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The next code examples show assembly and C functions for reading the EEPROM. The examples assume that interrupts 
are controlled so that no interrupts will occur during execution of these functions.

6.3.6 Preventing EEPROM Corruption

During periods of low VCC, the EEPROM data can be corrupted because the supply voltage is too low for the CPU and the 
EEPROM to operate properly. These issues are the same as for board level systems using EEPROM, and the same design 
solutions should be applied.

An EEPROM data corruption can be caused by two situations when the voltage is too low. First, a regular write sequence to 
the EEPROM requires a minimum voltage to operate correctly. Secondly, the CPU itself can execute instructions incorrectly, 
if the supply voltage is too low.

EEPROM data corruption can easily be avoided by following this design recommendation:

Keep the AVR® RESET active (low) during periods of insufficient power supply voltage. This can be done by enabling the 
internal brown-out detector (BOD). If the detection level of the internal BOD does not match the needed detection level, an 
external low VCC reset protection circuit can be used. If a reset occurs while a write operation is in progress, the write 
operation will be completed provided that the power supply voltage is sufficient.

Assembly Code Example

EEPROM_read:
; Wait for completion of previous write
sbic  EECR,EEPE
rjmp  EEPROM_read
; Set up address (r18:r17) in address register
out  EEARH, r18
out  EEARL, r17
; Start eeprom read by writing EERE
sbi  EECR,EERE
; Read data from data register
in  r16,EEDR
ret

C Code Example

unsigned char EEPROM_read(unsigned char ucAddress)
{

/* Wait for completion of previous write */
while(EECR & (1<<EEPE))
;
/* Set up address register */
EEAR = ucAddress;
/* Start eeprom read by writing EERE */
EECR |= (1<<EERE);
/* Return data from data register */
return EEDR;

}
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• Bit 2 – EEMPE: EEPROM Master Program Enable

The EEMPE bit determines whether writing EEPE to one will have effect or not.

When EEMPE is set, setting EEPE within four clock cycles will program the EEPROM at the selected address. If EEMPE is 
zero, setting EEPE will have no effect. When EEMPE has been written to one by software, hardware clears the bit to zero 
after four clock cycles.

• Bit 1 – EEPE: EEPROM Program Enable

The EEPROM program enable signal EEPE is the programming enable signal to the EEPROM. When EEPE is written, the 
EEPROM will be programmed according to the EEPMn bits setting. The EEMPE bit must be written to one before a logical 
one is written to EEPE, otherwise no EEPROM write takes place. When the write access time has elapsed, the EEPE bit is 
cleared by hardware. When EEPE has been set, the CPU is halted for two cycles before the next instruction is executed.

• Bit 0 – EERE: EEPROM Read Enable

The EEPROM read enable signal – EERE – is the read strobe to the EEPROM. When the correct address is set up in the 
EEAR register, the EERE bit must be written to one to trigger the EEPROM read. The EEPROM read access takes one 
instruction, and the requested data is available immediately. When the EEPROM is read, the CPU is halted for four cycles 
before the next instruction is executed. The user should poll the EEPE bit before starting the read operation. If a write 
operation is in progress, it is neither possible to read the EEPROM, nor to change the EEAR register.

6.5.4 GPIOR2 – General Purpose I/O Register 2

6.5.5 GPIOR1 – General Purpose I/O Register 1

6.5.6 GPIOR0 – General Purpose I/O Register 0

Bit 7 6 5 4 3 2 1 0

0x0C (0x2C) MSB LSB GPIOR2

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

0x0B (0x2B) MSB LSB GPIOR1

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

0x0A (0x2A) MSB LSB GPIOR0

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
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8.7.4 Internal Voltage Reference

The internal voltage reference will be enabled when needed by the brown-out detection, the analog comparator or the ADC. 
If these modules are disabled as described in the sections above, the internal voltage reference will be disabled and it will 
not be consuming power. When turned on again, the user must allow the reference to start up before the output is used. If 
the reference is kept on in sleep mode, the output can be used immediately. Refer to
Section 9.7 “Internal Voltage Reference” on page 42 for details on the start-up time.

8.7.5 Watchdog Timer

If the watchdog timer is not needed in the application, this module should be turned off. If the watchdog timer is enabled, it 
will be enabled in all sleep modes, and hence, always consume power. In the deeper sleep modes, this will contribute 
significantly to the total current consumption. Refer to Section 9.8 “Watchdog Timer” on page 42 for details on how to 
configure the Watchdog Timer.

8.7.6 Port Pins

When entering a sleep mode, all port pins should be configured to use minimum power. The most important thing is then to 
ensure that no pins drive resistive loads. In sleep modes where both the I/O clock (clkI/O) and the ADC clock (clkADC) are 
stopped, the input buffers of the device will be disabled. This ensures that no power is consumed by the input logic when not 
needed. In some cases, the input logic is needed for detecting wake-up conditions, and it will then be enabled. Refer to 
Section 12.2.5 “Digital Input Enable and Sleep Modes” on page 56 for details on which pins are enabled. If the input buffer is 
enabled and the input signal is left floating or has an analog signal level close to VCC/2, the input buffer will use excessive 
power. 

For analog input pins, the digital input buffer should be disabled at all times. An analog signal level close to VCC/2 on an input 
pin can cause significant current even in active mode. Digital input buffers can be disabled by writing to the digital input 
disable registers (DIDR0, DIDR1). Refer to Section 19.10.5 “DIDR0 – Digital Input Disable Register 0” on page 149 or 
Section 19.10.6 “DIDR1 – Digital Input Disable Register 1” on page 149 for details. 

8.8 Register Description

8.8.1 MCUCR – MCU Control Register

The MCU control register contains control bits for power management.

• Bit 5 – SE: Sleep Enable

The SE bit must be written to logic one to make the MCU enter the sleep mode when the SLEEP instruction is executed. To 
avoid the MCU entering the sleep mode unless it is the programmer’s purpose, it is recommended to write the sleep enable 
(SE) bit to one just before the execution of the SLEEP instruction and to clear it immediately after waking up.

• Bits 4, 3 – SM1:0: Sleep Mode Select Bits 2..0

These bits select between the three available sleep modes as shown in Table 8-2 on page 37.

Bit 7 6 5 4 3 2 1 0

0x35 (0x55) – PUD SE SM1 SM0 — ISC01 ISC00 MCUCR

Read/Write R R/W R/W R/W R/W R R/W R/W

Initial Value 0 0 0 0 0 0 0 0
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Figure 9-1. Reset Logic 
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If the program never enables an interrupt source, the interrupt vectors are not used, and regular program code can be placed 
at these locations. The most typical and general program setup for the reset and interrupt vector addresses in Atmel® 
ATtiny261/461/861 is:

Address Labels Code Comments
0x0000 rjmp RESET ; Reset Handler
0x0001 rjmp EXT_INT0 ; IRQ0 Handler
0x0002 rjmp PCINT ; PCINT Handler
0x0003 rjmp TIM1_COMPA ; Timer1 CompareA Handler
0x0004 rjmp TIM1_COMPB ; Timer1 CompareB Handler
0x0005 rjmp TIM1_OVF ; Timer1 Overflow Handler
0x0006 rjmp TIM0_OVF ; Timer0 Overflow Handler
0x0007 rjmp USI_START ; USI Start Handler
0x0008 rjmp USI_OVF ; USI Overflow Handler
0x0009 rjmp EE_RDY ; EEPROM Ready Handler
0x000A rjmp ANA_COMP ; Analog Comparator Handler
0x000B rjmp ADC ; ADC Conversion Handler
0x000C rjmp WDT ; WDT Interrupt Handler
0x000D rjmp EXT_INT1 ; IRQ1 Handler
0x000E rjmp TIM0_COMPA ; Timer0 CompareA Handler
0x000F rjmp TIM0_COMPB ; Timer0 CompareB Handler
0x0010 rjmp TIM0_CAPT ; Timer0 Capture Event Handler
0x0011 rjmp TIM1_COMPD ; Timer1 CompareD Handler
0x0012 rjmp FAULT_PROTECTION; Timer1 Fault Protection
0x0013 RESET: ldi r16, low(RAMEND); Main program start
0x0014 ldi r17, high(RAMEND); Tiny861 have also SPH
0x0015 out SPL, r16 ; Set Stack Pointer to top of RAM
0x0016 out SPH, r17 ; Tiny861 have also SPH
0x0017 sei ; Enable interrupts
0x0018 <instr> xxx
... ... ... ... 
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Consider the clock period starting shortly after the first falling edge of the system clock. The latch is closed when the clock is 
low, and goes transparent when the clock is high, as indicated by the shaded region of the “SYNC LATCH” signal. The signal 
value is latched when the system clock goes low. It is clocked into the PINxn register at the succeeding positive clock edge. 
As indicated by the two arrows tpd, max and tpd, min, a single signal transition on the pin will be delayed between ½ and 1½ 
system clock period depending upon the time of assertion.

When reading back a software assigned pin value, a nop instruction must be inserted as indicated in Figure 12-4. The out 
instruction sets the “SYNC LATCH” signal at the positive edge of the clock. In this case, the delay tpd through the 
synchronizer is one system clock period.

Figure 12-4. Synchronization when Reading a Software Assigned Pin Value 
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• Port B, Bit 4 - XTAL1/ CLKI/ OC1B/ ADC7/ PCINT12

XTAL1/CLKI: chip clock oscillator pin 1. Used for all chip clock sources except internal calibrated RC oscillator. When used 
as a clock pin, the pin can not be used as an I/O pin.

OC1D: Inverted output compare match output: The PB4 pin can serve as an external output for the Timer/Counter1 compare 
match D when configured as an output (DDA0 set). The OC1D pin is also the inverted output pin for the PWM mode timer 
function.

ADC7: ADC input channel 7. Note that ADC input channel 7 uses analog power.

PCINT12: Pin change interrupt source 12.

• Port B, Bit 3 - OC1B/ PCINT11

OC1B, output compare match output: The PB3 pin can serve as an external output for the Timer/Counter1 compare match 
B. The PB3 pin has to be configured as an output (DDB3 set (one)) to serve this function. The OC1B pin is also the output 
pin for the PWM mode timer function.

PCINT11: Pin change interrupt source 11.

• Port B, Bit 2 - SCK/ USCK/ SCL/ OC1B/ PCINT10

SCK: Master clock output, slave clock input pin for SPI channel. When the SPI is enabled as a slave, this pin is configured as 
an input regardless of the setting of DDB2. When the SPI is enabled as a master, the data direction of this pin is controlled 
by DDB2. When the pin is forced by the SPI to be an input, the pull-up can still be controlled by the PORTB2 bit.

USCK: Three-wire mode universal serial interface clock.

SCL: Two-wire mode serial clock for USI two-wire mode.

OC1B: Inverted output compare match output: The PB2 pin can serve as an external output for the Timer/Counter1 compare 
match B when configured as an output (DDB2 set). The OC1B pin is also the inverted output pin for the PWM mode timer 
function.

PCINT10: Pin change interrupt source 10.

• Port B, Bit 1 - MISO/ DO/ OC1A/ PCINT9

MISO: Master data input, slave data output pin for SPI channel. When the SPI is enabled as a master, this pin is configured 
as an input regardless of the setting of DDB1. When the SPI is enabled as a slave, the data direction of this pin is controlled 
by DDB1. When the pin is forced by the SPI to be an input, the pull-up can still be controlled by the PORTB1 bit.

DO: Three-wire mode universal serial interface data output. Three-wire mode data output overrides PORTB1 value and it is 
driven to the port when data direction bit DDB1 is set (one). PORTB1 still enables the pull-up, if the direction is input and 
PORTB1 is set (one).

OC1A: Output compare match output: The PB1 pin can serve as an external output for the Timer/Counter1 compare match 
B when configured as an output (DDB1 set). The OC1A pin is also the output pin for the PWM mode timer function.

PCINT9: Pin change interrupt source 9.

• Port B, Bit 0 - MOSI/ DI/ SDA/ OC1A/ PCINT8

MOSI: SPI master data output, slave data input for SPI channel. When the SPI is enabled as a slave, this pin is configured 
as an input regardless of the setting of DDB0. When the SPI is enabled as a master, the data direction of this pin is 
controlled by DDB0. When the pin is forced by the SPI to be an input, the pull-up can still be controlled by the PORTB0 bit.

DI: Data input in USI three-wire mode. USI three-wire mode does not override normal port functions, so pin must be 
configure as an input for DI function.

SDA: Two-wire mode serial interface data.

OC1A: Inverted output compare match output: The PB0 pin can serve as an external output for the Timer/Counter1 compare 
match B when configured as an output (DDB0 set). The OC1A pin is also the inverted output pin for the PWM mode timer 
function.

PCINT8: Pin change interrupt source 8.
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Figure 16-2. Timer/Counter1 Synchronization Register Block Diagram 
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Figure 16-12. Phase and Frequency Correct PWM Mode, Timing Diagram 

The Timer/Counter overflow flag (TOV1) is set each time the counter reaches BOTTOM. The interrupt flag can be used to 
generate an interrupt each time the counter reaches the BOTTOM value.

In the phase and frequency correct PWM mode, the compare unit allows generation of PWM waveforms on the OC1x pins. 
Setting the COM1x1:0 bits to two will produce a non-inverted PWM and setting the COM1x1:0 to three will produce an 
inverted PWM output. Setting the COM1A1:0 bits to one will enable complementary compare output mode and produce both 
the non-inverted (OC1x) and inverted output (OC1x). The actual values will only be visible on the port pin if the data direction 
for the port pin is set as output. The PWM waveform is generated by clearing (or setting) the waveform output (OCW1x) at 
the compare match between OCR1x and TCNT1 when the counter increments, and setting (or clearing) the waveform 
output at compare match when the counter decrements. The PWM frequency for the output when using the phase and 
frequency correct PWM can be calculated by the following equation:

The N variable represents the number of steps in dual-slope operation. The value of N equals to the TOP value.

The extreme values for the OCR1C register represent special cases when generating a PWM waveform output in the phase 
and frequency correct PWM mode. If the OCR1C is set equal to BOTTOM, the output will be continuously low and if set 
equal to MAX the output will be continuously high for non-inverted PWM mode. For inverted PWM the output will have the 
opposite logic values.

The general I/O port function is overridden by the Output Compare value (OC1x / OC1x) from the dead time generator, if 
either of the COM1x1:0 bits are set and the data direction register bits for the OC1X and OC1X pins are set as an output. If 
the COM1x1:0 bits are cleared, the actual value from the port register will be visible on the port pin. The configurations of the 
output compare pins are described in Table 16-4.

Table 16-4. Output Compare pin configurations in Phase and Frequency Correct PWM Mode

COM1x1 COM1x0 OC1x Pin OC1x Pin

0 0 Disconnected Disconnected

0 1 OC1x OC1x

1 0 Disconnected OC1x

1 1 Disconnected OC1x

1 2 3

OCRnx Update and
TOVn Interrupt Flag Set

OCRnx Interrupt Flag Set

TCNTn

OCWnx
(COMnx = 2)

OCWnx
(COMnx = 3)

Period

fOCnxPCPWM
fclkT1

N
-------------=
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The 4-bit counter can be both read and written via the data bus, and can generate an overflow interrupt. Both the USI data 
register and the counter are clocked simultaneously by the same clock source. This allows the counter to count the number 
of bits received or transmitted and generate an interrupt when the transfer is complete. Note that when an external clock 
source is selected the counter counts both clock edges. In this case the counter counts the number of edges, and not the 
number of bits. The clock can be selected from three different sources: The USCK pin, Timer/Counter0 compare match or 
from software.

The Two-wire clock control unit can generate an interrupt when a start condition is detected on the two-wire bus. It can also 
generate wait states by holding the clock pin low after a start condition is detected, or after the counter overflows.

17.3 Functional Descriptions

17.3.1 Three-wire Mode

The USI three-wire mode is compliant to the serial peripheral interface (SPI) mode 0 and 1, but does not have the slave 
select (SS) pin functionality. However, this feature can be implemented in software if necessary. Pin names used by this 
mode are: DI, DO, and USCK.

Figure 17-2. Three-wire Mode Operation, Simplified Diagram 

Figure 17-2 shows two USI units operating in three-wire mode, one as master and one as slave. The two USI data register 
are interconnected in such way that after eight USCK clocks, the data in each register are interchanged. The same clock 
also increments the USI’s 4-bit counter. The counter overflow (interrupt) flag, or USIOIF, can therefore be used to determine 
when a transfer is completed. The clock is generated by the master device software by toggling the USCK pin via the PORT 
register or by writing a one to the USITC bit in USICR.
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Referring to the timing diagram (Figure 17-5 on page 123), a bus transfer involves the following steps:

1. The a start condition is generated by the master by forcing the SDA low line while the SCL line is high (A). SDA 
can be forced low either by writing a zero to bit 7 of the shift register, or by setting the corresponding bit in the 
PORT register to zero. Note that the USI data register bit must be set to one for the output to be enabled. The 
slave device’s start detector logic (Figure 17-6) detects the start condition and sets the USISIF flag. The flag can 
generate an interrupt if necessary. 

2. In addition, the start detector will hold the SCL line low after the master has forced an negative edge on this line 
(B). This allows the slave to wake up from sleep or complete its other tasks before setting up the USI data register 
to receive the address. This is done by clearing the start condition flag and reset the counter. 

3. The master set the first bit to be transferred and releases the SCL line (C). The slave samples the data and shift it 
into the USI data register at the positive edge of the SCL clock.

4. After eight bits are transferred containing slave address and data direction (read or write), the slave counter over-
flows and the SCL line is forced low (D). If the slave is not the one the master has addressed, it releases the SCL 
line and waits for a new start condition.

5. If the slave is addressed it holds the SDA line low during the acknowledgment cycle before holding the SCL line 
low again (i.e., the counter register must be set to 14 before releasing SCL at (D)). Depending of the R/W bit the 
master or slave enables its output. If the bit is set, a master read operation is in progress (i.e., the slave drives the 
SDA line) The slave can hold the SCL line low after the acknowledge (E).

6. Multiple bytes can now be transmitted, all in same direction, until a stop condition is given by the master (F). Or a 
new start condition is given.

If the slave is not able to receive more data it does not acknowledge the data byte it has last received. When the master does 
a read operation it must terminate the operation by force the acknowledge bit low after the last byte transmitted.

Figure 17-6. Start Condition Detector, Logic Diagram 

17.3.5 Start Condition Detector

The start condition detector is shown in Figure 17-6 The SDA line is delayed (in the range of 50 to 300ns) to ensure valid 
sampling of the SCL line. The start condition detector is only enabled in two-wire mode.

The start condition detector is working asynchronously and can therefore wake up the processor from the power-down sleep 
mode. However, the protocol used might have restrictions on the SCL hold time. Therefore, when using this feature in this 
case the oscillator start-up time set by the CKSEL fuses (see Section 7.1 “Clock Systems and their Distribution” on page 24) 
must also be taken into the consideration. Refer to the USISIF bit description on page 126 for further details.
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17.4 Alternative USI Usage

When the USI unit is not used for serial communication, it can be set up to do alternative tasks due to its flexible design.

17.4.1 Half-duplex Asynchronous Data Transfer

By utilizing the USI data register in three-wire mode, it is possible to implement a more compact and higher performance 
UART than by software only.

17.4.2 4-bit Counter

The 4-bit counter can be used as a stand-alone counter with overflow interrupt. Note that if the counter is clocked externally, 
both clock edges will generate an increment.

17.4.3 12-bit Timer/Counter

Combining the USI 4-bit counter and Timer/Counter0 allows them to be used as a 12-bit counter.

17.4.4 Edge Triggered External Interrupt

By setting the counter to maximum value (F) it can function as an additional external interrupt. The overflow flag and interrupt 
enable bit are then used for the external interrupt. This feature is selected by the USICS1 bit.

17.4.5 Software Interrupt

The counter overflow interrupt can be used as a software interrupt triggered by a clock strobe.

17.5 Register Descriptions

17.5.1 USIDR – USI Data Register

When accessing the USI data register (USIDR) the serial register can be accessed directly. If a serial clock occurs at the 
same cycle the register is written, the register will contain the value written and no shift is performed. A (left) shift operation is 
performed depending of the USICS1..0 bits setting. The shift operation can be controlled by an external clock edge, by a 
Timer/Counter0 Compare Match, or directly by software using the USICLK strobe bit. Note that even when no wire mode is 
selected (USIWM1..0 = 0) both the external data input (DI/SDA) and the external clock input (USCK/SCL) can still be used 
by the USI data register.

The output pin in use, DO or SDA depending on the wire mode, is connected via the output latch to the most significant bit 
(bit 7) of the data register. The output latch is open (transparent) during the first half of a serial clock cycle when an external 
clock source is selected (USICS1 = 1), and constantly open when an internal clock source is used (USICS1 = 0). The output 
will be changed immediately when a new MSB written as long as the latch is open. The latch ensures that data input is 
sampled and data output is changed on opposite clock edges.

Note that the corresponding data direction register to the pin must be set to one for enabling data output from the USI data 
register.

Bit 7 6 5 4 3 2 1 0

0x0F (0x2F) MSB LSB USIDR

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
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Figure 19-2. ADC Auto Trigger Logic 

Using the ADC interrupt flag as a trigger source makes the ADC start a new conversion as soon as the ongoing conversion 
has finished. The ADC then operates in free running mode, constantly sampling and updating the ADC data register. The 
first conversion must be started by writing a logical one to the ADSC bit in ADCSRA. In this mode the ADC will perform 
successive conversions independently of whether the ADC interrupt flag, ADIF is cleared or not.

If auto triggering is enabled, single conversions can be started by writing ADSC in ADCSRA to one. ADSC can also be used 
to determine if a conversion is in progress. The ADSC bit will be read as one during a conversion, independently of how the 
conversion was started.

19.5 Prescaling and Conversion Timing

Figure 19-3. ADC Prescaler 

By default, the successive approximation circuitry requires an input clock frequency between 50kHz and 200kHz to get 
maximum resolution. If a lower resolution than 10 bits is needed, the input clock frequency to the ADC can be higher than 
200kHz to get a higher sample rate.

The ADC module contains a prescaler, which generates an acceptable ADC clock frequency from any CPU frequency above 
100kHz. The prescaling is set by the ADPS bits in ADCSRA. The prescaler starts counting from the moment the ADC is 
switched on by setting the ADEN bit in ADCSRA. The prescaler keeps running for as long as the ADEN bit is set, and is 
continuously reset when ADEN is low.

When initiating a single ended conversion by setting the ADSC bit in ADCSRA, the conversion starts at the following rising 
edge of the ADC clock cycle. 

A normal conversion takes 13 ADC clock cycles. The first conversion after the ADC is switched on (ADEN in ADCSRA is set) 
takes 25 ADC clock cycles in order to initialize the analog circuitry.
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20.4 Software Break Points

debugWIRE supports program memory break points by the AVR® break instruction. Setting a break point in AVR Studio® will 
insert a BREAK instruction in the program memory. The instruction replaced by the BREAK instruction will be stored. When 
program execution is continued, the stored instruction will be executed before continuing from the program memory. A break 
can be inserted manually by putting the BREAK instruction in the program.

The flash must be re-programmed each time a break point is changed. This is automatically handled by AVR Studio through 
the debugWIRE interface. The use of break points will therefore reduce the flash data retention. Devices used for debugging 
purposes should not be shipped to end customers.

20.5 Limitations of debugWIRE

The debugWIRE communication pin (dW) is physically located on the same pin as external reset (RESET). An external reset 
source is therefore not supported when the debugWIRE is enabled.

The debugWIRE system accurately emulates all I/O functions when running at full speed, i.e., when the program in the CPU 
is running. When the CPU is stopped, care must be taken while accessing some of the I/O registers via the debugger (AVR 
Studio).

A programmed DWEN fuse enables some parts of the clock system to be running in all sleep modes. This will increase the 
power consumption while in sleep. Thus, the DWEN fuse should be disabled when debugWire is not used.

20.6 Register Description

The following section describes the registers used with the debugWire.

20.6.1 DWDR – debugWire Data Register

The DWDR register provides a communication channel from the running program in the MCU to the debugger. This register 
is only accessible by the debugWIRE and can therefore not be used as a general purpose register in the normal operations.

Bit 7 6 5 4 3 2 1 0

0x20 (0x40) DWDR[7:0] DWDR

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
151ATtiny261/ATtiny461/ATtiny861/ATtiny461 [DATASHEET]
7753G–AVR–06/14



22.9 Serial Downloading

Both the flash and EEPROM memory arrays can be programmed using the serial SPI bus while RESET is pulled to GND. 
The serial interface consists of pins SCK, MOSI (input) and MISO (output). After RESET is set low, the programming enable 
instruction needs to be executed first before program/erase operations can be executed. NOTE, in Table 22-13 on page 167, 
the pin mapping for SPI programming is listed. Not all parts use the SPI pins dedicated for the internal SPI interface.

Figure 22-7. Serial Programming and Verify(1) 

Note: 1. If the device is clocked by the internal oscillator, it is no need to connect a clock source to the CLKI pin.

When programming the EEPROM, an auto-erase cycle is built into the self-timed programming operation (in the serial mode 
ONLY) and there is no need to first execute the chip erase instruction. The chip erase operation turns the content of every 
memory location in both the Program and EEPROM arrays into 0xFF.

Depending on CKSEL fuses, a valid clock must be present. The minimum low and high periods for the serial clock (SCK) 
input are defined as follows:

Low: > 2 CPU clock cycles for fck < 12MHz, 3 CPU clock cycles for fck ≥ 12MHz

High: > 2 CPU clock cycles for fck < 12MHz, 3 CPU clock cycles for fck ≥ 12MHz

Table 22-13. Pin Mapping Serial Programming

Symbol Pins I/O Description

MOSI PB0 I Serial data in

MISO PB1 O Serial data out

SCK PB2 I Serial clock

GND

RESET/ PB7

VCC
MOSI

MISO

SCK

+1.8 to 5.5V
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Figure 22-8. Serial Programming Instruction Example 

Addr MSB

Bit 15 B Bit 15 00 B

Load Program Memory Page (High/Low Byte)/
Load EEPROM Memory Page (Page access)

Write Program Memory Page/
Write EEPROM Memory Page

Byte 1 Byte 2 Byte 3 Byte 4

Page 0

Page 1

Page 2

Page N-1

Byte 1 Byte 2 Byte 3 Byte 4

Addr LSB

Page Offset

Page Number

Addr MSB Addr LSB

Page Buffer

Serial Programming Instruction

Program Memory/
EEPROM Memory
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24.3 Supply Current of I/O Modules

The tables and formulas below can be used to calculate the additional current consumption for the different I/O modules in 
Active and Idle mode. The enabling or disabling of the I/O modules are controlled by the power reduction register. See 
Section 8.8.2 “PRR – Power Reduction Register” on page 37 for details.

It is possible to calculate the typical current consumption based on the numbers from Table 24-1 for other VCC and frequency 
settings than listed in Table 24-2.

24.3.1 Example

Calculate the expected current consumption in idle mode with TIMER0, ADC, and USI enabled at VCC = 2.0V and F = 1MHz. 
From Table 24-2, third column, we see that we need to add 10% for the TIMER0, 27.3% for the ADC, and 6.5% for the USI 
module. Reading from Figure 24-3 on page 181, we find that the idle current consumption is ~0,085mA at VCC = 2.0V and 
F = 1MHz. The total current consumption in idle mode with TIMER0, ADC, and USI enabled, gives:

ICCtotal ≈ 0.085mA (1 + 0.10 + 0.273 + 0.065) ≈ 0.122mA

Table 24-1. Additional Current Consumption for the Different I/O Modules (Absolute Values)

PRR Bit

Typical Numbers

VCC = 2V, F = 1MHz VCC = 3V, F = 4MHz VCC = 5V, F = 8MHz

PRTIM1 65µA 423µA 1787µA

PRTIM0 7µA 39µA 165µA

PRUSI 5µA 25µA 457µA

PRADC 18µA 111µA 102µA

Table 24-2. Additional Current Consumption (Percentage) in Active and Idle Mode

PRR Bit

Additional Current Consumption Compared 
to Active with External Clock (see

Figure 24-1 and Figure 24-2)
Additional Current Consumption Compared 

to Idle with External Clock

PRTIM1 26.9% 103.7%

PRTIM0 2.6% 10.0%

PRUSI 1.7%  6.5%

PRADC 7.1% 27.3%
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Figure 24-10. I/O Pin Output Voltage versus Source Current (VCC = 3V) 

Figure 24-11. I/O Pin Output Voltage versus Source Current (VCC = 5V) 

24.7 Pin Threshold and Hysteresis

Figure 24-12. I/O Pin Input Threshold Voltage versus VCC (VIH, I/O Pin Read as ‘1’) 
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24.9 Internal Oscillator Speed

Figure 24-19. Watchdog Oscillator Frequency versus Temperature 

Figure 24-20. Calibrated 8.0MHz RC Oscillator Frequency versus Temperature 
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Figure 28-2. TG 

Package Drawing Contact:
packagedrawings@atmel.com
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