capacitor to DGND only.
22	DGND	Ground for Core Logic.
23	P3.0/PWM0 _H /PLAI[8]	General-Purpose Input and Output Port 3.0/PWM Phase 0 High-Side Output/Programmable Logic
24	P3.1/PWM0∟/PLAI[9]	General-Purpose Input and Output Port 3.1/PWM Phase 0 Low-Side Output/Programmable Logic
25	P3.2/PWM1 _H /PLAI[10]	General-Purpose Input and Output Port 3.2/PWM Phase 1 High-Side Output/Programmable Logic
26	P3.3/PWM1L/PLAI[11]	General-Purpose Input and Output Port 3.3/PWM Phase 1 Low-Side Output/Programmable Logic
27		General-Purpose Input and Output Port 0.3/JTAG Test Port Input. Test Reset/ADC _{Rusy} Signal Output.
28	RST	Reset Input Active I ow
29	P3.4/PWM2 _H /PLAI[12]	General-Purpose Input and Output Port 3.4/PWM Phase 2 High-Side Output/Programmable Logic
30	P3.5/PWM2L/PLAI[13]	General-Purpose Input and Output Port 3.5/PWM Phase 2 Low-Side Output/Programmable Logic
31	IRQ0/P0.4/PWM _{TRIP} /PLAO[1]	Multifunction I/O Pin. External Interrupt Request 0, Active High/General-Purpose Input and Output Port 0.4/PWM Trip External Input/Programmable Logic Array Output Element 1
32	IRQ1/P0.5/ADC _{BUSY} /PLAO[2]	Multifunction I/O Pin. External Interrupt Request 1, Active High/General-Purpose Input and Output Port 0.5/ADCRUSY Signal Output/Programmable Logic Array Output Element 2
33	P2.0/SPM9/PLAO[5]/CONV _{START}	Serial Port Multiplexed. General-Purpose Input and Output Port 2.0/UART/Programmable Logic
34	P0.7/ECLK/XCLK/SPM8/PLAO[4]	Serial Port Multiplexed. General-Purpose Input and Output Port 0.7/Output for External Clock Signal/Input to the Internal Clock Generator Circuits/UART/Programmable Logic Array Output Element 4.
35	XCLKO	Output from the Crystal Oscillator Inverter.
36	XCLKI	Input to the Crystal Oscillator Inverter and Input to the Internal Clock Generator Circuits.
	I	

Pin No.	Mnemonic	Description
37	P3.6/PWM _{TRIP} /PLAI[14]	General-Purpose Input and Output Port 3.6/PWM Safety Cutoff/Programmable Logic Array Input Element 14.
38	P3.7/PWM _{SYNC} /PLAI[15]	General-Purpose Input and Output Port 3.7/PWM Synchronization Input and Output/ Programmable Logic Array Input Element 15.
39	P1.7/SPM7/PLAO[0]	Serial Port Multiplexed. General-Purpose Input and Output Port 1.7/UART, SPI/Programmable Logic Array Output Element 0.
40	P1.6/SPM6/PLAI[6]	Serial Port Multiplexed. General-Purpose Input and Output Port 1.6/UART, SPI/Programmable Logic Array Input Element 6.
41	IOGND	Ground for GPIO (see Table 78). Typically connected to DGND.
42	IOV _{DD}	3.3 V Supply for GPIO (see Table 78) and Input of the On-Chip Voltage Regulator.
43	P4.0/PLAO[8]	General-Purpose Input and Output Port 4.0/Programmable Logic Array Output Element 8.
44	P4.1/PLAO[9]	General-Purpose Input and Output Port 4.1/Programmable Logic Array Output Element 9.
45	P1.5/SPM5/PLAI[5]/IRQ3	Serial Port Multiplexed. General-Purpose Input and Output Port 1.5/UART, SPI/Programmable Logic Array Input Element 5/External Interrupt Request 3, Active High.
46	P1.4/SPM4/PLAI[4]/IRQ2	Serial Port Multiplexed. General-Purpose Input and Output Port 1.4/UART, SPI/Programmable Logic Array Input Element 4/External Interrupt Request 2, Active High.
47	P1.3/SPM3/PLAI[3]	Serial Port Multiplexed. General-Purpose Input and Output Port 1.3/UART, I2C1/Programmable Logic Array Input Element 3.
48	P1.2/SPM2/PLAI[2]	Serial Port Multiplexed. General-Purpose Input and Output Port 1.2/UART, I2C1/Programmable Logic Array Input Element 2.
49	P1.1/SPM1/PLAI[1]	Serial Port Multiplexed. General-Purpose Input and Output Port 1.1/UART, I2CO/Programmable Logic Array Input Element 1.
50	P1.0/T1/SPM0/PLAI[0]	Serial Port Multiplexed. General-Purpose Input and Output Port 1.0/Timer1 Input/UART, I2C0/ Programmable Logic Array Input Element 0.
51	P4.2/PLAO[10]	General-Purpose Input and Output Port 4.2/Programmable Logic Array Output Element 10.
52	P4.3/PLAO[11]	General-Purpose Input and Output Port 4.3/Programmable Logic Array Output Element 11.
53	P4.4/PLAO[12]	General-Purpose Input and Output Port 4.4/Programmable Logic Array Output Element 12.
54	P4.5/PLAO[13]	General-Purpose Input and Output Port 4.5/Programmable Logic Array Output Element 13.
55	V _{REF}	2.5 V Internal Voltage Reference. Must be connected to a 0.47 μF capacitor when using the internal reference.
56	DAC _{REF}	External Voltage Reference for the DACs. Range: DACGND to $DACV_{DD}$.
57	DACGND	Ground for the DAC. Typically connected to AGND.
58	AGND	Analog Ground. Ground reference point for the analog circuitry.
59	AV _{DD}	3.3 V Analog Power.
60		3.3 V Power Supply for the DACs. Must be connected to AV_{DD} .
61	ADC0	Single-Ended or Differential Analog Input 0.
62	ADC1	Single-Ended or Differential Analog Input 1.
63	ADC2/CMP0	Single-Ended or Differential Analog Input 2/Comparator Positive Input.
64	ADC3/CMP1	Single-Ended or Differential Analog Input 3/Comparator Negative Input.
0	EP	Exposed Pad. The pin configuration for the ADuC7024/ADuC7025 LFCSP_VQ has an exposed pad that must be soldered for mechanical purposes and left unconnected.

ADuC7026/ADuC7027

Figure 25. 80-Lead LQFP Pin Configuration (ADuC7026/ADuC7027)

Pin No.	Mnemonic	Description
1	ADC4	Single-Ended or Differential Analog Input 4.
2	ADC5	Single-Ended or Differential Analog Input 5.
3	ADC6	Single-Ended or Differential Analog Input 6.
4	ADC7	Single-Ended or Differential Analog Input 7.
5	ADC8	Single-Ended or Differential Analog Input 8.
6	ADC9	Single-Ended or Differential Analog Input 9.
7	ADC10	Single-Ended or Differential Analog Input 10.
8	GND _{REF}	Ground Voltage Reference for the ADC. For optimal performance, the analog power supply should be separated from IOGND and DGND.
9	ADCNEG	Bias Point or Negative Analog Input of the ADC in Pseudo Differential Mode. Must be connected to the signal to convert. This bias point must be between 0 V and 1 V.
10	DAC0/ADC12	DAC0 Voltage Output/Single-Ended or Differential Analog Input 12. DAC outputs are not present on the ADuC7027.
11	DAC1/ADC13	DAC1 Voltage Output/Single-Ended or Differential Analog Input 13. DAC outputs are not present on the ADuC7027.
12	DAC2/ADC14	DAC2 Voltage Output/Single-Ended or Differential Analog Input 14. DAC outputs are not present on the ADuC7027.
13	DAC3/ADC15	DAC3 Voltage Output/Single-Ended or Differential Analog Input 15. DAC outputs are not present on the ADuC7027.
14	TMS	JTAG Test Port Input, Test Mode Select. Debug and download access.
15	TDI	JTAG Test Port Input, Test Data In. Debug and download access.
16	P0.1/PWM2 _H /BLE	General-Purpose Input and Output Port 0.1/PWM Phase 2 High-Side Output/External Memory Byte Low Enable.
17	P2.3/AE	General-Purpose Input and Output Port 2.3/External Memory Access Enable.

Pin No.	Mnemonic	Description
E1	TMS	JTAG Test Port Input, Test Mode Select. Debug and download access.
E2	BM/P0.0/CMP _{out} /PLAI[7]	Multifunction I/O Pin. Boot mode. The ADuC7029 enters UART download mode if BM is low at reset and executes code if BM is pulled high at reset through a 1 k Ω resistor/General-Purpose Input and Output Port 0.0/Voltage Comparator Output/Programmable Logic Array Input Element 7.
E3	DAC2/ADC14	DAC2 Voltage Output/ADC Input 14.
E4	IOV _{DD}	3.3 V Supply for GPIO (see Table 78) and Input of the On-Chip Voltage Regulator.
E5	P3.2/PWM1 _H /PLAI[10]	General-Purpose Input and Output Port 3.2/PWM Phase 1 High-Side Output/Programmable Logic Array Input Element 10.
E6	P3.5/PWM2L/PLAI[13]	General-Purpose Input and Output Port 3.5/PWM Phase 2 Low-Side Output/Programmable Logic Array Input Element 13.
E7	P0.7/ECLK/XCLK/SPM8/PLAO[4]	Serial Port Multiplexed. General-Purpose Input and Output Port 0.7/Output for External Clock Signal/Input to the Internal Clock Generator Circuits/UART/Programmable Logic Array Output Element 4.
F1	TDI	JTAG Test Port Input, Test Data In. Debug and download access.
F2	P0.6/T1/MRST/PLAO[3]	Multifunction Pin, Driven Low After Reset. General-Purpose Output Port 0.6/Timer1 Input/ Power-On Reset Output/Programmable Logic Array Output Element 3.
F3	IOGND	Ground for GPIO (see Table 78). Typically connected to DGND.
F4	P3.1/PWM0L/PLAI[9]	General-Purpose Input and Output Port 3.1/PWM Phase 0 Low-Side Output/Programmable Logic Array Input Element 9.
F5	P3.0/PWM0 _H /PLAI[8]	General-Purpose Input and Output Port 3.0/PWM Phase 0 High-Side Output/Programmable Logic Array Input Element 8.
F6	RST	Reset Input, Active Low.
F7	P2.0/SPM9/PLAO[5]/CONV _{START}	Serial Port Multiplexed. General-Purpose Input and Output Port 2.0/UART/Programmable Logic Array Output Element 5/Start Conversion Input Signal for ADC.
G1	ТСК	JTAG Test Port Input, Test Clock. Debug and download access.
G2	TDO	JTAG Test Port Output, Test Data Out. Debug and download access.
G3	LV _{DD}	2.6 V Output of the On-Chip Voltage Regulator. This output must be connected to a 0.47 μF capacitor to DGND only.
G4	DGND	Ground for Core Logic.
G5	P0.3/TRST/ADC _{BUSY}	General-Purpose Input and Output Port 0.3/JTAG Test Port Input, Test Reset/ADC $_{\text{BUSY}}$ Signal Output.
G6	IRQ0/P0.4/PWM _{TRIP} /PLAO[1]	Multifunction I/O Pin. External Interrupt Request 0, Active High/General-Purpose Input and Output Port 0.4/PWM Trip External Input/Programmable Logic Array Output Element 1.
G7	IRQ1/P0.5/ADC _{BUSY} /PLAO[2]	Multifunction I/O Pin. External Interrupt Request 1, Active High/General-Purpose Input and Output Port 0.5/ADC _{BUSY} Signal Output/Programmable Logic Array Output Element 2.

SECURITY

The 62 kB of Flash/EE memory available to the user can be read and write protected.

Bit 31 of the FEEPRO/FEEHIDE MMR (see Table 42) protects the 62 kB from being read through JTAG programming mode. The other 31 bits of this register protect writing to the flash memory. Each bit protects four pages, that is, 2 kB. Write protection is activated for all types of access.

Three Levels of Protection

- Protection can be set and removed by writing directly into FEEHIDE MMR. This protection does not remain after reset.
- Protection can be set by writing into the FEEPRO MMR. It takes effect only after a save protection command (0x0C) and a reset. The FEEPRO MMR is protected by a key to avoid direct access. The key is saved once and must be entered again to modify FEEPRO. A mass erase sets the key back to 0xFFFF but also erases all the user code.
- Flash can be permanently protected by using the FEEPRO MMR and a particular value of key: 0xDEADDEAD. Entering the key again to modify the FEEPRO register is not allowed.

Sequence to Write the Key

- 1. Write the bit in FEEPRO corresponding to the page to be protected.
- 2. Enable key protection by setting Bit 6 of FEEMOD (Bit 5 must equal 0).
- 3. Write a 32-bit key in FEEADR and FEEDAT.
- 4. Run the write key command 0x0C in FEECON; wait for the read to be successful by monitoring FEESTA.
- 5. Reset the part.

To remove or modify the protection, the same sequence is used with a modified value of FEEPRO. If the key chosen is the value 0xDEAD, the memory protection cannot be removed. Only a mass erase unprotects the part, but it also erases all user code.

The sequence to write the key is illustrated in the following example (this protects writing Page 4 to Page 7 of the Flash):

o 7
.d
: :

The same sequence should be followed to protect the part permanently with FEEADR = 0xDEAD and FEEDAT = 0xDEAD.

FLASH/EE CONTROL INTERFACE

Serial and JTAG programming use the Flash/EE control interface, which includes the eight MMRs outlined in this section.

Table 31. FEESTA Register

Name	Address	Default Value	Access
FEESTA	0xFFFFF800	0x20	R

FEESTA is a read-only register that reflects the status of the flash control interface as described in Table 32.

Table 32. FEESTA MMR Bit Designations

Bit	Description
15:6	Reserved.
5	Reserved.
4	Reserved.
3	Flash interrupt status bit. Set automatically when an interrupt occurs, that is, when a command is complete and the Flash/EE interrupt enable bit in the FEEMOD register is set. Cleared when reading the FEESTA register.
2	Flash/EE controller busy. Set automatically when the controller is busy. Cleared automatically when the controller is not busy.
1	Command fail. Set automatically when a command completes unsuccessfully. Cleared automatically when reading the FEESTA register.
0	Command pass. Set by the MicroConverter when a command completes successfully. Cleared automatic-ally when reading the FEESTA register.

Table 33. FEEMOD Register

Name	Address	Default Value	Access
FEEMOD	0xFFFFF804	0x0000	R/W

FEEMOD sets the operating mode of the flash control interface. Table 34 shows FEEMOD MMR bit designations.

Table 34. FEEMOD MMR Bit Designations

Bit	Description
15:9	Reserved.
8	Reserved. This bit should always be set to 0.
7:5	Reserved. These bits should always be set to 0 except when writing keys. See the Sequence to Write the Key section.
4	Flash/EE interrupt enable. Set by user to enable the Flash/EE interrupt. The interrupt occurs when a command is complete. Cleared by user to disable the Flash/EE interrupt.
3	Erase/write command protection. Set by user to enable the erase and write commands. Cleared to protect the Flash against the erase/write command.
2:0	Reserved. These bits should always be set to 0.

Input offset voltage (V_{OS}) is the difference between the center of the hysteresis range and the ground level. This can either be positive or negative. The hysteresis voltage (V_H) is one-half the width of the hysteresis range.

Comparator Interface

The comparator interface consists of a 16-bit MMR, CMPCON, which is described in Table 56.

Table 55. CMPCON Register

Name	Address	Default Value	Access
CMPCON	0xFFFF0444	0x0000	R/W

Table 56. CMPCON MMR Bit Descriptions			
Bit	Name	Value	Description
15:11			Reserved.
10	CMPEN		Comparator enable bit. Set by user to enable the comparator. Cleared by user to disable the comparator.
9:8	CMPIN		Comparator negative input select bits.
		00	AV _{DD} /2.
		01	ADC3 input.
		10	DAC0 output.
		11	Reserved.
7:6	CMPOC		Comparator output configuration bits.
		00	Reserved.
		01	Reserved.
		10	Output on CMP _{OUT} .
		11	IRQ.
5	CMPOL		Comparator output logic state bit. When low, the comparator output is high if the positive input (CMP0) is above the negative input (CMP1). When high, the comparator output is high if the positive input is below the negative input.
4:3	CMPRES		Response time.
		00	5 μs response time is typical for large signals (2.5 V differential). 17 μs response time is typical for small signals (0.65 mV differential).
		11	3 μs typical.
		01/10	Reserved.
2	CMPHYST		Comparator hysteresis bit. Set by user to have a hysteresis of about 7.5 mV. Cleared by user to have no hysteresis.
1	CMPORI		Comparator output rising edge interrupt. Set automatically when a rising edge occurs on the moni- tored voltage (CMP0). Cleared by user by writing a 1 to this bit.
0	CMPOFI		Comparator output falling edge interrupt. Set automatically when a falling edge occurs on the monitored voltage (CMP0) Cleared by user

OSCILLATOR AND PLL—POWER CONTROL

Clocking System

Each ADuC7019/20/21/22/24/25/26/27/28/29 integrates a

32.768 kHz \pm 3% oscillator, a clock divider, and a PLL. The PLL locks onto a multiple (1275) of the internal oscillator or an external 32.768 kHz crystal to provide a stable 41.78 MHz clock (UCLK) for the system. To allow power saving, the core can operate at this frequency, or at binary submultiples of it. The actual core operating frequency, UCLK/2^{CD}, is refered to as HCLK. The default core clock is the PLL clock divided by 8 (CD = 3) or 5.22 MHz. The core clock frequency can also come from an external clock on the ECLK pin as described in Figure 67. The core clock can be outputted on ECLK when using an internal oscillator or external crystal.

Note that when the ECLK pin is used to output the core clock, the output signal is not buffered and is not suitable for use as a clock source to an external device without an external buffer.

The selection of the clock source is in the PLLCON register. By default, the part uses the internal oscillator feeding the PLL.

External Crystal Selection

To switch to an external crystal, the user must do the following:

- 1. Enable the Timer2 interrupt and configure it for a timeout period of >120 $\mu s.$
- 2. Follow the write sequence to the PLLCON register, setting the MDCLK bits to 01 and clearing the OSEL bit.
- 3. Force the part into NAP mode by following the correct write sequence to the POWCON register.

When the part is interrupted from NAP mode by the Timer2 interrupt source, the clock source has switched to the external clock.

Table 108. COMSTA1 Register

Name	Address	Default Value	Access
COMSTA1	0xFFFF0718	0x00	R

COMSTA1 is a modem status register.

Table 109. COMSTA1 MMR Bit Descriptions

Bit	Name	Description
7	DCD	Data carrier detect.
6	RI	Ring indicator.
5	DSR	Data set ready.
4	CTS	Clear to send.
3	DDCD	Delta DCD. Set automatically if DCD changed state since last COMSTA1 read. Cleared automati-cally by reading COMSTA1.
2	TERI	Trailing edge RI. Set if RI changed from 0 to 1 since COMSTA1 was last read. Cleared automatically by reading COMSTA1.
1	DDSR	Delta DSR. Set automatically if DSR changed state since COMSTA1 was last read. Cleared automatically by reading COMSTA1.
0	DCTS	Delta CTS. Set automatically if CTS changed state since COMSTA1 was last read. Cleared automatically by reading COMSTA1.

Table 110. COMSCR Register

Name	Address	Default Value	Access
COMSCR	0xFFFF071C	0x00	R/W

COMSCR is an 8-bit scratch register used for temporary storage. It is also used in network addressable UART mode.

Table 111. COMDIV2 Register

Name	Address	Default Value	Access
COMDIV2	0xFFFF072C	0x0000	R/W

COMDIV2 is a 16-bit fractional baud divide register.

Table 112. COMDIV2 MMR Bit Descriptions

Bit	Name	Description
15	FBEN	Fractional baud rate generator enable bit. Set by user to enable the fractional baud rate generator. Cleared by user to generate baud rate using the standard 450 UART baud rate generator.
14:13		Reserved.
12:11	FBM[1:0]	M if FBM = 0, M = 4 (see the Fractional Divider section).
10:0	FBN[10:0]	N (see the Fractional Divider section).

Network Addressable UART Mode

This mode connects the MicroConverter to a 256-node serial network, either as a hardware single master or via software in a multimaster network. Bit 7 (ENAM) of the COMIEN1 register must be set to enable UART in network addressable mode (see Table 114). Note that there is no parity check in this mode.

ADuC7019/20/21/22/24/25/26/27/28/29

Network Addressable UART Register Definitions

Four additional registers, COMIEN0, COMIEN1, COMIID1, and COMADR are used in network addressable UART mode only.

In network address mode, the least significant bit of the COMIEN1 register is the transmitted network address control bit. If set to 1, the device is transmitting an address. If cleared to 0, the device is transmitting data. For example, the following masterbased code transmits the slave's address followed by the data:

COMIEN1 = 0xE7; //Setting ENAM, E9BT, E9BR, ETD, NABP COMTX = 0xA0; // Slave address is 0xA0 while(!(0x020==(COMSTA0 & 0x020))){} // wait for adr tx to finish. COMIEN1 = 0xE6; // Clear NAB bit to indicate Data is coming COMTX = 0x55; // Tx data to slave: 0x55

Table 113. COMIEN1 Register

Name	Address	Default Value	Access
COMIEN1	0xFFFF0720	0x04	R/W

COMIEN1 is an 8-bit network enable register.

Table 114. COMIEN1 MMR Bit Descriptions

Bit	Name	Description
7	ENAM	Network address mode enable bit. Set by user to enable network address mode. Cleared by user to disable network address mode.
6	E9BT	9-bit transmit enable bit. Set by user to enable 9-bit transmit. ENAM must be set. Cleared by user to disable 9-bit transmit.
5	E9BR	9-bit receive enable bit. Set by user to enable 9-bit receive. ENAM must be set. Cleared by user to disable 9-bit receive.
4	ENI	Network interrupt enable bit.
3	E9BD	Word length. Set for 9-bit data. E9BT has to be cleared. Cleared for 8-bit data.
2	ETD	Transmitter pin driver enable bit. Set by user to enable SOUT pin as an output in slave mode or multimaster mode. Cleared by user; SOUT is three-state.
1	NABP	Network address bit. Interrupt polarity bit.
0	NAB	Network address bit (if NABP = 1). Set by user to transmit the slave address. Cleared by user to transmit data.

Table 115. COMIID1 Register

Name	Address	Default Value	Access
COMIID1	0xFFFF0724	0x01	R

COMIID1 is an 8-bit network interrupt register. Bit 7 to Bit 4 are reserved (see Table 116).

Table 116. COMIID1 MMR Bit Descriptions

Bit 3:1 Status	Bit 0			Clearing
Bits	NINT	Priority	Definition	Operation
000	1		No interrupt	
110	0	2	Matching network address	Read COMRX
101	0	3	Address transmitted, buffer empty	Write data to COMTX or read COMIID0
011	0	1	Receive line status interrupt	Read COMSTA0
010	0	2	Receive buffer full interrupt	Read COMRX
001	0	3	Transmit buffer empty interrupt	Write data to COMTX or read COMIID0
000	0	4	Modem status interrupt	Read COMSTA1

Note that to receive a network address interrupt, the slave must ensure that Bit 0 of COMIEN0 (enable receive buffer full interrupt) is set to 1.

Table 117. COMADR Register

Name	Address	Default Value	Access
COMADR	0xFFFF0728	0xAA	R/W

COMADR is an 8-bit, read/write network address register that holds the address checked for by the network addressable UART. Upon receiving this address, the device interrupts the processor and/or sets the appropriate status bit in COMIID1.

SERIAL PERIPHERAL INTERFACE

The ADuC7019/20/21/22/24/25/26/27/28/29 integrate a complete hardware serial peripheral interface (SPI) on-chip. SPI is an industry standard, synchronous serial interface that allows eight bits of data to be synchronously transmitted and simultaneously received, that is, full duplex up to a maximum bit rate of 3.48 Mb, as shown in Table 118. The SPI interface is not operational with core clock divider (CD) bits. POWCON[2:0] = 6 or 7 in master mode.

The SPI port can be configured for master or slave operation. and typically consists of four pins: MISO (P1.5), MOSI (P1.6), SCLK (P1.4), and \overline{CS} (P1.7).

On the transmit side, the SPITX register (and a TX shift register outside it) loads data onto the transmit pin (in slave mode, MISO; in master mode, MOSI). The transmit status bit, Bit 0, in SPISTA indicates whether there is valid data in the SPITX register.

Similarly, the receive data path consists of the SPIRX register (and an RX shift register). SPISTA, Bit 3 indicates whether there is valid data in the SPIRX register. If valid data in the SPIRX register is overwritten or if valid data in the RX shift register is discarded, SPISTA, Bit 5 (the overflow bit) is set.

MISO (Master In, Slave Out) Pin

The MISO pin is configured as an input line in master mode and an output line in slave mode. The MISO line on the master (data in) should be connected to the MISO line in the slave device (data out). The data is transferred as byte wide (8-bit) serial data, MSB first.

MOSI (Master Out, Slave In) Pin

The MOSI pin is configured as an output line in master mode and an input line in slave mode. The MOSI line on the master (data out) should be connected to the MOSI line in the slave device (data in). The data is transferred as byte wide (8-bit) serial data, MSB first.

SCLK (Serial Clock I/O) Pin

The master serial clock (SCLK) is used to synchronize the data being transmitted and received through the MOSI SCLK period. Therefore, a byte is transmitted/received after eight SCLK periods. The SCLK pin is configured as an output in master mode and as an input in slave mode.

In master mode, the polarity and phase of the clock are controlled by the SPICON register, and the bit rate is defined in the SPIDIV register as follows:

$$f_{SERIAL CLOCK} = \frac{f_{UCLK}}{2 \times (1 + SPIDIV)}$$

The maximum speed of the SPI clock is dependent on the clock divider bits and is summarized in Table 118.

Table 118. SPI	Speed vs. (Clock Divider	Bits in 1	Master Mode
----------------	-------------	---------------	-----------	-------------

CD Bits	0	1	2	3	4	5
SPIDIV in Hex	0x05	0x0B	0x17	0x2F	0x5F	0xBF
SPI dpeed in MHz	3.482	1.741	0.870	0.435	0.218	0.109

In slave mode, the SPICON register must be configured with the phase and polarity of the expected input clock. The slave accepts data from an external master up to 10.4 Mb at CD = 0. The formula to determine the maximum speed is as follows:

$$f_{SERIAL CLOCK} = \frac{f_{HCLK}}{4}$$

In both master and slave modes, data is transmitted on one edge of the SCL signal and sampled on the other. Therefore, it is important that the polarity and phase be configured the same for the master and slave devices.

Chip Select (CS Input) Pin

In SPI slave mode, a transfer is initiated by the assertion of CS, which is an active low input signal. The SPI port then transmits and receives 8-bit data until the transfer is concluded by deassertion of $\overline{\text{CS}}$. In slave mode, $\overline{\text{CS}}$ is always an input.

Name	Address	Default Value	Access
I2C0ALT	0xFFFF0828	0x00	R/W
I2C1ALT	0xFFFF0928	0x00	R/W

I2CxALT are hardware general call ID registers used in slave mode.

Table 139. I2C0CFG MMR Bit Descriptions

Bit Description Reserved. These bits should be written by the user as 0. 31:5 Enable stop interrupt. Set by the user to generate an interrupt upon receiving a stop condition and after receiving a valid start 14 condition and matching address. Cleared by the user to disable the generation of an interrupt upon receiving a stop condition. 13 Reserved. 12 Reserved. Enable stretch SCL (holds SCL low). Set by the user to stretch the SCL line. Cleared by the user to disable stretching of the SCL line. 11 10 Reserved. 9 Slave Tx FIFO request interrupt enable. Set by the user to disable the slave Tx FIFO request interrupt. Cleared by the user to generate an interrupt request just after the negative edge of the clock for the R/W bit. This allows the user to input data into the slave Tx FIFO if it is empty. At 400 ksps and the core clock running at 41.78 MHz, the user has 45 clock cycles to take appropriate action, taking interrupt latency into account. General call status bit clear. Set by the user to clear the general call status bits. Cleared automatically by hardware after the general 8 call status bits are cleared. 7 Master serial clock enable bit. Set by user to enable generation of the serial clock in master mode. Cleared by user to disable serial clock in master mode. 6 Loopback enable bit. Set by user to internally connect the transition to the reception to test user software. Cleared by user to operate in normal mode. 5 Start backoff disable bit. Set by user in multimaster mode. If losing arbitration, the master immediately tries to retransmit. Cleared by user to enable start backoff. After losing arbitration, the master waits before trying to retransmit. 4 Hardware general call enable. When this bit and Bit 3 are set and have received a general call (Address 0x00) and a data byte, the device checks the contents of I2C0ALT against the receive register. If the contents match, the device has received a hardware general call. This is used if a device needs urgent attention from a master device without knowing which master it needs to turn to. This is a "to whom it may concern" call. The ADuC7019/20/21/22/24/25/26/27/28/29 watch for these addresses. The device that requires attention embeds its own address into the message. All masters listen, and the one that can handle the device contacts its slave and acts appropriately. The LSB of the I2COALT register should always be written to 1, as indicated in The I²C-Bus Specification, January 2000, from NXP. 3 General call enable bit. This bit is set by the user to enable the slave device to acknowledge (ACK) an I²C general call, Address 0x00 (write). The device then recognizes a data bit. If it receives a 0x06 (reset and write programmable part of slave address by hardware) as the data byte, the I²C interface resets as as indicated in The I²C-Bus Specification, January 2000, from NXP. This command can be used to reset an entire I²C system. The general call interrupt status bit sets on any general call. The user must take corrective action by setting up the I²C interface after a reset. If it receives a 0x04 (write programmable part of slave address by hardware) as the data byte, the general call interrupt status bit sets on any general call. The user must take corrective action by reprogramming the device address. Reserved. 2 Master enable bit. Set by user to enable the master I²C channel. Cleared by user to disable the master I²C channel. 1 Slave enable bit. Set by user to enable the slave I²C channel. A slave transfer sequence is monitored for the device address in I2C0ID0, 0 I2C0ID1, I2C0ID2, and I2C0ID3. At 400 kSPs, the core clock should run at 41.78 MHz because the interrupt latency could be up to 45 clock cycles alone. After the I²C read bit, the user has 0.5 of an I²C clock cycle to load the Tx FIFO. AT 400 kSPS, this is 1.26 µs, the interrupt latency.

Table 138. I2CxCFG Registers

Name	Address	Default Value	Access
I2C0CFG	0xFFFF082C	0x00	R/W
I2C1CFG	0xFFFF092C	0x00	R/W

I2CxCFG are configuration registers.

PROCESSOR REFERENCE PERIPHERALS INTERRUPT SYSTEM

There are 23 interrupt sources on the ADuC7019/20/21/22/ 24/25/26/27/28/29 that are controlled by the interrupt controller. Most interrupts are generated from the on-chip peripherals, such as ADC and UART. Four additional interrupt sources are generated from external interrupt request pins, IRQ0, IRQ1, IRQ2, and IRQ3. The ARM7TDMI CPU core only recognizes interrupts as one of two types: a normal interrupt request IRQ or a fast interrupt request FIQ. All the interrupts can be masked separately.

The control and configuration of the interrupt system are managed through nine interrupt-related registers, four dedicated to IRQ, and four dedicated to FIQ. An additional MMR is used to select the programmed interrupt source. The bits in each IRQ and FIQ register (except for Bit 23) represent the same interrupt source as described in Table 160.

Table 160. IRQ/FIQ MMRs Bit Description

Bit	Description
0	All interrupts OR'ed (FIQ only)
1	SWI
2	Timer0
3	Timer1
4	Wake-up timer (Timer2)
5	Watchdog timer (Timer3)
6	Flash control
7	ADC channel
8	PLL lock
9	I2C0 slave
10	I2C0 master
11	I2C1 master
12	SPI slave
13	SPI master
14	UART
15	External IRQ0
16	Comparator
17	PSM
18	External IRQ1
19	PLA IRQ0
20	PLA IRQ1
21	External IRQ2
22	External IRQ3
23	PWM trip (IRQ only)/PWM sync (FIQ only)

IRQ

The interrupt request (IRQ) is the exception signal to enter the IRQ mode of the processor. It is used to service general-purpose interrupt handling of internal and external events.

The four 32-bit registers dedicated to IRQ are IRQSTA, IRQSIG, IRQEN, and IRQCLR.

Table 161. IRQSTA Register

Name	Address	Default Value	Access
IRQSTA	0xFFFF0000	0x0000000	R

IRQSTA (read-only register) provides the current-enabled IRQ source status. When set to 1, that source should generate an active IRQ request to the ARM7TDMI core. There is no priority encoder or interrupt vector generation. This function is implemented in software in a common interrupt handler routine. All 32 bits are logically ORed to create the IRQ signal to the ARM7TDMI core.

Table 162. IRQSIG Register

Name	Address	Default Value	Access
IRQSIG	0xFFFF0004	0x00XXX0001	R

¹X indicates an undefined value.

IRQSIG reflects the status of the different IRQ sources. If a peripheral generates an IRQ signal, the corresponding bit in the IRQSIG is set; otherwise, it is cleared. The IRQSIG bits are cleared when the interrupt in the particular peripheral is cleared. All IRQ sources can be masked in the IRQEN MMR. IRQSIG is read only.

Table 163. IRQEN Register

Name	Address	Default Value	Access
IRQEN	0xFFFF0008	0x0000000	R/W

IRQEN provides the value of the current enable mask. When each bit is set to 1, the source request is enabled to create an IRQ exception. When each bit is set to 0, the source request is disabled or masked, which does not create an IRQ exception.

Note that to clear an already enabled interrupt source, the user must set the appropriate bit in the IRQCLR register. Clearing an interrupt's IRQEN bit does not disable the interrupt.

Table 164. IRQCLR Register

Name	Address	Default Value	Access
IRQCLR	0xFFFF000C	0x0000000	W

IRQCLR (write-only register) clears the IRQEN register in order to mask an interrupt source. Each bit set to 1 clears the corresponding bit in the IRQEN register without affecting the remaining bits. The pair of registers, IRQEN and IRQCLR, independently manipulates the enable mask without requiring an atomic read-modify-write.

Data Sheet

FIQ

The fast interrupt request (FIQ) is the exception signal to enter the FIQ mode of the processor. It is provided to service data transfer or communication channel tasks with low latency. The FIQ interface is identical to the IRQ interface providing the second-level interrupt (highest priority). Four 32-bit registers are dedicated to FIQ: FIQSIG, FIQEN, FIQCLR, and FIQSTA.

Table 165. FIQSTA Register

Name	Address	Default Value	Access
FIQSTA	0xFFFF0100	0x0000000	R

Table 166. FIQSIG Register

Name	Address	Default Value	Access
FIQSIG	0xFFFF0104	0x00XXX0001	R
A			

¹X indicates an undefined value.

Table 167. FIQEN Register

Name	Address	Default Value	Access
FIQEN	0xFFFF0108	0x0000000	R/W

Table 168. FIQCLR Register

Name	Address	Default Value	Access
FIQCLR	0xFFFF010C	0x0000000	W

Bit 31 to Bit 1 of FIQSTA are logically OR'd to create the FIQ signal to the core and to Bit 0 of both the FIQ and IRQ registers (FIQ source).

The logic for FIQEN and IRQEN does not allow an interrupt source to be enabled in both IRQ and FIQ masks. A bit set to 1 in FIQEN does, as a side effect, clear the same bit in IRQEN. Also, a bit set to 1 in IRQEN does, as a side effect, clear the same bit in FIQEN. An interrupt source can be disabled in both the IRQEN and FIQEN masks.

Note that to clear an already enabled FIQ source, the user must set the appropriate bit in the FIQCLR register. Clearing an interrupt's FIQEN bit does not disable the interrupt.

Programmed Interrupts

Because the programmed interrupts are nonmaskable, they are controlled by another register, SWICFG, which simultaneously writes into the IRQSTA and IRQSIG registers and/or the FIQSTA and FIQSIG registers. The 32-bit SWICFG register is dedicated to software interrupts(see Table 170). This MMR allows the control of a programmed source interrupt.

Table 169. SWICFG Register

Name	Address	Default Value	Access
SWICFG	0xFFFF0010	0x0000000	W

Table 170. SWICFG MMR Bit Descriptions

Bit	Description
31:3	Reserved.
2	Programmed interrupt (FIQ). Setting/clearing this bit corresponds with setting/clearing Bit 1 of FIQSTA and FIQSIG.
1	Programmed interrupt (IRQ). Setting/clearing this bit corresponds with setting/clearing Bit 1 of IRQSTA and IRQSIG.
0	Reserved.

Note that any interrupt signal must be active for at least the equivalent of the interrupt latency time, which is detected by the interrupt controller and by the user in the IRQSTA/FIQSTA register.

TIMERS

The ADuC7019/20/21/22/24/25/26/27/28/29 have four general-purpose timer/counters.

- Timer0
- Timer1
- Timer2 or wake-up timer
- Timer3 or watchdog timer

These four timers in their normal mode of operation can be either free running or periodic.

In free-running mode, the counter decreases from the maximum value until zero scale and starts again at the minimum value. (It also increases from the minimum value until full scale and starts again at the maximum value.)

In periodic mode, the counter decrements/increments from the value in the load register (TxLD MMR) until zero/full scale and starts again at the value stored in the load register.

The timer interval is calculated as follows:

If the timer is set to count down then

$$Interval = \frac{(TxLD) \times Prescaler}{Source Clock}$$

If the timer is set to count up, then

$$Interval = \frac{(Fs - TxLD) \times Prescaler}{Source Clock}$$

The value of a counter can be read at any time by accessing its value register (TxVAL). Note that when a timer is being clocked from a clock other than core clock, an incorrect value may be read (due to an asynchronous clock system). In this configuration, TxVAL should always be read twice. If the two readings are different, it should be read a third time to get the correct value.

Timers are started by writing in the control register of the corresponding timer (TxCON).

Figure 84. External Memory Read Cycle with Address Hold and Bus Turn Cycles

GROUNDING AND BOARD LAYOUT RECOMMENDATIONS

As with all high resolution data converters, special attention must be paid to grounding and PC board layout of the ADuC7019/20/21/22/24/25/26/27/28/29-based designs to achieve optimum performance from the ADCs and DAC.

Although the parts have separate pins for analog and digital ground (AGND and IOGND), the user must not tie these to two separate ground planes unless the two ground planes are connected very close to the part. This is illustrated in the simplified example shown in Figure 91a. In systems where digital and analog ground planes are connected together somewhere else (at the system power supply, for example), the planes cannot be reconnected near the part because a ground loop results. In these cases, tie all the ADuC7019/20/21/22/24/25/26/27/28/29 AGND and IOGND pins to the analog ground plane, as illustrated in Figure 91b. In systems with only one ground plane, ensure that the digital and analog components are physically separated onto separate halves of the board so that digital return currents do not flow near analog circuitry (and vice versa).

The ADuC7019/20/21/22/24/25/26/27/28/29 can then be placed between the digital and analog sections, as illustrated in Figure 91c.

Figure 91. System Grounding Schemes

In all of these scenarios, and in more complicated real-life applications, the user should pay particular attention to the flow of current from the supplies and back to ground. Make sure the return paths for all currents are as close as possible to the paths the currents took to reach their destinations. For example, do not power components on the analog side (as seen in Figure 91b) with IOV_{DD} because that forces return currents from IOV_{DD} to flow through AGND. Avoid digital currents flowing under analog circuitry, which can occur if a noisy digital chip is placed on the left half of the board (shown in Figure 91c). If possible, avoid large discontinuities in the ground plane(s) such as those formed by a long trace on the same layer because they force return signals to travel a longer path. In addition, make all connections to the ground plane directly, with little or no trace separating the pin from its via to ground.

When connecting fast logic signals (rise/fall time < 5 ns) to any of the ADuC7019/20/21/22/24/25/26/27/28/29 digital inputs, add a series resistor to each relevant line to keep rise and fall times longer than 5 ns at the part's input pins. A value of 100 Ω or 200 Ω is usually sufficient to prevent high speed signals from coupling capacitively into the part and affecting the accuracy of ADC conversions.

CLOCK OSCILLATOR

The clock source for the ADuC7019/20/21/22/24/25/26/27/28/29 can be generated by the internal PLL or by an external clock input. To use the internal PLL, connect a 32.768 kHz parallel resonant crystal between XCLKI and XCLKO, and connect a capacitor from each pin to ground as shown in Figure 92. The crystal allows the PLL to lock correctly to give a frequency of 41.78 MHz. If no external crystal is present, the internal oscillator is used to give a typical frequency of 41.78 MHz ± 3%.

Figure 92. External Parallel Resonant Crystal Connections

To use an external source clock input instead of the PLL (see Figure 93), Bit 1 and Bit 0 of PLLCON must be modified. The external clock uses P0.7 and XCLK.

Figure 93. Connecting an External Clock Source

Using an external clock source, the ADuC7019/20/21/22/24/ 25/26/27/28/29-specified operational clock speed range is 50 kHz to 44 MHz \pm 1%, which ensures correct operation of the analog peripherals and Flash/EE.

4955-047