

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	80MHz
Connectivity	CANbus, I ² C, IrDA, LINbus, MMC/SD, QSPI, SAI, SPI, SWPMI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, PWM, WDT
Number of I/O	51
Program Memory Size	1MB (1M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	128K x 8
Voltage - Supply (Vcc/Vdd)	1.71V ~ 3.6V
Data Converters	A/D 16x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32l471rgt6tr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pe	eripheral	STM32L	.471Zx	STM32	_471Qx	STM32	L471Vx	STM32L471Rx	
Flash memor	у	512KB	1MB	512KB	1MB	512KB	1MB	512KB	1MB
SRAM				1	12	8KB			
External men static memori	nory controller for	Ye	S	Ye	es	Yes	S ⁽¹⁾	1	No
Quad SPI				1	Y	ſes			
	Advanced control				2 (1	I6-bit)			
	General purpose					16-bit) 32-bit)			
	Basic				2 (1	I6-bit)			
Timers	Low -power				2 (1	I6-bit)			
	SysTick timer					1			
	Watchdog timers (independent, window)					2			
	SPI					3			
	I ² C		3						
Comm.	USART UART LPUART		3 2 1						
interfaces	SAI	2							
	CAN	1							
	SDMMC	Yes							
	SWPMI	Yes							
Digital filters f modulators	for sigma-delta	Yes (4 filters)							
Number of ch	annels	8							
RTC		Yes							
Tamper pins		3 2							
Random gene	erator				Y	ſes			
GPIOs Wakeup pins Nb of I/Os do		114 5 14		10 5 1	5	8 5 (5		51 4 0
Capacitive sensing Number of channels		24	ļ	2	4	2	1		12
12-bit ADCs Number of channels		3 24		3 1			3 6		3 16
12-bit DAC channels		2							
Internal voltage reference buffer		Yes No							
Analog comp	arator	2							
Operational a	amplifiers	2							
Max. CPU fre	equency	80 MHz							
Operating vol	Itage				1.71	to 3.6 V			

Table 2. STM32L471xx family device features and peripheral counts

3.11 Clocks and startup

The clock controller (see *Figure 3*) distributes the clocks coming from different oscillators to the core and the peripherals. It also manages clock gating for low-power modes and ensures clock robustness. It features:

- Clock prescaler: to get the best trade-off between speed and current consumption, the clock frequency to the CPU and peripherals can be adjusted by a programmable prescaler
- **Safe clock switching:** clock sources can be changed safely on the fly in run mode through a configuration register.
- **Clock management:** to reduce power consumption, the clock controller can stop the clock to the core, individual peripherals or memory.
- **System clock source:** four different clock sources can be used to drive the master clock SYSCLK:
 - 4-48 MHz high-speed external crystal or ceramic resonator (HSE), that can supply a PLL. The HSE can also be configured in bypass mode for an external clock.
 - 16 MHz high-speed internal RC oscillator (HSI16), trimmable by software, that can supply a PLL
 - Multispeed internal RC oscillator (MSI), trimmable by software, able to generate 12 frequencies from 100 kHz to 48 MHz. When a 32.768 kHz clock source is available in the system (LSE), the MSI frequency can be automatically trimmed by hardware to reach better than ±0.25% accuracy. The MSI can supply a PLL.
 - System PLL which can be fed by HSE, HSI16 or MSI, with a maximum frequency at 80 MHz.
- **Auxiliary clock source:** two ultralow-power clock sources that can be used to drive the real-time clock:
 - 32.768 kHz low-speed external crystal (LSE), supporting four drive capability modes. The LSE can also be configured in bypass mode for an external clock.
 - 32 kHz low-speed internal RC (LSI), also used to drive the independent watchdog. The LSI clock accuracy is ±5% accuracy.
- **Peripheral clock sources:** Several peripherals (SDMMC, RNG, SAI, USARTs, I2Cs, LPTimers, ADC, SWPMI) have their own independent clock whatever the system clock. Three PLLs, each having three independent outputs allowing the highest flexibility, can generate independent clocks for the ADC, the SDMMC/RNG and the two SAIs.
- **Startup clock:** after reset, the microcontroller restarts by default with an internal 4 MHz clock (MSI). The prescaler ratio and clock source can be changed by the application program as soon as the code execution starts.
- Clock security system (CSS): this feature can be enabled by software. If a HSE clock failure occurs, the master clock is automatically switched to HSI16 and a software interrupt is generated if enabled. LSE failure can also be detected and generated an interrupt.
- Clock-out capability:
 - MCO: microcontroller clock output: it outputs one of the internal clocks for external use by the application
 - LSCO: low speed clock output: it outputs LSI or LSE in all low-power modes (except VBAT).

To improve the accuracy of the temperature sensor measurement, each device is individually factory-calibrated by ST. The temperature sensor factory calibration data are stored by ST in the system memory area, accessible in read-only mode.

Calibration value name	Description	Memory address
TS_CAL1	TS ADC raw data acquired at a temperature of 30 $^{\circ}$ C (± 5 $^{\circ}$ C), V _{DDA} = V _{REF+} = 3.0 V (± 10 mV)	0x1FFF 75A8 - 0x1FFF 75A9
TS_CAL2	TS ADC raw data acquired at a temperature of 110 °C (± 5 °C), $V_{DDA} = V_{REF+} = 3.0 V (\pm 10 mV)$	0x1FFF 75CA - 0x1FFF 75CB

Table 8. Temperature sensor calibration values
--

3.15.2 Internal voltage reference (V_{REFINT})

The internal voltage reference (VREFINT) provides a stable (bandgap) voltage output for the ADC and Comparators. VREFINT is internally connected to the ADC1_IN0 input channel. The precise voltage of VREFINT is individually measured for each part by ST during production test and stored in the system memory area. It is accessible in read-only mode.

Calibration value name	Description	Memory address
VREFINT	Raw data acquired at a temperature of 30 °C (± 5 °C), V _{DDA} = V _{REF+} = 3.0 V (± 10 mV)	0x1FFF 75AA - 0x1FFF 75AB

Table 9. Internal voltage reference calibration values

3.15.3 V_{BAT} battery voltage monitoring

This embedded hardware feature allows the application to measure the V_{BAT} battery voltage using the internal ADC channel ADC1_IN18 or ADC3_IN18. As the V_{BAT} voltage may be higher than VDDA, and thus outside the ADC input range, the VBAT pin is internally connected to a bridge divider by 3. As a consequence, the converted digital value is one third the V_{BAT} voltage.

3.16 Digital to analog converter (DAC)

Two 12-bit buffered DAC channels can be used to convert digital signals into analog voltage signal outputs. The chosen design structure is composed of integrated resistor strings and an amplifier in inverting configuration.

This digital interface supports the following features:

- Up to two DAC output channels
- 8-bit or 12-bit output mode
- Buffer offset calibration (factory and user trimming)
- Left or right data alignment in 12-bit mode
- Synchronized update capability

- Transmission
 - Three transmit mailboxes
 - Configurable transmit priority
- Reception
 - Two receive FIFOs with three stages
 - 14 Scalable filter banks
 - Identifier list feature
 - Configurable FIFO overrun
- Time-triggered communication option
 - Disable automatic retransmission mode
 - 16-bit free running timer
 - Time Stamp sent in last two data bytes
- Management
 - Maskable interrupts
 - Software-efficient mailbox mapping at a unique address space

3.32 Secure digital input/output and MultiMediaCards Interface (SDMMC)

The card host interface (SDMMC) provides an interface between the APB peripheral bus and MultiMediaCards (MMCs), SD memory cards and SDIO cards.

The SDMMC features include the following:

- Full compliance with MultiMediaCard System Specification Version 4.2. Card support for three different databus modes: 1-bit (default), 4-bit and 8-bit
- Full compatibility with previous versions of MultiMediaCards (forward compatibility)
- Full compliance with SD Memory Card Specifications Version 2.0
- Full compliance with SD I/O Card Specification Version 2.0: card support for two different databus modes: 1-bit (default) and 4-bit
- Data transfer up to 48 MHz for the 8 bit mode
- Data write and read with DMA capability

3.33 Flexible static memory controller (FSMC)

The Flexible static memory controller (FSMC) includes two memory controllers:

- The NOR/PSRAM memory controller
- The NAND/memory controller

This memory controller is also named Flexible memory controller (FMC).

The main features of the FMC controller are the following:

- Interface with static-memory mapped devices including:
 - Static random access memory (SRAM)
 - NOR Flash memory/OneNAND Flash memory
 - PSRAM (4 memory banks)
 - NAND Flash memory with ECC hardware to check up to 8 Kbyte of data
- 8-,16- bit data bus width
- Independent Chip Select control for each memory bank
- Independent configuration for each memory bank
- Write FIFO
- The Maximum FMC_CLK frequency for synchronous accesses is HCLK/2.

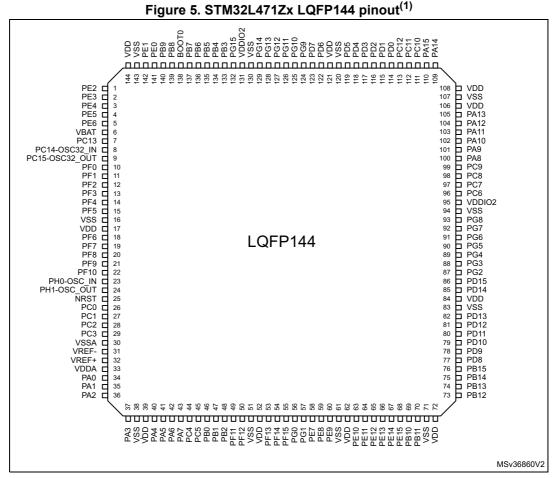
LCD parallel interface

The FMC can be configured to interface seamlessly with most graphic LCD controllers. It supports the Intel 8080 and Motorola 6800 modes, and is flexible enough to adapt to specific LCD interfaces. This LCD parallel interface capability makes it easy to build cost effective graphic applications using LCD modules with embedded controllers or high performance solutions using external controllers with dedicated acceleration.

3.34 Quad SPI memory interface (QUADSPI)

The Quad SPI is a specialized communication interface targeting single, dual or quad SPI flash memories. It can operate in any of the three following modes:

- Indirect mode: all the operations are performed using the QUADSPI registers
- Status polling mode: the external flash status register is periodically read and an interrupt can be generated in case of flag setting
- Memory-mapped mode: the external flash is memory mapped and is seen by the system as if it were an internal memory



The Quad SPI interface supports:

- Three functional modes: indirect, status-polling, and memory-mapped
- SDR and DDR support
- Fully programmable opcode for both indirect and memory mapped mode
- Fully programmable frame format for both indirect and memory mapped mode
- Each of the 5 following phases can be configured independently (enable, length, single/dual/quad communication)
 - Instruction phase
 - Address phase
 - Alternate bytes phase
 - Dummy cycles phase
 - Data phase
- Integrated FIFO for reception and transmission
- 8, 16, and 32-bit data accesses are allowed
- DMA channel for indirect mode operations
- Programmable masking for external flash flag management
- Timeout management
- Interrupt generation on FIFO threshold, timeout, status match, operation complete, and access error

4 Pinouts and pin description

1. The above figure shows the package top view.

Table 24. Embedded reset and power control block characteristics (co						, 	
Symbol	Parameter	Conditions ⁽¹⁾	Min	Тур	Мах	Unit	
V _{PVD1}	PVD threshold 1	Rising edge	2.26	2.31	2.36	V	
PVDI		Falling edge	2.15	2.20	2.25		
Varia	PVD threshold 2	Rising edge	2.41	2.46	2.51	v	
V _{PVD2}		Falling edge	2.31	2.36	2.41	v	
V _{PVD3}	PVD threshold 3	Rising edge	2.56	2.61	2.66	v	
♥PVD3		Falling edge	2.47	2.52	2.57	v	
V	PVD threshold 4	Rising edge	2.69	2.74	2.79	V	
V _{PVD4}		Falling edge	2.59	2.64	2.69	v	
M	DVD threshold 5	Rising edge	2.85	2.91	2.96	V	
V _{PVD5}	PVD threshold 5	Falling edge	2.75	2.81	2.86	v	
N/	DV/D thread and C	Rising edge	2.92	2.98	3.04		
V _{PVD6}	PVD threshold 6	Falling edge	2.84	2.90	2.96	V	
V _{hyst_BORH0}	Hysteresis voltage of BORH0	Hysteresis in continuous mode	-	20	-	mV	
		Hysteresis in other mode	-	30	-		
V _{hyst_BOR_PVD}	Hysteresis voltage of BORH (except BORH0) and PVD	-	-	100	-	mV	
I _{DD} (BOR_PVD) ⁽²⁾	$BOR^{(3)}$ (except BOR0) and PVD consumption from V_DD	-	-	1.1	1.6	μA	
V _{PVM2}	V _{DDIO2} peripheral voltage monitoring	-	0.92	0.96	1	V	
M	V _{DDA} peripheral voltage	Rising edge	1.61	1.65	1.69	V	
V _{PVM3}	monitoring	Falling edge	1.6	1.64	1.68	V	
	V _{DDA} peripheral voltage	Rising edge	1.78	1.82	1.86		
V _{PVM4}	monitoring	Falling edge	1.77	1.81	1.85	V	
V _{hyst_PVM3}	PVM3 hysteresis	-	-	10	-	mV	
V _{hyst_PVM4}	PVM4 hysteresis	-	-	10	-	mV	
I _{DD} (PVM1/PVM2) (2)	PVM1 and PVM2 consumption from V _{DD}	-	-	0.2	-	μA	
I _{DD} (PVM3/PVM4) (2)	PVM3 and PVM4 consumption from V _{DD}	-	-	2	-	μA	

Table 24. Embedded reset and power control block characteristics (continued)

1. Continuous mode means Run/Sleep modes, or temperature sensor enable in Low-power run/Low-power sleep modes.

2. Guaranteed by design.

3. BOR0 is enabled in all modes (except shutdown) and its consumption is therefore included in the supply current characteristics tables.

On-chip peripheral current consumption

The current consumption of the on-chip peripherals is given in *Table 40*. The MCU is placed under the following conditions:

- All I/O pins are in Analog mode
- The given value is calculated by measuring the difference of the current consumptions:
 - when the peripheral is clocked on
 - when the peripheral is clocked off
- Ambient operating temperature and supply voltage conditions summarized in *Table 19: Voltage characteristics*
- The power consumption of the digital part of the on-chip peripherals is given in *Table 40*. The power consumption of the analog part of the peripherals (where applicable) is indicated in each related section of the datasheet.

Peripheral		Range 1	Range 2	Low-power run and sleep	Unit
	Bus Matrix ⁽¹⁾	4.5	3.7	4.1	
	ADC independent clock domain	0.4	0.1	0.2	
	ADC AHB clock domain	5.5	4.7	5.5	
	CRC	0.4	0.2	0.3	
	DMA1	1.4	1.3	1.4	
	DMA2	1.5	1.3	1.4	
	FLASH	6.2	5.2	5.8	
	FMC	8.9	7.5	8.4	
	GPIOA ⁽²⁾	4.8	3.8	4.4	
	GPIOB ⁽²⁾	4.8	4.0	4.6	
	GPIOC ⁽²⁾	4.5	3.8	4.3	
AHB	GPIOD ⁽²⁾	4.6	3.9	4.4	µA/MHz
7.118	GPIOE ⁽²⁾	5.2	4.5	4.9	. p/ 010112
	GPIOF ⁽²⁾	5.9	4.9	5.7	
	GPIOG ⁽²⁾	4.3	3.8	4.2	
	GPIOH ⁽²⁾	0.7	0.6	0.8	
	QUADSPI	7.8	6.7	7.3	
	RNG independent clock domain	2.2	NA	NA	
	RNG AHB clock domain	0.6	NA	NA	
	SRAM1	0.9	0.8	0.9	1
	SRAM2	1.6	1.4	1.6	
AHB	TSC	1.8	1.4	1.6	µA/MHz
	All AHB Peripherals	118.5	77.3	87.6	1

Table 40. Peripheral current consumption

	· · · · · · · · · · · · · · · · · · ·				
Symbol	Parameter	Conditions	Тур	Max	Unit
twulprum	Wakeup time from Low-power run mode to Run mode ⁽²⁾	Code run with MSI 2 MHz	5	7	110
t _{VOST}	Regulator transition time from Range 2 to Range 1 or Range 1 to Range $2^{(3)}$	Code run with MSI 24 MHz	20	40	μs

Table 42. Regulator modes transition times⁽¹⁾

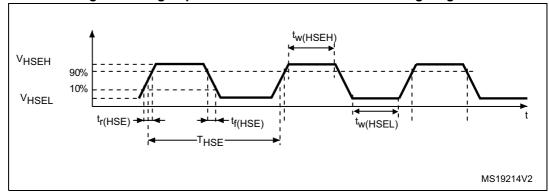
1. Guaranteed by characterization results.

2. Time until REGLPF flag is cleared in PWR_SR2.

3. Time until VOSF flag is cleared in PWR_SR2.

6.3.7 External clock source characteristics

High-speed external user clock generated from an external source


In bypass mode the HSE oscillator is switched off and the input pin is a standard GPIO.

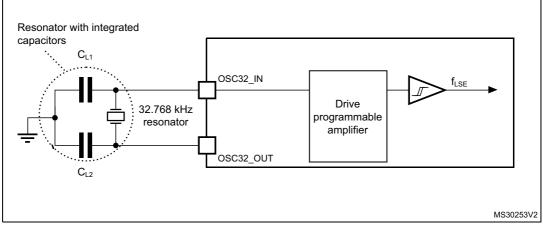
The external clock signal has to respect the I/O characteristics in *Section 6.3.14*. However, the recommended clock input waveform is shown in *Figure 15: High-speed external clock source AC timing diagram*.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{HSE_ext}	User external clock source frequency	Voltage scaling Range 1	-	8	48	MHz
		Voltage scaling Range 2	-	8	26	
V _{HSEH}	OSC_IN input pin high level voltage	-	$0.7 V_{\text{DDIOx}}$	-	V _{DDIOx}	V
V _{HSEL}	OSC_IN input pin low level voltage	-	V _{SS}	-	0.3 V _{DDIOx}	
t _{w(HSEH)}	OSC IN high or low time	Voltage scaling Range 1	7	-	-	20
t _{w(HSEL)}	OSC_IN high or low time	Voltage scaling Range 2	18	-	-	ns

Table 43. High-speed external user clock characteristics⁽¹⁾

1. Guaranteed by design.





- 1. Guaranteed by design.
- Refer to the note and caution paragraphs below the table, and to the application note AN2867 "Oscillator design guide for ST microcontrollers".
- t_{SU(LSE)} is the startup time measured from the moment it is enabled (by software) to a stabilized 32.768 kHz oscillation is reached. This value is measured for a standard crystal and it can vary significantly with the crystal manufacturer

Note: For information on selecting the crystal, refer to the application note AN2867 "Oscillator design guide for ST microcontrollers" available from the ST website <u>www.st.com</u>.

Note: An external resistor is not required between OSC32_IN and OSC32_OUT and it is forbidden to add one.

Low-speed internal (LSI) RC oscillator

Symbol	Parameter	Conditions		Тур	Max	Unit
f _{LSI}		V _{DD} = 3.0 V, T _A = 30 °C	31.04	-	32.96	kHz
	LSI Frequency	V _{DD} = 1.62 to 3.6 V, TA = -40 to 125 °C	29.5	-	34	KIIZ
t _{SU} (LSI) ⁽²⁾	LSI oscillator start- up time	-	-	80	130	μs
t _{STAB} (LSI) ⁽²⁾	LSI oscillator stabilization time	5% of final frequency	-	125	180	μs
I _{DD} (LSI) ⁽²⁾	LSI oscillator power consumption	-	-	110	180	nA

Table 49. LSI oscillator characteristics⁽¹⁾

1. Guaranteed by characterization results.

2. Guaranteed by design.

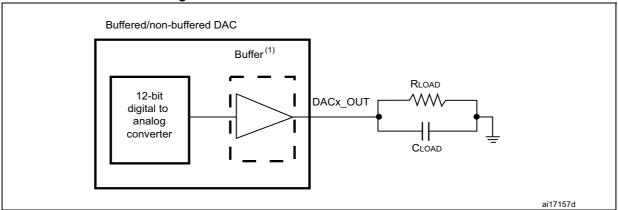
6.3.9 PLL characteristics

The parameters given in *Table 50* are derived from tests performed under temperature and V_{DD} supply voltage conditions summarized in *Table 22: General operating conditions*.

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit	
f	PLL input clock ⁽²⁾	-	4	-	16	MHz	
f _{PLL_IN}	PLL input clock duty cycle	-	45	-	55	%	
£	DLL multiplier output clock D	Voltage scaling Range 1	2.0645	-	80	MHz	
f _{PLL_P_OUT}	PLL multiplier output clock P	Voltage scaling Range 2	2.0645	-	26		
f	PLL multiplier output clock Q	Voltage scaling Range 1	8	-	80	MHz	
^f PLL_Q_OUT		Voltage scaling Range 2	8	-	26		
£	DLL multiplier output clock D	Voltage scaling Range 1	8	-	80	MHz	
^f PLL_R_OUT	PLL multiplier output clock R	Voltage scaling Range 2	8	-	26		
£		Voltage scaling Range 1	64	-	344	MHz	
fvco_out	PLL VCO output	Voltage scaling Range 2	64	-	128		
t _{LOCK}	PLL lock time	-	-	15	40	μs	
Jitter	RMS cycle-to-cycle jitter	o-cycle jitter	-	40	-	100	
Jiller	RMS period jitter	System clock 80 MHz	-	30	-	±ps	
		VCO freq = 64 MHz	-	150	200	μA	
	PLL power consumption on	VCO freq = 96 MHz	-	200	260		
I _{DD} (PLL)	V _{DD} ⁽¹⁾	VCO freq = 192 MHz	-	300	380		
		VCO freq = 344 MHz	-	520	650		

Table 50.	PLL.	PLLSAI1	PLLSAI2	characteristics ⁽¹⁾
				Characteristics

1. Guaranteed by design.



Speed	Symbol	Parameter	Conditions	Min	Max	Unit
			C=50 pF, 2.7 V≤V _{DDIOx} ≤3.6 V	-	5	
			C=50 pF, 1.62 V≤V _{DDIOx} ≤2.7 V	-	1	
	Fmax	Movimum froquenov	C=50 pF, 1.08 V≤V _{DDIOx} ≤1.62 V	-	0.1	MHz
	FIIIdX	Maximum frequency	C=10 pF, 2.7 V≤V _{DDIOx} ≤3.6 V	-	10	
			C=10 pF, 1.62 V≤V _{DDIOx} ≤2.7 V	-	1.5	
00			C=10 pF, 1.08 V≤V _{DDIOx} ≤1.62 V	-	0.1	
00			C=50 pF, 2.7 V≤V _{DDIOx} ≤3.6 V	-	25	
			C=50 pF, 1.62 V≤V _{DDIOx} ≤2.7 V	-	52	
	Tr/Tf	r/Tf Output rise and fall time	C=50 pF, 1.08 V≤V _{DDIOx} ≤1.62 V	-	140	ns
			C=10 pF, 2.7 V≤V _{DDIOx} ≤3.6 V	-	17	
			C=10 pF, 1.62 V≤V _{DDIOx} ≤2.7 V	-	37	
			C=10 pF, 1.08 V≤V _{DDIOx} ≤1.62 V	-	110	
		nax Maximum frequency	C=50 pF, 2.7 V≤V _{DDIOx} ≤3.6 V	-	25	MHz
	Fmax		C=50 pF, 1.62 V≤V _{DDIOx} ≤2.7 V	-	10	
			C=50 pF, 1.08 V≤V _{DDIOx} ≤1.62 V	-	1	
			C=10 pF, 2.7 V≤V _{DDIOx} ≤3.6 V	-	50	
			C=10 pF, 1.62 V≤V _{DDIOx} ≤2.7 V	-	15	
01			C=10 pF, 1.08 V≤V _{DDIOx} ≤1.62 V	-	1	
01			C=50 pF, 2.7 V≤V _{DDIOx} ≤3.6 V	-	9	
			C=50 pF, 1.62 V≤V _{DDIOx} ≤2.7 V	-	16	- ns
	Tr/Tf	Output rise and fall time	C=50 pF, 1.08 V≤V _{DDIOx} ≤1.62 V	-	40	
	11/11		C=10 pF, 2.7 V≤V _{DDIOx} ≤3.6 V	-	4.5	
			C=10 pF, 1.62 V≤V _{DDIOx} ≤2.7 V	-	9	
			C=10 pF, 1.08 V≤V _{DDIOx} ≤1.62 V	-	21	

3. Refer to Table 58: I/O static characteristics.

4. Ton is the Refresh phase duration. Toff is the Hold phase duration. Refer to RM0392 reference manual for more details.

Figure 26. 12-bit buffered / non-buffered DAC

 The DAC integrates an output buffer that can be used to reduce the output impedance and to drive external loads directly without the use of an external operational amplifier. The buffer can be bypassed by configuring the BOFFx bit in the DAC_CR register.

Symbol	Parameter	Conditio	Min	Тур	Max	Unit	
DNL	Differential non	DAC output buffer ON		-	-	±2	
DINL	linearity ⁽²⁾	DAC output buffer OFF		-	-	±2	
-	monotonicity	10 bits		Ģ	guarantee	d	
INII	Integral non	DAC output buffer ON CL ≤ 50 pF, RL ≥ 5 kΩ		-	-	±4	
INL	linearity ⁽³⁾	DAC output buffer OFF CL ≤ 50 pF, no RL		-	-	±4	
	Offset error at code 0x800 ⁽³⁾	DAC output buffer ON CL ≤ 50 pF, RL ≥ 5 kΩ	V _{REF+} = 3.6 V	-	-	±12	LSB
Offset			V _{REF+} = 1.8 V	-	-	±25	
		DAC output buffer OFF CL \leq 50 pF, no RL		-	-	±8	
Offset1	Offset error at code 0x001 ⁽⁴⁾	DAC output buffer OFF CL ≤ 50 pF, no RL		-	-	±5	
OffsetCal	Offset Error at code 0x800 after calibration	code $0x800$ DAC output buffer ON CL < 50 pE RL > 5 kO	V _{REF+} = 3.6 V	-	-	±5	
			V _{REF+} = 1.8 V	-	-	±7	

Table 70. DAC accuracy⁽¹⁾

Г

Т

Т

SPI characteristics

Unless otherwise specified, the parameters given in *Table 82* for SPI are derived from tests performed under the ambient temperature, f_{PCLKx} frequency and supply voltage conditions summarized in *Table 22: General operating conditions*.

- Output speed is set to OSPEEDRy[1:0] = 11
- Capacitive load C = 30 pF
- Measurement points are done at CMOS levels: 0.5 x V_{DD}

Refer to Section 6.3.14: I/O port characteristics for more details on the input/output alternate function characteristics (NSS, SCK, MOSI, MISO for SPI).

Symbol	Parameter	Conditions	Min	Тур	Max	Unit	
		Master mode receiver/full duplex 2.7 < V _{DD} < 3.6 V Voltage Range 1		-	24	MHz	
		Master mode receiver/full duplex 1.71 < V _{DD} < 3.6 V Voltage Range 1			13		
		Master mode transmitter 1.71 < V _{DD} < 3.6 V Voltage Range 1			40		
f _{SCK} 1/t _{c(SCK)}	SPI clock frequency	Slave mode receiver 1.71 < V _{DD} < 3.6 V Voltage Range 1	-		40		
		Slave mode transmitter/full duplex 2.7 < V _{DD} < 3.6 V Voltage Range 1			26 ⁽²⁾		
		Slave mode transmitter/full duplex 1.71 < V _{DD} < 3.6 V Voltage Range 1 Voltage Range 2			16 ⁽²⁾		
					13		
		1.08 < V _{DDIO2} < 1.32 V ⁽³⁾			8	1	
t _{su(NSS)}	NSS setup time	Slave mode, SPI prescaler = 2	4 _x T _{PCLK}	-	-	ns	
t _{h(NSS)}	NSS hold time	Slave mode, SPI prescaler = 2	2 _x T _{PCLK}	-	-	ns	
t _{w(SCKH)} t _{w(SCKL)}	SCK high and low time	Master mode	T _{PCLK} -2	T _{PCLK}	T _{PCLK} +2	ns	
t _{su(MI)}	Data input setup time	Master mode	3.5	-	-	ns	
t _{su(SI)}	Data input setup time	Slave mode	3	-	-	115	
t _{h(MI)}	Data input hold time	Master mode	6.5	-	-	ns	
t _{h(SI)}		Slave mode	3	-	-	115	
t _{a(SO)}	Data output access time	Slave mode	9	-	36	ns	
t _{dis(SO)}	Data output disable time	Slave mode	9	-	16	ns	

Table	82.	SPI	characteristics ⁽	1)
-------	-----	-----	------------------------------	----

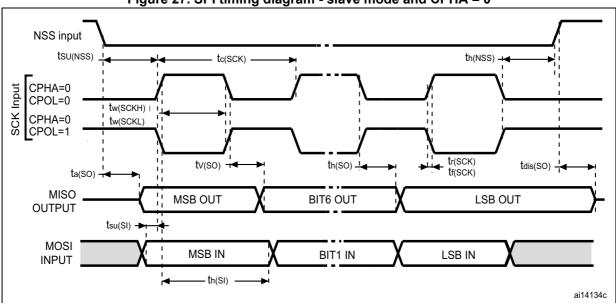

Symbol	Parameter	Parameter Conditions		Тур	Мах	Unit
t _{v(SO)} Data output valid		Slave mode 2.7 < V _{DD} < 3.6 V Voltage Range 1	-	12.5	19	
		Slave mode 1.71 < V _{DD} < 3.6 V Voltage Range 1	-	12.5	30	ns
	Data output valid time	Slave mode 1.71 < V _{DD} < 3.6 V Voltage Range 2	-	12.5	33	
-		Slave mode 1.08 < V_{DDIO2} < 1.32 $V^{(3)}$	-	25	62.5	
t _{v(MO)}		Master mode	-	2.5	12.5	
t _{h(SO)}		Slave mode	9	-	-	
-	Data output hold time	Slave mode 1.08 < V_{DDIO2} < 1.32 $V^{(3)}$	24	-	-	ns
t _{h(MO)}		Master mode	0	-	-	

Table 82. SPI characteristics⁽¹⁾ (continued)

1. Guaranteed by characterization results.

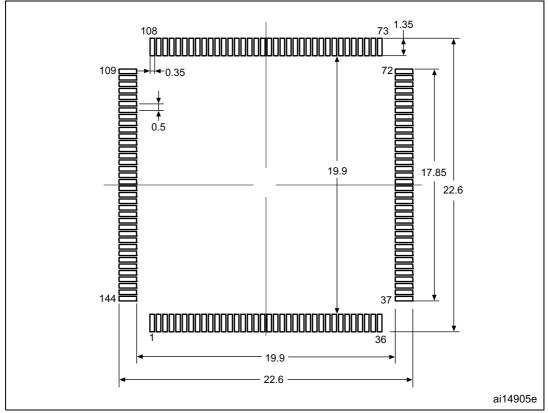
2. Maximum frequency in Slave transmitter mode is determined by the sum of $t_{v(SO)}$ and $t_{su(MI)}$ which has to fit into SCK low or high phase preceding the SCK sampling edge. This value can be achieved when the SPI communicates with a master having $t_{su(MI)} = 0$ while Duty(SCK) = 50 %.

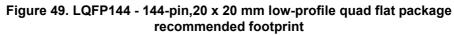
3. SPI mapped on Port G.

Figure 27. SPI timing diagram - slave mode and CPHA = 0

SAI characteristics

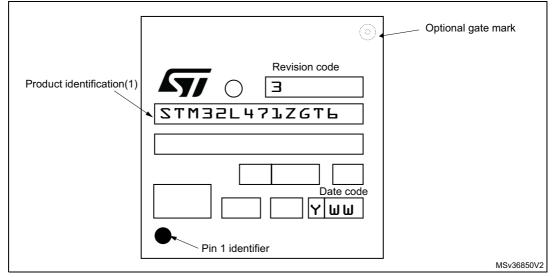
Unless otherwise specified, the parameters given in *Table 85* for SAI are derived from tests performed under the ambient temperature, f_{PCLKx} frequency and V_{DD} supply voltage conditions summarized in*Table 22: General operating conditions*, with the following configuration:


- Output speed is set to OSPEEDRy[1:0] = 10
- Capacitive load C = 30 pF
- Measurement points are done at CMOS levels: $0.5 \times V_{DD}$


Refer to Section 6.3.14: I/O port characteristics for more details on the input/output alternate function characteristics (CK,SD,FS).

Symbol	Parameter	Conditions	Min	Мах	Unit	
f _{MCLK}	SAI Main clock output	-	-	50	MHz	
		Master transmitter 2.7 ≤ V _{DD} ≤ 3.6 Voltage Range 1	-	18.5		
		Master transmitter 1.71 ≤ V _{DD} ≤ 3.6 Voltage Range 1	-	12.5		
		Master receiver Voltage Range 1	-	25		
fск	SAI clock frequency ⁽²⁾	Slave transmitter 2.7 ≤ V _{DD} ≤ 3.6 Voltage Range 1	-	22.5	MHz	
		Slave transmitter 1.71 ≤ V _{DD} ≤ 3.6 Voltage Range 1	-	14.5		
		Slave receiver Voltage Range 1	-	25		
		Voltage Range 2	-	12.5		
	EQ valid time	Master mode 2.7 \leq V _{DD} \leq 3.6	-	22	ns	
t _{v(FS)}	FS valid time	Master mode 1.71 $\leq V_{DD} \leq 3.6$	-	40		
t _{h(FS)}	FS hold time	Master mode	10	-	ns	
t _{su(FS)}	FS setup time	Slave mode	1	-	ns	
t _{h(FS)}	FS hold time	Slave mode	2	-	ns	
t _{su(SD_A_MR)}	Data input setup time	Master receiver	2.5	-	ne	
t _{su(SD_B_SR)}		Slave receiver	3	-	ns	
t _{h(SD_A_MR)}	Data input hold time	Master receiver	8	-	ns	
t _{h(SD_B_SR)}		Slave receiver	4	-	113	

Table 85.	SAI	characteristics ⁽¹⁾
-----------	-----	--------------------------------



1. Dimensions are expressed in millimeters.

Device marking

The following figure gives an example of topside marking orientation versus pin 1 identifier location.

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity.

9 Revision history

Table 109	. Document	revision	history
-----------	------------	----------	---------

Date	Revision	Changes
04-Fev-2016	1	Initial release.

