

Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

| Product Status             | Last Time Buy                                                                    |
|----------------------------|----------------------------------------------------------------------------------|
| Core Processor             | R8C                                                                              |
| Core Size                  | 16-Bit                                                                           |
| Speed                      | 20MHz                                                                            |
| Connectivity               | I <sup>2</sup> C, LINbus, SIO, SSU, UART/USART, USB                              |
| Peripherals                | POR, PWM, Voltage Detect, WDT                                                    |
| Number of I/O              | 30                                                                               |
| Program Memory Size        | 32KB (32K x 8)                                                                   |
| Program Memory Type        | FLASH                                                                            |
| EEPROM Size                | -                                                                                |
| RAM Size                   | 4K x 8                                                                           |
| Voltage - Supply (Vcc/Vdd) | 1.8V ~ 5.5V                                                                      |
| Data Converters            | -                                                                                |
| Oscillator Type            | Internal                                                                         |
| Operating Temperature      | -20°C ~ 85°C (TA)                                                                |
| Mounting Type              | Surface Mount                                                                    |
| Package / Case             | 40-WFQFN Exposed Pad                                                             |
| Supplier Device Package    | 40-HWQFN (6x6)                                                                   |
| Purchase URL               | https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f213m6unnp-w0 |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

# 1.1.3 Specifications

Tables 1.2 and 1.3 outline the Specifications for R8C/3MU Group, R8C/3MK Group.

# Table 1.2 Specifications for R8C/3MU Group, R8C/3MK Group (1)

| ltem                           | Function                | Specification                                                                                    |  |  |  |
|--------------------------------|-------------------------|--------------------------------------------------------------------------------------------------|--|--|--|
| CPU                            | Central processing      | R8C CPU core                                                                                     |  |  |  |
|                                | unit                    | Number of fundamental instructions: 89                                                           |  |  |  |
|                                |                         | Minimum instruction execution time:                                                              |  |  |  |
|                                |                         | 50 ns (f(XIN) = 20 MHz, VCC = 2.7 to 5.5 V)                                                      |  |  |  |
|                                |                         | 200 ns (f(XIN) = 5 MHz, VCC = 1.8 to 5.5 V)                                                      |  |  |  |
|                                |                         | • Multiplier: 16 bits $\times$ 16 bits $\rightarrow$ 32 bits                                     |  |  |  |
|                                |                         | • Multiply-accumulate instruction: 16 bits $\times$ 16 bits + 32 bits $\rightarrow$ 32 bits      |  |  |  |
|                                |                         | <ul> <li>Operation mode: Single-chip mode (address space: 1 Mbyte)</li> </ul>                    |  |  |  |
| Memory                         | ROM, RAM,<br>Data flash | Refer to Table 1.4 Product List for R8C/3MU Group, and Table 1.5 Product List for R8C/3MK Group. |  |  |  |
| Power Supply                   | Voltage detection       | Power-on reset                                                                                   |  |  |  |
| Voltage                        | circuit                 | <ul> <li>Voltage detection 3 (detection level of voltage detection 0 and voltage</li> </ul>      |  |  |  |
| Detection                      |                         | detection 1 selectable)                                                                          |  |  |  |
| I/O Ports                      | Programmable I/O        | CMOS I/O ports: 30, selectable pull-up resistor                                                  |  |  |  |
|                                | ports                   | High current drive ports: 30                                                                     |  |  |  |
| Clock                          | Clock generation        | • 4 circuits: XIN clock oscillation circuit,                                                     |  |  |  |
|                                | circuits                | High-speed on-chip oscillator (with frequency adjustment function),                              |  |  |  |
|                                |                         | Low-speed on-chip oscillator                                                                     |  |  |  |
|                                |                         | PLL frequency synthesizer                                                                        |  |  |  |
|                                |                         | <ul> <li>Oscillation stop detection: XIN clock oscillation stop detection function</li> </ul>    |  |  |  |
|                                |                         | <ul> <li>Frequency divider circuit: Dividing selectable 1, 2, 4, 8, and 16</li> </ul>            |  |  |  |
|                                |                         | <ul> <li>Low power consumption modes:</li> </ul>                                                 |  |  |  |
|                                |                         | Standard operating mode (XIN clock, PLL frequency synthesizer, high-speed                        |  |  |  |
|                                |                         | on-chip oscillator, low-speed on-chip oscillator), wait mode, stop mode                          |  |  |  |
| Interrupts                     |                         | Interrupt Vectors: 69                                                                            |  |  |  |
|                                |                         | <ul> <li>External: 9 sources (INT × 5, key input × 4)</li> </ul>                                 |  |  |  |
|                                |                         | Priority levels: 7 levels                                                                        |  |  |  |
| Watchdog Tim                   | er                      | <ul> <li>14 bits × 1 (with prescaler)</li> </ul>                                                 |  |  |  |
|                                |                         | Reset start selectable                                                                           |  |  |  |
|                                | 1                       | Low-speed on-chip oscillator for watchdog timer selectable                                       |  |  |  |
| DTC (Data                      | R8C/3MU Group           | • 1 channel                                                                                      |  |  |  |
| Transfer                       |                         | Activation sources: 25                                                                           |  |  |  |
| Controller)                    |                         | Iranster modes: 2 (normal mode, repeat mode)                                                     |  |  |  |
|                                | R8C/3MK Group           | • 1 channel                                                                                      |  |  |  |
|                                |                         | Activation sources: 26                                                                           |  |  |  |
|                                |                         | Transfer modes: 2 (normal mode, repeat mode)                                                     |  |  |  |
| Timer                          | Timer RA                | 8 bits × 1 (with 8-bit prescaler)                                                                |  |  |  |
|                                |                         | Timer mode (period timer), pulse output mode (output level inverted every                        |  |  |  |
|                                |                         | period), event counter mode, pulse width measurement mode, pulse period                          |  |  |  |
|                                |                         | measurement mode                                                                                 |  |  |  |
|                                | Timer RB                | 8 bits x 1 (with 8-bit prescaler)                                                                |  |  |  |
|                                |                         | output) programmable one shet generation mode, programmable wait one                             |  |  |  |
|                                |                         | shot deperation mode                                                                             |  |  |  |
|                                | Timor BC                | 16 bits x 1 (with 4 conture/compare registers)                                                   |  |  |  |
|                                | Timer KC                | Timer mode (input capture function, output compare function), PW/M mode                          |  |  |  |
|                                |                         | (output 3 pins) DWM2 mode (DWM output pin)                                                       |  |  |  |
| Serial                         |                         | Clock synchronous serial I/O/LIART v 3 channel                                                   |  |  |  |
| Interface                      | LIART3                  | CIUCK SYNCHIUNUUS SCHALI/U/UARTIX S CHAINNEI                                                     |  |  |  |
| menace                         |                         | Clock synchronous parial I/O LIAPT multiprocessor communication function                         |  |  |  |
| O un ob r                      |                         | Clock Synchronous Senari /O, OAK I, multiprocessor communication function                        |  |  |  |
| Synchronous S<br>Communication | n Unit (SSU)            | 1 (shared with I <sup>2</sup> C bus)                                                             |  |  |  |
| I <sup>2</sup> C bus           |                         | 1 (shared with SSU)                                                                              |  |  |  |
| LIN Module                     |                         | Hardware LIN: 1 (timer RA. UART0)                                                                |  |  |  |



# 1.4 Pin Assignment

Figures 1.5 and 1.6 show Pin Assignment (Top View) of Each Group. Table 1.6 outlines the Pin Name Information by Pin Number.



Figure 1.5 Pin Assignment (Top View) of R8C/3MU Group



Tables 1.7 and 1.8 list Pin Functions.

| Table 1.7 | Pin Functions ( | 1) |
|-----------|-----------------|----|
|-----------|-----------------|----|

| Item                 | Pin Name                          | I/O Type | Description                                                   |
|----------------------|-----------------------------------|----------|---------------------------------------------------------------|
| Power supply input   | VCC, VSS                          | _        | Apply 1.8 to 5.5 V to the VCC pin.                            |
|                      |                                   |          | Apply 0 V to the VSS pin.                                     |
| Analog power         | AVCC, AVSS <sup>(2)</sup>         | —        | Power supply for the A/D converter.                           |
| supply input         |                                   |          | Connect a capacitor between AVCC and AVSS.                    |
| Reset input          | RESET                             | I        | Input "L" on this pin resets the MCU.                         |
| MODE                 | MODE                              | I        | Connect this pin to VCC via a resistor.                       |
| XIN clock input      | XIN                               | I        | These pins are provided for XIN clock generation circuit I/O. |
| XIN clock output     | XOUT                              | I/O      | Connect a ceramic resonator or a crystal oscillator between   |
|                      |                                   |          | the XIN and XOUT pins. <sup>(1)</sup>                         |
|                      |                                   |          | To use an external clock, input it to the XOUT pin and leave  |
|                      |                                   |          | the XIN pin open.                                             |
| INT interrupt input  | INT0 to INT4                      | I        | INT interrupt input pins.                                     |
| Key input interrupt  | KI0 to KI3                        | I        | Key input interrupt input pins.                               |
| Timer RA             | TRAIO                             | I/O      | Timer RA I/O pin.                                             |
|                      | TRAO                              | 0        | Timer RA output pin.                                          |
| Timer RB             | TRBO                              | 0        | Timer RB output pin.                                          |
| Timer RC             | TRCCLK                            | I        | External clock input pin.                                     |
|                      | TRCTRG                            | I        | External trigger input pin.                                   |
|                      | TRCIOA, TRCIOB,<br>TRCIOC, TRCIOD | I/O      | Timer RC I/O pins.                                            |
| Serial interface     | CLK0, CLK1, CLK2,                 | I/O      | Transfer clock I/O pins.                                      |
|                      |                                   |          | Carial data input nina                                        |
|                      | RXD0, RXD1, RXD2,<br>RXD3         |          | Senai data input pins.                                        |
|                      | TXD0, TXD1, TXD2,<br>TXD3         | 0        | Serial data output pins.                                      |
|                      | CTS2                              | I        | Transmission control input pin.                               |
|                      | RTS2                              | 0        | Reception control output pin.                                 |
| SSU                  | SSI                               | I/O      | Data I/O pin.                                                 |
|                      | SCS                               | I/O      | Chip-select signal I/O pin.                                   |
|                      | SSCK                              | I/O      | Clock I/O pin.                                                |
|                      | SSO                               | I/O      | Data I/O pin.                                                 |
| I <sup>2</sup> C bus | SCL                               | I/O      | Clock I/O pin.                                                |
|                      | SDA                               | I/O      | Data I/O pin.                                                 |

I: Input O: Output I/O: Input and output

Notes:

1. Refer to the oscillator manufacturer for oscillation characteristics.

2. This pin is not available in the R8C/3MU Group.



# 3. Memory

# 3.1 R8C/3MU Group

Figure 3.2 is a Memory Map of R8C/3MU Group. The R8C/3MU Group has a 1-Mbyte address space from addresses 00000h to FFFFFh. For example, a 64-Kbyte internal ROM area is allocated addresses 04000h to 13FFFh. The fixed interrupt vector table is allocated addresses 0FFDCh to 0FFFFh. The starting address of each interrupt routine is stored here.

The internal ROM (data flash) is allocated addresses 03000h to 03FFFh.

The internal RAM is allocated higher addresses, beginning with address 00400h. For example, a 8-Kbyte internal RAM area is allocated addresses 00400h to 023FFh. The internal RAM is used not only for data storage but also as a stack area when a subroutine is called or when an interrupt request is acknowledged.

Special function registers (SFRs) are allocated addresses 00000h to 002FFh and 02C00h to 02FFFh (the SFR areas for the DTC and other modules). Peripheral function control registers are allocated here. All unallocated spaces within the SFRs are reserved and cannot be accessed by users.



Figure 3.1 Memory Map of R8C/3MU Group



| 2F00h         USB Module Control Register         USBMC         00X10000b           2F01h         PLL Control Register 0         PLC0         0010X000b           2F02h         PLL Control Register 1         PLC1         00001100b           2F03h         PLL Division Control Register         PLDIV         00001011b           2F04h               2F05h               2F06h               2F07h               2F08h               2F08h               2F08h               2F08h               2F08h               2F09h               2F0Ah | eset |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 2F01h         PLL Control Register 0         PLC0         0010X000b           2F02h         PLL Control Register 1         PLC1         00001100b           2F03h         PLL Division Control Register         PLDIV         00001011b           2F04h              2F05h               2F06h               2F07h               2F08h               2F08h               2F08h               2F08h               2F08h               2F09h          2F0Ah                                                                                           |      |
| 2F02h         PLL Control Register 1         PLC1         00001100b           2F03h         PLL Division Control Register         PLDIV         00001011b           2F04h              2F05h              2F06h              2F07h              2F08h              2F08h              2F08h              2F08h              2F08h              2F08h              2F09h              2F0Ah                                                                                                                                                          |      |
| 2F03h         PLL Division Control Register         PLDIV         00001011b           2F04h                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      |
| 2F04h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |
| 2F05h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |
| 2F06h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |
| 2F07h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |
| 2F08h         2F09h           2F0Ah         2F0Ah                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      |
| 2F09h<br>2F0Ah                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      |
| 2F0Ah                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |
| 2F0Bh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |
| 2F0Ch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |
| 2F0Dh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |
| 2F0Eh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |
| 2F0Fh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |
| 2F10h USB Pin Select Register 0 USBSR0 00h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |
| 2F11h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |
| 2F12h UART3 Pin Select Register U3SR 00h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |
| 2F13h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |
| 2F14h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |
| 2F15h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |
| 2F16h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |
| 2F17h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |
| 2F18h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |
| 2F19h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |
| 2F1Ah                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |
| 2F1Bh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |
| 2F1Ch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |
| 2F1Dh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |
| 2F1Eh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |
| 2F1Fh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |

### Table 4.15SFR Information (15) (1)

2FFFh

X: Undefined Note:

1. The blank areas are reserved and cannot be accessed by users.

#### Table 4.16 ID Code Areas and Option Function Select Area

| Address | Area Name                         | Symbol | After Reset |
|---------|-----------------------------------|--------|-------------|
| :       |                                   |        |             |
| FFDBh   | Option Function Select Register 2 | OFS2   | (Note 1)    |
| :       |                                   |        |             |
| FFDFh   | ID1                               |        | (Note 2)    |
| :       |                                   |        |             |
| FFE3h   | ID2                               |        | (Note 2)    |
| :       |                                   |        |             |
| FFEBh   | ID3                               |        | (Note 2)    |
| :       |                                   |        |             |
| FFEFh   | ID4                               |        | (Note 2)    |
| :       |                                   |        |             |
| FFF3h   | ID5                               |        | (Note 2)    |
| :       |                                   |        |             |
| FFF7h   | ID6                               |        | (Note 2)    |
| :       |                                   |        |             |
| FFFBh   | ID7                               |        | (Note 2)    |
| :       |                                   |        |             |
| FFFFh   | Option Function Select Register   | OFS    | (Note 1)    |

Notes:

1. The option function select area is allocated in the flash memory, not in the SFRs. Set appropriate values as ROM data by a program. Do not write additions to the option function select area. If the block including the option function select area is erased, the option function select area is set to FFh.

When blank products are shipped, the option function select area is set to FFh. It is set to the written value after written by the user. When factory-programming products are shipped, the value of the option function select area is the value programmed by the user.

2. The ID code areas are allocated in the flash memory, not in the SFRs. Set appropriate values as ROM data by a program. Do not write additions to the ID code areas. If the block including the ID code areas is erased, the ID code areas are set to FFh. When blank products are shipped, the ID code areas are set to FFh. They are set to the written value after written by the user. When factory-programming products are shipped, the value of the ID code areas is the value programmed by the user.



| Symbol       | Parameter                  |            | Conditions             |                        | Standard                                           | 1        | Lloit              |          |      |
|--------------|----------------------------|------------|------------------------|------------------------|----------------------------------------------------|----------|--------------------|----------|------|
| Symbol       |                            | Г          | arameter               |                        | Conditions                                         | Min.     | Тур.               | Max.     | Onit |
| Vcc          | Supply voltage             | When L     | JSB function           | is used                |                                                    | 3.0      | 5.0                | 5.5      | V    |
|              |                            | When L     | JSB function           | is not used            |                                                    | 1.8      | 5.0                | 5.5      | V    |
| UVcc         | USB Supply                 | When L     | JSB function           | is used                | Vcc = 3.0 to 3.6 V                                 | —        | Vcc <sup>(4)</sup> | —        | V    |
|              | Voltage (When              | When L     | JSB function           | is not used            | Vcc = 1.8 to 5.5 V                                 | —        | Vcc (4)            |          | V    |
|              | UVCC pin is                |            |                        |                        |                                                    |          |                    |          |      |
| Vee          | Supply voltage             |            |                        |                        |                                                    |          | 0                  |          | V    |
| V SS<br>Vill | Input "H" voltage          | Other th   |                        | aput                   |                                                    |          | 0                  | <br>Vcc  | V    |
| VIN          | input in voltage           |            |                        | Input level selection: | $40V \leq Vcc \leq 55V$                            | 0.0 VCC  |                    | Vcc      | V    |
|              |                            | input      | switching              | 0.35 Vcc               | $27 V \le V \le 40 V$                              | 0.55 Vcc |                    | Vcc      | V    |
|              |                            |            | function               |                        | $1.8 V \le Vcc \le 2.7 V$                          | 0.65 Vcc | _                  | Vcc      | V    |
|              |                            |            | (I/O port)             | Input level selection: | 4.0 V < Vcc < 5.5 V                                | 0.65 Vcc |                    | Vcc      | V    |
|              |                            |            | ,                      | 0.5 Vcc                | $2.7 V \le Vcc < 4.0 V$                            | 0.7 Vcc  |                    | Vcc      | V    |
|              |                            |            |                        |                        | 1.8 V ≤ Vcc < 2.7 V                                | 0.8 Vcc  | _                  | Vcc      | V    |
|              |                            |            |                        | Input level selection: | $4.0 \text{ V} \leq \text{Vcc} \leq 5.5 \text{ V}$ | 0.85 Vcc | _                  | Vcc      | V    |
|              |                            |            |                        | 0.7 Vcc                | $2.7 \text{ V} \leq \text{Vcc} < 4.0 \text{ V}$    | 0.85 Vcc |                    | Vcc      | V    |
|              |                            |            |                        |                        | $1.8 \text{ V} \le \text{Vcc} < 2.7 \text{ V}$     | 0.85 Vcc | _                  | Vcc      | V    |
|              |                            | Externa    | nal clock input (XOUT) |                        |                                                    | 1.2      | —                  | Vcc      | V    |
| VIL          | Input "L" voltage          | Other th   | nan CMOS ii            | nput                   |                                                    | 0        |                    | 0.2 Vcc  | V    |
|              |                            | CMOS       | Input level            | Input level selection: | $4.0 \text{ V} \leq \text{Vcc} \leq 5.5 \text{ V}$ | 0        |                    | 0.2 Vcc  | V    |
|              |                            | input      | switching              | 0.35 Vcc               | $2.7~V \leq V \text{CC} < 4.0~V$                   | 0        | _                  | 0.2 Vcc  | V    |
|              |                            |            | function               |                        | $1.8~V \leq V \text{CC} < 2.7~V$                   | 0        | _                  | 0.2 Vcc  | V    |
|              |                            |            | (I/O port)             | Input level selection: | $4.0~V \leq Vcc \leq 5.5~V$                        | 0        | —                  | 0.4 Vcc  | V    |
|              |                            |            |                        | 0.5 Vcc                | $2.7~V \leq Vcc < 4.0~V$                           | 0        | —                  | 0.3 Vcc  | V    |
|              |                            |            |                        |                        | $1.8~V \leq Vcc < 2.7~V$                           | 0        | —                  | 0.2 Vcc  | V    |
|              |                            |            |                        | Input level selection: | $4.0 \text{ V} \leq \text{Vcc} \leq 5.5 \text{ V}$ | 0        | —                  | 0.55 Vcc | V    |
|              |                            |            |                        | 0.7 Vcc                | $2.7 \text{ V} \leq \text{Vcc} < 4.0 \text{ V}$    | 0        | —                  | 0.45 Vcc | V    |
|              |                            |            |                        |                        | $1.8 V \le Vcc < 2.7 V$                            | 0        |                    | 0.35 Vcc | V    |
|              |                            | Externa    | I clock input          | (XOUT)                 |                                                    | 0        |                    | 0.4      | V    |
| IOH(sum)     | Peak sum output<br>current | "H″        | Sum of all             | pins IOH(peak)         |                                                    | _        | _                  | -160     | ΜA   |
| IOH(sum)     | Average sum out            | put "H"    | Sum of all             | pins IOH(avg)          |                                                    | —        | —                  | -80      | mA   |
|              | current                    |            |                        |                        |                                                    |          |                    |          |      |
| IOH(peak)    | Peak output "H" o          | current    | Drive capa             | city Low               |                                                    | —        |                    | -10      | mA   |
|              |                            |            | Drive capa             | city High              |                                                    | —        | —                  | -40      | mA   |
| IOH(avg)     | Average output "I          | -1"        | Drive capa             | city Low               |                                                    | —        | —                  | -5       | mA   |
|              | current                    |            | Drive capa             | city High              |                                                    | —        | —                  | -20      | mA   |
| IOL(sum)     | Peak sum output<br>current | "L"        | Sum of all             | pins IOL(peak)         |                                                    | —        | —                  | 160      | mA   |
| IOL(sum)     | Average sum out            | put "L"    | Sum of all             | pins IOL(avg)          |                                                    | —        | —                  | 80       | mA   |
|              | current                    |            |                        |                        |                                                    |          |                    |          |      |
| IOL(peak)    | Peak output "L" c          | urrent     | Drive capa             | city Low               |                                                    |          |                    | 10       | mA   |
| 1            | A                          | "          | Drive capa             | city High              |                                                    | —        |                    | 40       | mA   |
| IOL(avg)     | Average output "I          | -          | Drive capa             | city LOW               |                                                    |          |                    | 5        | mA   |
| form         | VIN clock input or         | aillation  | froquency              |                        | 271/21/002551/                                     | _        |                    | 20       |      |
| I(XIN)       | AIN CIOCK INPUL O          | scillation | nequency               |                        | $2.7  \forall \leq \forall CC \leq 3.3  \forall$   |          |                    | 20       |      |
| fOCO40M      | When used as the           |            | ourco for tim          | or $PC(3)$             | $1.0 V \ge V = V = 2.7 V$                          | 32       |                    |          | MH-7 |
| fOCO-F       | foco-E frequence           |            |                        |                        | 2.7 V = V00 = 5.5 V                                |          |                    | 20       | MH-7 |
| 1000-        |                            | У          |                        |                        | $2.7 V \ge V = 0.0 \ge 0.3 V$<br>18 V < V = 27 V   |          |                    | 5        | MH7  |
|              | System clock free          |            |                        |                        | $1.0 V \leq VCC \leq 2.7 V$                        |          |                    | 20       | MHZ  |
|              | Cystom clock field         | lacing     |                        |                        | 18V < V cc < 27V                                   |          |                    | 5        | MH7  |
| f(BCLK)      | CPU clock freque           | ency       |                        |                        | 2.7 V < V cc < 5.5 V                               |          |                    | 20       | MH7  |
|              |                            |            |                        |                        | 1.8 V < Vcc < 2.7 V                                |          |                    | 5        | MH7  |
| tsu(PLL)     | PLL frequency sv           | mthesize   | er stabilizatio        | n wait time            | $4.0 V \le Vcc < 5.5 V$                            |          |                    | 2        | ms   |
|              |                            |            |                        | 2.7 V < Vcc < 4.0 V    | <u> </u>                                           | <u> </u> | 3                  | ms       |      |

| Table 5.2 | Recommended | Operating | Conditions | (1) | ) |
|-----------|-------------|-----------|------------|-----|---|
|-----------|-------------|-----------|------------|-----|---|

1. Vcc = 1.8 to 5.5 V and T\_{opr} = –20 to 85 °C (N version), unless otherwise specified.

2. The average output current indicates the average value of current measured during 100 ms.

3. fOCO40M can be used as the count source for timer RC in the range of Vcc = 2.7 to 5.5 V.

4. Connect Vcc for the UVcc pin input.

| Symbol               | Parameter                                                              | Conditions                  |            | Linit |                             |       |
|----------------------|------------------------------------------------------------------------|-----------------------------|------------|-------|-----------------------------|-------|
| Symbol               | Min.                                                                   |                             | Тур.       | Max.  | Offic                       |       |
| —                    | Program/erase endurance (2)                                            |                             | 10,000 (3) | _     | —                           | times |
|                      | Byte program time<br>(program/erase endurance ≤ 1,000 times)           |                             | —          | 160   | 1500                        | μS    |
| —                    | Byte program time<br>(program/erase endurance > 1,000 times)           |                             | _          | 300   | 1500                        | μS    |
| —                    | Block erase time<br>(program/erase endurance ≤ 1,000 times)            |                             | _          | 0.2   | 1                           | S     |
|                      | Block erase time<br>(program/erase endurance > 1,000 times)            |                             | _          | 0.3   | 1                           | S     |
| td(SR-SUS)           | Time delay from suspend request until<br>suspend                       |                             | _          | _     | 5 + CPU clock<br>× 3 cycles | ms    |
| —                    | Interval from erase start/restart until<br>following suspend request   |                             | 0          | _     | —                           | μS    |
| —                    | Time from suspend until erase restart                                  |                             | —          | _     | 30 + CPU clock<br>× 1 cycle | μS    |
| td(CMDRST<br>-READY) | Time from when command is forcibly<br>stopped until reading is enabled |                             | -          | -     | 30 + CPU clock<br>× 1 cycle | μS    |
| —                    | Program, erase voltage                                                 |                             | 2.7        | _     | 5.5                         | V     |
| _                    | Read voltage                                                           |                             | 1.8        |       | 5.5                         | V     |
| -                    | Program, erase temperature                                             |                             | -20        |       | 85                          | °C    |
| —                    | Data hold time (7)                                                     | Ambient temperature = 55 °C | 20         | _     | _                           | year  |

### Table 5.6 Flash Memory (Data flash Block A to Block D) Electrical Characteristics

Notes:

1. Vcc = 2.7 to 5.5 V and Topr = -20 to 85 °C (N version), unless otherwise specified.

2. Definition of programming/erasure endurance

The programming and erasure endurance is defined on a per-block basis. If the programming and erasure endurance is n (n = 10,000), each block can be erased n times. For example, if 1,024 1-byte writes are performed to different addresses in block A, a 1 Kbyte block, and then the block is erased, the programming/erasure endurance still stands at one. However, the same address must not be programmed more than once per erase operation (overwriting prohibited).

3. Endurance to guarantee all electrical characteristics after program and erase. (1 to Min. value can be guaranteed.)

- 4. In a system that executes multiple programming operations, the actual erasure count can be reduced by writing to sequential addresses in turn so that as much of the block as possible is used up before performing an erase operation. For example, when programming groups of 16 bytes, the effective number of rewrites can be minimized by programming up to 128 groups before erasing them all in one operation. In addition, averaging the erasure endurance between blocks A to D can further reduce the actual erasure endurance. It is also advisable to retain data on the erasure endurance of each block and limit the number of erase operations to a certain number.
- 5. If an error occurs during block erase, attempt to execute the clear status register command, then execute the block erase command at least three times until the erase error does not occur.

6. Customers desiring program/erase failure rate information should contact their Renesas technical support representative.

7. The data hold time includes time that the power supply is off or the clock is not supplied.







| Symbol  | Parameter                                                                  | Condition                                                       |      | Lloit |      |      |
|---------|----------------------------------------------------------------------------|-----------------------------------------------------------------|------|-------|------|------|
| Symbol  | Falanletei                                                                 | Condition                                                       | Min. | Тур.  | Max. | Onit |
| Vdet2   | Voltage detection level Vdet2_0                                            | At the falling of Vcc                                           | 3.70 | 4.00  | 4.30 | V    |
| -       | Hysteresis width at the rising of Vcc in voltage<br>detection 2 circuit    |                                                                 | _    | 0.10  | —    | V    |
| -       | Voltage detection 2 circuit response time (2)                              | At the falling of Vcc from $5.0 \text{ V}$ to (Vdet2_0 - 0.1) V | _    | 20    | 150  | μS   |
| —       | Voltage detection circuit self power consumption                           | VCA27 = 1, Vcc = 5.0 V                                          |      | 1.7   | —    | μA   |
| td(E-A) | Waiting time until voltage detection circuit operation starts $^{\rm (3)}$ |                                                                 |      | _     | 100  | μS   |

- 1. The measurement condition is Vcc = 1.8 to 5.5 V and  $T_{opr}$  = -20 to 85 °C (N version).
- 2. Time until the voltage monitor 2 interrupt request is generated after the voltage passes Vdet2.
- 3. Necessary time until the voltage detection circuit operates after setting to 1 again after setting the VCA27 bit in the VCA2 register to 0.

 Table 5.10
 Power-on Reset Circuit <sup>(2)</sup>

| Symbol | Parameter                        | Condition |      | Linit |        |         |
|--------|----------------------------------|-----------|------|-------|--------|---------|
|        |                                  |           | Min. | Тур.  | Max.   | Unit    |
| trth   | External power Vcc rise gradient | (1)       | 0    | —     | 50,000 | mV/msec |

Notes:

1. The measurement condition is  $T_{opr}$  = -20 to 85 °C (N version), unless otherwise specified.

2. To use the power-on reset function, enable voltage monitor 0 reset by setting the LVDAS bit in the OFS register to 0.



tw(por) for 1 ms or more.

Figure 5.5 Power-on Reset Circuit Electrical Characteristics



| Symbol | Parameter                                          | Condition                           |        | Unit   |        |      |
|--------|----------------------------------------------------|-------------------------------------|--------|--------|--------|------|
| Symbol |                                                    | Condition                           | Min.   | Тур.   | Max.   | Onit |
| —      | High-speed on-chip oscillator frequency after      | Vcc = 1.8 V to 5.5 V                | 36.0   | 40     | 44.0   | MHz  |
|        | reset                                              |                                     |        |        |        |      |
|        | High-speed on-chip oscillator frequency when the   | Vcc = 1.8 V to 5.5 V                | 33.178 | 36.864 | 40.550 | MHz  |
|        | FRA4 register correction value is written into the |                                     |        |        |        |      |
|        | FRA1 register and the FRA5 register correction     |                                     |        |        |        |      |
|        | value into the FRA3 register <sup>(2)</sup>        |                                     |        |        |        |      |
|        | High-speed on-chip oscillator frequency when the   | Vcc = 1.8 V to 5.5 V                | 28.8   | 32     | 35.2   | MHz  |
|        | FRA6 register correction value is written into the |                                     |        |        |        |      |
|        | FRA1 register and the FRA7 register correction     |                                     |        |        |        |      |
|        | value into the FRA3 register                       |                                     |        |        |        |      |
| —      | Oscillation stability time                         | Vcc = 5.0 V, Topr = 25 $^{\circ}$ C | _      | 0.5    | 3      | ms   |
| -      | Self power consumption at oscillation              | Vcc = 5.0 V, Topr = 25 $^{\circ}$ C | _      | 400    | _      | μĀ   |

| Table 5.11 | High-speed On-Chip Oscillator Circuit Electrical Characteristics |
|------------|------------------------------------------------------------------|
|------------|------------------------------------------------------------------|

1. Vcc = 1.8 to 5.5 V and Topr = -20 to 85 °C (N version), unless otherwise specified.

2. This enables the setting errors of bit rates such as 9600 bps and 38400 bps to be 0% when the serial interface is used in UART mode.

## Table 5.12 Low-speed On-Chip Oscillator Circuit Electrical Characteristics

| Symbol | Parameter                              | Condition                           |      | Linit |      |      |
|--------|----------------------------------------|-------------------------------------|------|-------|------|------|
| Symbol | Farameter                              | Condition                           | Min. | Тур.  | Max. | Unit |
| fOCO-S | Low-speed on-chip oscillator frequency |                                     | 60   | 125   | 250  | kHz  |
| —      | Oscillation stability time             | VCC = 5.0 V, Topr = 25 $^{\circ}$ C | —    | 30    | 100  | μS   |
| —      | Self power consumption at oscillation  | VCC = 5.0 V, Topr = 25 °C           | _    | 2     | —    | μΑ   |

Note:

1. Vcc = 1.8 to 5.5 V and  $T_{opr}$  = -20 to 85 °C (N version), unless otherwise specified.

# Table 5.13 Power Supply Circuit Timing Characteristics

| Symbol  | Parameter                                           | Condition |      | Lloit |       |      |
|---------|-----------------------------------------------------|-----------|------|-------|-------|------|
| Symbol  | Falameter                                           | Condition | Min. | Тур.  | Max.  | Unit |
| td(P-R) | Time for internal power supply stabilization during |           | —    | _     | 2,000 | μS   |
|         | power-on <sup>(2)</sup>                             |           |      |       |       |      |

Notes:

1. The measurement condition is Vcc = 1.8 to 5.5 V and Topr = 25 °C.

2. Waiting time until the internal power supply generation circuit stabilizes during power-on.



| Cumbal        | Baramatar                   |            | Conditions                                         |            | Standard | Linit         |                     |
|---------------|-----------------------------|------------|----------------------------------------------------|------------|----------|---------------|---------------------|
| Symbol        | Parameter                   |            | Conditions                                         | Min.       | Тур.     | Max.          | Unit                |
| tsucyc        | SSCK clock cycle time       |            |                                                    | 4          | _        | —             | tCYC <sup>(2)</sup> |
| tнı           | SSCK clock "H" width        |            |                                                    | 0.4        | _        | 0.6           | tsucyc              |
| tLO           | SSCK clock "L" width        |            |                                                    | 0.4        | _        | 0.6           | tsucyc              |
| trise         | SSCK clock rising           | Master     |                                                    | —          | —        | 1             | tCYC (2)            |
|               | time                        | Slave      |                                                    | —          | _        | 1             | μs                  |
| tFALL         | SSCK clock falling          | Master     |                                                    | —          | _        | 1             | tCYC <sup>(2)</sup> |
|               | time                        | Slave      |                                                    | —          |          | 1             | μs                  |
| tsu           | SSO, SSI data input se      | etup time  |                                                    | 100        | _        | —             | ns                  |
| tн            | SSO, SSI data input he      | old time   |                                                    | 1          | _        | —             | tcyc (2)            |
| <b>t</b> LEAD | SCS setup time              | Slave      |                                                    | 1tcyc + 50 | _        | _             | ns                  |
| tlag          | SCS hold time               | Slave      |                                                    | 1tcyc + 50 | _        | —             | ns                  |
| top           | SSO, SSI data output        | delay time |                                                    | —          | _        | 1             | tCYC (2)            |
| tsa           | SSI slave access time       |            | $2.7 \text{ V} \leq \text{Vcc} \leq 5.5 \text{ V}$ | —          | _        | 1.5tcyc + 100 | ns                  |
|               |                             |            | $1.8~\text{V} \leq \text{Vcc} < 2.7~\text{V}$      | —          | _        | 1.5tcyc + 200 | ns                  |
| tOR           | tor SSI slave out open time |            | $2.7~V \leq Vcc \leq 5.5~V$                        | —          | —        | 1.5tcyc + 100 | ns                  |
|               |                             |            | $1.8 \text{ V} \le \text{Vcc} < 2.7 \text{ V}$     | _          | —        | 1.5tcyc + 200 | ns                  |

Timing Requirements of Synchronous Serial Communication Unit (SSU) Table 5.14

1. Vcc = 1.8 to 5.5 V, Vss = 0 V, and T<sub>opr</sub> = -20 to 85 °C (N version), unless otherwise specified. 2. 1tcvc = 1/f1(s)





I/O Timing of Synchronous Serial Communication Unit (SSU) (Master) Figure 5.6



| Table 5.17 | Electrical Characteristics (2) [3.3 V $\leq$ Vcc $\leq$ 5.5 V] |
|------------|----------------------------------------------------------------|
|            | (Topr = -20 to 85 °C (N version), unless otherwise specified.) |

| Symbol            | Parameter Condition                                               |                                          | Standard                                                                                                                                                                                                      |      |      | Unit |       |
|-------------------|-------------------------------------------------------------------|------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------|------|-------|
| Symbol            | i alametei                                                        |                                          | Condition                                                                                                                                                                                                     | Min. | Тур. | Max. | Offic |
| Icc               | Power supply current<br>(Vcc = 3.3 to 5.5 V)<br>Single-chip mode, | High-speed<br>clock mode                 | XIN = 20 MHz (square wave)<br>High-speed on-chip oscillator off<br>Low-speed on-chip oscillator on = 125 kHz<br>No division                                                                                   | _    | 6.5  | 15   | mA    |
| other pins are Vs | output pins are open,<br>other pins are Vss                       |                                          | XIN = 16 MHz (square wave)<br>High-speed on-chip oscillator off<br>Low-speed on-chip oscillator on = 125 kHz<br>No division                                                                                   | _    | 5.3  | 12.5 | mA    |
|                   |                                                                   |                                          | XIN = 10 MHz (square wave)<br>High-speed on-chip oscillator off<br>Low-speed on-chip oscillator on = 125 kHz<br>No division                                                                                   | _    | 3.6  | _    | mA    |
|                   |                                                                   |                                          | XIN = 20 MHz (square wave)<br>High-speed on-chip oscillator off<br>Low-speed on-chip oscillator on = 125 kHz<br>Divide-by-8                                                                                   | -    | 3.0  | —    | mA    |
|                   |                                                                   |                                          | XIN = 16 MHz (square wave)<br>High-speed on-chip oscillator off<br>Low-speed on-chip oscillator on = 125 kHz<br>Divide-by-8                                                                                   | —    | 2.2  | —    | mA    |
|                   |                                                                   |                                          | XIN = 10 MHz (square wave)<br>High-speed on-chip oscillator off<br>Low-speed on-chip oscillator on = 125 kHz<br>Divide-by-8                                                                                   | —    | 1.5  | _    | mA    |
|                   |                                                                   | High-speed<br>on-chip<br>oscillator mode | XIN clock off<br>High-speed on-chip oscillator on fOCO-F = 20 MHz<br>Low-speed on-chip oscillator on = 125 kHz<br>No division                                                                                 | _    | 7.0  | 15   | mA    |
|                   |                                                                   |                                          | XIN clock off<br>High-speed on-chip oscillator on fOCO-F = 20 MHz<br>Low-speed on-chip oscillator on = 125 kHz<br>Divide-by-8                                                                                 | _    | 3.0  | _    | mA    |
|                   |                                                                   |                                          | XIN clock off<br>High-speed on-chip oscillator on fOCO-F = 4 MHz<br>Low-speed on-chip oscillator on = 125 kHz<br>Divide-by-16, MSTIIC=MSTTRC=1                                                                | _    | 1    | _    | mA    |
|                   |                                                                   | Low-speed<br>on-chip<br>oscillator mode  | XIN clock off<br>High-speed on-chip oscillator off<br>Low-speed on-chip oscillator on = 125 kHz<br>Divide-by-8, FMR27 = 1, VCA20 = 0                                                                          | _    | 90   | 400  | μA    |
|                   |                                                                   | Wait mode                                | XIN clock off<br>High-speed on-chip oscillator off<br>Low-speed on-chip oscillator on = 125 kHz<br>While a WAIT instruction is executed<br>Peripheral clock operation<br>VCA27 = VCA26 = VCA25 = 0, VCA20 = 1 | _    | 15   | 100  | μΑ    |
|                   |                                                                   |                                          | XIN clock off<br>High-speed on-chip oscillator off<br>Low-speed on-chip oscillator on = 125 kHz<br>While a WAIT instruction is executed<br>Peripheral clock off<br>VCA27 = VCA26 = VCA25 = 0, VCA20 = 1       | _    | 4    | 90   | μΑ    |
|                   |                                                                   |                                          | XIN clock off<br>High-speed on-chip oscillator off<br>Low-speed on-chip oscillator off<br>While a WAIT instruction is executed<br>VCA27 = VCA26 = VCA25 = 0, VCA20 = 1                                        | _    | 3.5  | _    | μA    |
|                   |                                                                   | Stop mode                                | XIN clock off, Topr = 25 °C<br>High-speed on-chip oscillator off<br>Low-speed on-chip oscillator off<br>CM10 = 1<br>Peripheral clock off<br>VCA27 = VCA26 = VCA25 = 0                                         | _    | 2.0  | 5.0  | μΑ    |
|                   |                                                                   |                                          | XIN clock off, Topr = 85 °C<br>High-speed on-chip oscillator off<br>Low-speed on-chip oscillator off<br>CM10 = 1<br>Peripheral clock off<br>VCA27 = VCA26 = VCA25 = 0                                         | _    | 15   | _    | μΑ    |



| Symbol  | Parameter           |                                                                                                                                                                                                                                                   | Condition                                 |               | Standard  |      |      | Llnit |
|---------|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|---------------|-----------|------|------|-------|
| Symbol  | Fai                 | ameter                                                                                                                                                                                                                                            | Conditi                                   | Condition     |           | Тур. | Max. | Unit  |
| Voн     | Output "H" voltage  | Other than XOUT                                                                                                                                                                                                                                   | Drive capacity High $IOH = -5 \text{ mA}$ |               | Vcc - 0.5 | _    | Vcc  | V     |
|         |                     |                                                                                                                                                                                                                                                   | Drive capacity Low                        | Iон = -1 mA   | Vcc - 0.5 | _    | Vcc  | V     |
|         |                     | XOUT                                                                                                                                                                                                                                              |                                           | Іон = -200 μА | 1.0       | _    | Vcc  | V     |
| Vol     | Output "L" voltage  | Other than XOUT                                                                                                                                                                                                                                   | Drive capacity High                       | IoL = 5 mA    | —         | _    | 0.5  | V     |
|         |                     |                                                                                                                                                                                                                                                   | Drive capacity Low                        | IoL = 1 mA    | —         | _    | 0.5  | V     |
|         |                     | XOUT                                                                                                                                                                                                                                              |                                           | IoL = 200 μA  | —         | _    | 0.5  | V     |
| VT+-VT- | Hysteresis          | INTO, INT1, INT2,<br>INT3, INT4,<br>KI0, KI1, KI2, KI3,<br>TRAIO, TRCIOA,<br>TRCIOB, TRCIOC,<br>TRCIOD,<br>USB_VBUS,<br>TRCTRG, TRCCLK,<br>RXD0, RXD1, RXD2,<br>RXD3, CLK0, <u>CLK1,</u><br>CLK2, CLK3, CTS2,<br>SSI, SCL, SDA,<br>SSO, SSCK, SCS | Vcc = 3.0 V                               |               | 0.1       | 0.4  |      | V     |
|         |                     | RESET                                                                                                                                                                                                                                             | Vcc = 3.0 V                               |               | 0.1       | 0.5  | _    | V     |
| Ін      | Input "H" current   |                                                                                                                                                                                                                                                   | VI = 3 V, VCC = 3.0 V                     | /             | —         | _    | 4.0  | μA    |
| lı∟     | Input "L" current   |                                                                                                                                                                                                                                                   | VI = 0 V, VCC = 3.0 V                     | /             |           |      | -4.0 | μΑ    |
| RPULLUP | Pull-up resistance  |                                                                                                                                                                                                                                                   | VI = 0 V, Vcc = 3.0 V                     | /             | 42        | 84   | 168  | kΩ    |
| Rfxin   | Feedback resistance | XIN                                                                                                                                                                                                                                               |                                           |               | _         | 0.3  |      | MΩ    |
| Vram    | RAM hold voltage    |                                                                                                                                                                                                                                                   | During stop mode                          |               | 1.8       | _    | _    | V     |

| Table 5.22 | <b>Electrical Characteristics</b> | (3) [2.7 V $\leq$ VCC $<$ 4.2 V] |
|------------|-----------------------------------|----------------------------------|
|------------|-----------------------------------|----------------------------------|

1. 2.7 V  $\leq$  Vcc < 4.2 V, T<sub>opr</sub> = -20 to 85 °C (N version), and f(XIN) = 10 MHz, unless otherwise specified. 2. 3.0 V  $\leq$  Vcc < 3.6 V for the USB associated pins.



| Symbol               | Baramatar                                                            | Conditions                  |                      | Linit |                             |       |
|----------------------|----------------------------------------------------------------------|-----------------------------|----------------------|-------|-----------------------------|-------|
| Symbol               | Falameter                                                            | Conditions                  | Min.                 | Тур.  | Max.                        | Offic |
| —                    | Program/erase endurance (2)                                          |                             | 1,000 <sup>(3)</sup> | —     | —                           | times |
| —                    | Byte program time                                                    |                             | _                    | 80    | 500                         | μs    |
| —                    | Block erase time                                                     |                             | _                    | 0.3   | —                           | S     |
| td(SR-SUS)           | Time delay from suspend request until suspend                        |                             | —                    | _     | 5 + CPU clock<br>× 3 cycles | ms    |
| —                    | Interval from erase start/restart until<br>following suspend request |                             | 0                    | _     | —                           | μS    |
| _                    | Time from suspend until erase restart                                |                             | _                    | _     | 30 + CPU clock<br>× 1 cycle | μS    |
| td(CMDRST<br>-READY) | Time from when command is forcibly stopped until reading is enabled  |                             | -                    | -     | 30 + CPU clock<br>× 1 cycle | μS    |
| —                    | Program, erase voltage                                               |                             | 2.7                  | _     | 5.5                         | V     |
| —                    | Read voltage                                                         |                             | 1.8                  | _     | 5.5                         | V     |
| —                    | Program, erase temperature                                           |                             | 0                    |       | 60                          | °C    |
| -                    | Data hold time (7)                                                   | Ambient temperature = 55 °C | 20                   |       | _                           | year  |

**Table 5.39** Flash Memory (Program ROM) Electrical Characteristics

Notes: 1. Vcc = 2.7 to 5.5 V and  $T_{opr}$  = 0 to 60 °C, unless otherwise specified.

2. Definition of programming/erasure endurance

The programming and erasure endurance is defined on a per-block basis. If the programming and erasure endurance is n (n = 1,000), each block can be erased n times. For example, if 1,024 1-byte writes are performed to different addresses in block A, a 1 Kbyte block, and then the block is erased, the programming/erasure endurance still stands at one. However, the same address must not be programmed more than once per erase operation (overwriting prohibited).

3. Endurance to guarantee all electrical characteristics after program and erase. (1 to Min. value can be guaranteed.)

4. In a system that executes multiple programming operations, the actual erasure count can be reduced by writing to sequential addresses in turn so that as much of the block as possible is used up before performing an erase operation. For example, when programming groups of 16 bytes, the effective number of rewrites can be minimized by programming up to 128 groups before erasing them all in one operation. It is also advisable to retain data on the erasure endurance of each block and limit the number of erase operations to a certain number.

5. If an error occurs during block erase, attempt to execute the clear status register command, then execute the block erase command at least three times until the erase error does not occur.

6. Customers desiring program/erase failure rate information should contact their Renesas technical support representative.

7. The data hold time includes time that the power supply is off or the clock is not supplied.



| Symbol  | Paramotor                                                                    | Condition                                                       |      | Lloit |      |      |
|---------|------------------------------------------------------------------------------|-----------------------------------------------------------------|------|-------|------|------|
| Symbol  | Falanielei                                                                   | Condition                                                       | Min. | Тур.  | Max. | Unit |
| Vdet0   | Voltage detection level Vdet0_0 <sup>(2)</sup>                               |                                                                 | 1.80 | 1.90  | 2.05 | V    |
|         | Voltage detection level Vdet0_1 (2)                                          |                                                                 | 2.15 | 2.35  | 2.50 | V    |
|         | Voltage detection level Vdet0_2 <sup>(2)</sup>                               |                                                                 | 2.70 | 2.85  | 3.05 | V    |
|         | Voltage detection level Vdet0_3 (2)                                          |                                                                 | 3.55 | 3.80  | 4.05 | V    |
| —       | Voltage detection 0 circuit response time (4)                                | At the falling of Vcc from $5.0 \text{ V}$ to (Vdet0_0 - 0.1) V | _    | 6     | 150  | μS   |
| —       | Voltage detection circuit self power consumption                             | VCA25 = 1, Vcc = 5.0 V                                          | _    | 1.5   | —    | μA   |
| td(E-A) | Waiting time until voltage detection circuit operation starts <sup>(3)</sup> |                                                                 |      |       | 100  | μS   |

Table 5.41 Voltage Detection 0 Circuit Electrical Characteristics

1. The measurement condition is Vcc = 1.8 to 5.5 V and T\_{opr} = –20 to 85  $^\circ C$  (N version).

2. Select the voltage detection level with bits VDSEL0 and VDSEL1 in the OFS register.

3. Necessary time until the voltage detection circuit operates when setting to 1 again after setting the VCA25 bit in the VCA2 register to 0.

4. Time until the voltage monitor 0 reset is generated after the voltage passes Vdet0.

 Table 5.42
 Voltage Detection 1 Circuit Electrical Characteristics

| Symbol  | Parameter                                                                    | Condition                                                       |      | Unit |      |      |
|---------|------------------------------------------------------------------------------|-----------------------------------------------------------------|------|------|------|------|
| Symbol  | i arameter                                                                   | Condition                                                       | Min. | Тур. | Max. | Onit |
| Vdet1   | Voltage detection level Vdet1_0 <sup>(2)</sup>                               | At the falling of Vcc                                           | 2.00 | 2.20 | 2.40 | V    |
|         | Voltage detection level Vdet1_1 <sup>(2)</sup>                               | At the falling of Vcc                                           | 2.15 | 2.35 | 2.55 | V    |
|         | Voltage detection level Vdet1_2 <sup>(2)</sup>                               | At the falling of Vcc                                           | 2.30 | 2.50 | 2.70 | V    |
|         | Voltage detection level Vdet1_3 <sup>(2)</sup>                               | At the falling of Vcc                                           | 2.45 | 2.65 | 2.85 | V    |
|         | Voltage detection level Vdet1_4 <sup>(2)</sup>                               | At the falling of Vcc                                           | 2.60 | 2.80 | 3.00 | V    |
|         | Voltage detection level Vdet1_5 <sup>(2)</sup>                               | At the falling of Vcc                                           | 2.75 | 2.95 | 3.15 | V    |
|         | Voltage detection level Vdet1_6 <sup>(2)</sup>                               | At the falling of Vcc                                           | 2.85 | 3.10 | 3.40 | V    |
|         | Voltage detection level Vdet1_7 <sup>(2)</sup>                               | At the falling of Vcc                                           | 3.00 | 3.25 | 3.55 | V    |
|         | Voltage detection level Vdet1_8 <sup>(2)</sup>                               | At the falling of Vcc                                           | 3.15 | 3.40 | 3.70 | V    |
|         | Voltage detection level Vdet1_9 <sup>(2)</sup>                               | At the falling of Vcc                                           | 3.30 | 3.55 | 3.85 | V    |
|         | Voltage detection level Vdet1_A <sup>(2)</sup>                               | At the falling of Vcc                                           | 3.45 | 3.70 | 4.00 | V    |
|         | Voltage detection level Vdet1_B (2)                                          | At the falling of Vcc                                           | 3.60 | 3.85 | 4.15 | V    |
|         | Voltage detection level Vdet1_C (2)                                          | At the falling of Vcc                                           | 3.75 | 4.00 | 4.30 | V    |
|         | Voltage detection level Vdet1_D (2)                                          | At the falling of Vcc                                           | 3.90 | 4.15 | 4.45 | V    |
|         | Voltage detection level Vdet1_E (2)                                          | At the falling of Vcc                                           | 4.05 | 4.30 | 4.60 | V    |
|         | Voltage detection level Vdet1_F (2)                                          | At the falling of Vcc                                           | 4.20 | 4.45 | 4.75 | V    |
| —       | Hysteresis width at the rising of Vcc in voltage<br>detection 1 circuit      | Vdet1_0 to Vdet1_5<br>selected                                  | _    | 0.07 | —    | V    |
|         |                                                                              | Vdet1_6 to Vdet1_F<br>selected                                  |      | 0.10 | —    | V    |
| _       | Voltage detection 1 circuit response time (3)                                | At the falling of Vcc from $5.0 \text{ V}$ to (Vdet1_0 - 0.1) V |      | 60   | 150  | μS   |
| —       | Voltage detection circuit self power consumption                             | VCA26 = 1, Vcc = 5.0 V                                          | _    | 1.7  | _    | μA   |
| td(E-A) | Waiting time until voltage detection circuit operation starts <sup>(4)</sup> |                                                                 | _    |      | 100  | μS   |

Notes:

1. The measurement condition is Vcc = 1.8 to 5.5 V and T\_{opr} = -20 to 85  $^\circ C$  (N version).

2. Select the voltage detection level with bits VD1S0 to VD1S3 in the VD1LS register.

3. Time until the voltage monitor 1 interrupt request is generated after the voltage passes Vdet1.

4. Necessary time until the voltage detection circuit operates when setting to 1 again after setting the VCA26 bit in the VCA2 register to 0.



| Table 5.51 | Electrical Characteristics (2) [3.3 V $\leq$ Vcc $\leq$ 5.5 V] |
|------------|----------------------------------------------------------------|
|            | (Topr = -20 to 85 °C (N version), unless otherwise specified.) |

| Symbol Parameter |                                                                   |                                                                                                                             | Condition Standard                                                                                                                                                                                             | Standard |      | Unit |       |
|------------------|-------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------|------|-------|
| Symbol           | Falametei                                                         |                                                                                                                             | Condition                                                                                                                                                                                                      | Min.     | Тур. | Max. | Offic |
| Icc              | Power supply current<br>(Vcc = 3.3 to 5.5 V)<br>Single-chip mode, | High-speed<br>clock mode                                                                                                    | XIN = 20 MHz (square wave)<br>High-speed on-chip oscillator off<br>Low-speed on-chip oscillator on = 125 kHz<br>No division                                                                                    | _        | 6.5  | 15   | mA    |
|                  | output pins are open,<br>other pins are Vss                       |                                                                                                                             | XIN = 16 MHz (square wave)<br>High-speed on-chip oscillator off<br>Low-speed on-chip oscillator on = 125 kHz<br>No division                                                                                    | —        | 5.3  | 12.5 | mA    |
|                  |                                                                   |                                                                                                                             | XIN = 10 MHz (square wave)<br>High-speed on-chip oscillator off<br>Low-speed on-chip oscillator on = 125 kHz<br>No division                                                                                    |          | 3.6  |      | mA    |
|                  |                                                                   | XIN = 20 MHz (square wave)<br>High-speed on-chip oscillator off<br>Low-speed on-chip oscillator on = 125 kHz<br>Divide-by-8 | -                                                                                                                                                                                                              | 3.0      | _    | mA   |       |
|                  |                                                                   |                                                                                                                             | XIN = 16 MHz (square wave)<br>High-speed on-chip oscillator off<br>Low-speed on-chip oscillator on = 125 kHz<br>Divide-by-8                                                                                    | -        | 2.2  | _    | mA    |
|                  |                                                                   |                                                                                                                             | Divide-by-8<br>(IN = 10 MHz (square wave)<br>tigh-speed on-chip oscillator off<br>ow-speed on-chip oscillator on = 125 kHz<br>Divide-by-8<br>(IN clock off<br>tigh-speed on-chip oscillator on fOCO-F = 20 MHz | -        | 1.5  |      | mA    |
|                  |                                                                   | High-speed<br>on-chip<br>oscillator mode                                                                                    | XIN clock off<br>High-speed on-chip oscillator on fOCO-F = 20 MHz<br>Low-speed on-chip oscillator on = 125 kHz<br>No division                                                                                  | _        | 7.0  | 15   | mA    |
|                  |                                                                   |                                                                                                                             | XIN clock off<br>High-speed on-chip oscillator on fOCO-F = 20 MHz<br>Low-speed on-chip oscillator on = 125 kHz<br>Divide-by-8                                                                                  | _        | 3.0  | _    | mA    |
|                  |                                                                   |                                                                                                                             | XIN clock off<br>High-speed on-chip oscillator on fOCO-F = 4 MHz<br>Low-speed on-chip oscillator on = 125 kHz<br>Divide-by-16, MSTIIC = MSTTRC = 1                                                             | _        | 1    | _    | mA    |
|                  |                                                                   | Low-speed<br>on-chip<br>oscillator mode                                                                                     | XIN clock off<br>High-speed on-chip oscillator off<br>Low-speed on-chip oscillator on = 125 kHz<br>Divide-by-8, FMR27 = 1, VCA20 = 0                                                                           | -        | 90   | 400  | μA    |
|                  |                                                                   | Wait mode                                                                                                                   | XIN clock off<br>High-speed on-chip oscillator off<br>Low-speed on-chip oscillator on = 125 kHz<br>While a WAIT instruction is executed<br>Peripheral clock operation<br>VCA27 = VCA26 = VCA25 = 0, VCA20 = 1  | _        | 15   | 100  | μΑ    |
|                  |                                                                   |                                                                                                                             | XIN clock off<br>High-speed on-chip oscillator off<br>Low-speed on-chip oscillator on = 125 kHz<br>While a WAIT instruction is executed<br>Peripheral clock off<br>VCA27 = VCA26 = VCA25 = 0, VCA20 = 1        | _        | 4    | 90   | μΑ    |
|                  |                                                                   |                                                                                                                             | XIN clock off<br>High-speed on-chip oscillator off<br>Low-speed on-chip oscillator off<br>While a WAIT instruction is executed<br>VCA27 = VCA26 = VCA25 = 0, VCA20 = 1                                         | _        | 3.5  |      | μA    |
|                  |                                                                   | Stop mode                                                                                                                   | XIN clock off, Topr = 25 °C<br>High-speed on-chip oscillator off<br>Low-speed on-chip oscillator off<br>CM10 = 1<br>Peripheral clock off<br>VCA27 = VCA26 = VCA25 = 0                                          | _        | 2.0  | 5.0  | μΑ    |
|                  |                                                                   |                                                                                                                             | XIN clock off, Topr = 85 °C<br>High-speed on-chip oscillator off<br>Low-speed on-chip oscillator off<br>CM10 = 1<br>Peripheral clock off<br>VCA27 = VCA26 = VCA25 = 0                                          | _        | 15   | _    | μΑ    |



### Table 5.54Serial Interface

| Symbol   | Deromotor              | Stan | Linit |      |
|----------|------------------------|------|-------|------|
|          | Falanteter             |      | Max.  | Unit |
| tc(CK)   | CLKi input cycle time  | 200  | _     | ns   |
| tw(CKH)  | CLKi input "H" width   | 100  | _     | ns   |
| tw(CKL)  | CLKi input "L" width   | 100  | _     | ns   |
| td(C-Q)  | TXDi output delay time | _    | 50    | ns   |
| th(C-Q)  | TXDi hold time         | 0    | _     | ns   |
| tsu(D-C) | RXDi input setup time  | 50   | _     | ns   |
| th(C-D)  | RXDi input hold time   | 90   | _     | ns   |

i = 0 to 3



Figure 5.33 Serial Interface Timing Diagram when Vcc = 5 V

# Table 5.55External Interrupt $\overline{INTi}$ (i = 0 to 4) Input, Key Input Interrupt $\overline{Kli}$ (i = 0 to 3)

| Symbol  | Parameter                                 | Stan    | Lipit |      |
|---------|-------------------------------------------|---------|-------|------|
|         |                                           | Min.    | Max.  | Unit |
| tw(INH) | INTi input "H" width, Kli input "H" width | 250 (1) |       | ns   |
| tw(INL) | INTi input "L" width, Kli input "L" width |         | _     | ns   |

Notes:

1. When selecting the digital filter by the INTi input filter select bit, use an INTi input HIGH width of either (1/digital filter clock frequency × 3) or the minimum value of standard, whichever is greater.

2. When selecting the digital filter by the INTi input filter select bit, use an INTi input LOW width of either (1/digital filter clock frequency x 3) or the minimum value of standard, whichever is greater.



Figure 5.34 Input Timing Diagram for External Interrupt INTi and Key Input Interrupt Kli when Vcc = 5 V



# Timing requirements (Unless Otherwise Specified: Vcc = 3 V, Vss = 0 V, Topr = 25 °C)

## Table 5.58 External Clock Input (XOUT)

| Symbol    | Parameter             | Stan | Linit |      |
|-----------|-----------------------|------|-------|------|
|           |                       | Min. | Max.  | Unit |
| tc(XOUT)  | XOUT input cycle time | 50   | —     | ns   |
| twh(xout) | XOUT input "H" width  |      | —     | ns   |
| twl(xout) | XOUT input "L" width  | 24   | _     | ns   |



# Figure 5.35 External Clock Input Timing Diagram when Vcc = 3 V

### Table 5.59TRAIO Input

| Symbol     | Parameter              | Stan | Lloit |      |
|------------|------------------------|------|-------|------|
|            |                        | Min. | Max.  | Unit |
| tc(TRAIO)  | TRAIO input cycle time | 300  | _     | ns   |
| twh(traio) | TRAIO input "H" width  |      | _     | ns   |
| twl(traio) | TRAIO input "L" width  | 120  |       | ns   |



Figure 5.36 TRAIO Input Timing Diagram when Vcc = 3 V



| Table 5.63 | Electrical Characteristics (6) [1.8 V $\leq$ Vcc $<$ 2.7 V]    |
|------------|----------------------------------------------------------------|
|            | (Topr = -20 to 85 °C (N version), unless otherwise specified.) |

| Symbol | Parameter                                                                                  |                                          | Condition                                                                                                                                                                                                     | ;    | Standar | d    | Linit |
|--------|--------------------------------------------------------------------------------------------|------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------|------|-------|
| Symbol | Falameter                                                                                  |                                          | Condition                                                                                                                                                                                                     | Min. | Тур.    | Max. | Offic |
| Icc    | Power supply current<br>(Vcc = 1.8 to 2.7 V)<br>Single-chip mode,<br>output pins are open, | High-speed<br>clock mode                 | XIN = 5 MHz (square wave)<br>High-speed on-chip oscillator off<br>Low-speed on-chip oscillator on = 125 kHz<br>No division                                                                                    | _    | 2.2     |      | mA    |
|        | other pins are Vss                                                                         |                                          | XIN = 5 MHz (square wave)<br>High-speed on-chip oscillator off<br>Low-speed on-chip oscillator on = 125 kHz<br>Divide-by-8                                                                                    | _    | 0.8     | _    | mA    |
|        |                                                                                            | High-speed<br>on-chip<br>oscillator mode | XIN clock off<br>High-speed on-chip oscillator on fOCO-F = 5 MHz<br>Low-speed on-chip oscillator on = 125 kHz<br>No division                                                                                  | _    | 2.5     | 10   | mA    |
|        |                                                                                            |                                          | XIN clock off<br>High-speed on-chip oscillator on fOCO-F = 5 MHz<br>Low-speed on-chip oscillator on = 125 kHz<br>Divide-by-8                                                                                  | _    | 1.7     | _    | mA    |
|        |                                                                                            |                                          | XIN clock off<br>High-speed on-chip oscillator on fOCO-F = 4 MHz<br>Low-speed on-chip oscillator on = 125 kHz<br>Divide-by-16, MSTIIC = MSTTRC = 1                                                            | _    | 1       | _    | mA    |
|        |                                                                                            | Low-speed<br>on-chip<br>oscillator mode  | XIN clock off<br>High-speed on-chip oscillator off<br>Low-speed on-chip oscillator on = 125 kHz<br>Divide-by-8, FMR27 = 1, VCA20 = 0                                                                          | _    | 90      | 300  | μA    |
|        |                                                                                            | Wait mode                                | XIN clock off<br>High-speed on-chip oscillator off<br>Low-speed on-chip oscillator on = 125 kHz<br>While a WAIT instruction is executed<br>Peripheral clock operation<br>VCA27 = VCA26 = VCA25 = 0, VCA20 = 1 | _    | 15      | 90   | μΑ    |
|        |                                                                                            |                                          | XIN clock off<br>High-speed on-chip oscillator off<br>Low-speed on-chip oscillator on = 125 kHz<br>While a WAIT instruction is executed<br>Peripheral clock off<br>VCA27 = VCA26 = VCA25 = 0, VCA20 = 1       | _    | 4       | 80   | μΑ    |
|        |                                                                                            |                                          | XIN clock off<br>High-speed on-chip oscillator off<br>Low-speed on-chip oscillator off<br>While a WAIT instruction is executed<br>VCA27 = VCA26 = VCA25 = 0, VCA20 = 1                                        | _    | 3.5     | _    | μΑ    |
|        |                                                                                            | Stop mode                                | XIN clock off, Topr = 25 °C<br>High-speed on-chip oscillator off<br>Low-speed on-chip oscillator off<br>CM10 = 1<br>Peripheral clock off<br>VCA27 = VCA26 = VCA25 = 0                                         | _    | 2.0     | 5    | μΑ    |
|        |                                                                                            |                                          | XIN clock off, Topr = $85 ^{\circ}$ C<br>High-speed on-chip oscillator off<br>Low-speed on-chip oscillator off<br>CM10 = 1<br>Peripheral clock off<br>VCA27 = VCA26 = VCA25 = 0                               | _    | 15      |      | μΑ    |



#### Table 5.66Serial Interface

| Symbol   | Paramatar              | Stan | Unit |      |
|----------|------------------------|------|------|------|
|          | Falameter              |      | Max. | Unit |
| tc(CK)   | CLKi input cycle time  | 800  |      | ns   |
| tw(CKH)  | CLKi input "H" width   | 400  | _    | ns   |
| tw(CKL)  | CLKi input "L" width   | 400  | _    | ns   |
| td(C-Q)  | TXDi output delay time | _    | 200  | ns   |
| th(C-Q)  | TXDi hold time         | 0    | _    | ns   |
| tsu(D-C) | RXDi input setup time  | 150  | _    | ns   |
| th(C-D)  | RXDi input hold time   | 90   | —    | ns   |

i = 0 to 3



# Figure 5.41 Serial Interface Timing Diagram when Vcc = 2.2 V

## Table 5.67 External Interrupt INTi (i = 0 to 4) Input, Key Input Interrupt Kli (i = 0 to 3)

| Symbol  | Parameter                                 | Stan     | Linit |      |
|---------|-------------------------------------------|----------|-------|------|
|         |                                           | Min.     | Max.  | Unit |
| tw(INH) | INTi input "H" width, Kli input "H" width | 1000 (1) | —     | ns   |
| tw(INL) | INTi input "L" width, Kli input "L" width |          |       | ns   |

Notes:

1. When selecting the digital filter by the INTi input filter select bit, use an INTi input HIGH width of either (1/digital filter clock frequency × 3) or the minimum value of standard, whichever is greater.

2. When selecting the digital filter by the INTi input filter select bit, use an INTi input LOW width of either (1/digital filter clock frequency × 3) or the minimum value of standard, whichever is greater.



## Figure 5.42 Input Timing Diagram for External Interrupt INTi and Key Input Interrupt Kli when Vcc = 2.2 V

