STMicroelectronics - STM32L471VET6TR Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	80MHz
Connectivity	CANbus, I ² C, IrDA, LINbus, MMC/SD, QSPI, SAI, SPI, SWPMI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, PWM, WDT
Number of I/O	82
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	128K x 8
Voltage - Supply (Vcc/Vdd)	1.71V ~ 3.6V
Data Converters	A/D 16x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	100-LQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32l471vet6tr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

		6.3.27	FSMC characteristics	183
7	Packa	ige info	rmation	200
	7.1	LQFP14	4 package information	200
	7.2	UFBGA	132 package information 2	204
	7.3	LQFP10	0 package information	207
	7.4	LQFP64	package information	210
	7.5	Thermal	characteristics	213
		7.5.1	Reference document	213
		7.5.2	Selecting the product temperature range	213
8	Part n	umberi	ng	16
9	Revis	ion hist	ory	217

3.4 Embedded Flash memory

STM32L471xx devices feature up to 1 Mbyte of embedded Flash memory available for storing programs and data. The Flash memory is divided into two banks allowing read-while-write operations. This feature allows to perform a read operation from one bank while an erase or program operation is performed to the other bank. The dual bank boot is also supported. Each bank contains 256 pages of 2 Kbyte.

Flexible protections can be configured thanks to option bytes:

- Readout protection (RDP) to protect the whole memory. Three levels are available:
 - Level 0: no readout protection
 - Level 1: memory readout protection: the Flash memory cannot be read from or written to if either debug features are connected, boot in RAM or bootloader is selected
 - Level 2: chip readout protection: debug features (Cortex-M4 JTAG and serial wire), boot in RAM and bootloader selection are disabled (JTAG fuse). This selection is irreversible.

Area	Protection level	U	ser executio	on	Debug, boot from RAM or boot from system memory (loader)			
	level	Read	Write	Erase	Read	Write	Erase	
Main	1	Yes	Yes	Yes	No	No	No	
memory	2	Yes	Yes	Yes	N/A	N/A	N/A	
System	1	Yes	No	No	Yes	No	No	
memory	2	Yes	No	No	N/A	N/A	N/A	
Option	1	Yes	Yes	Yes	Yes	Yes	Yes	
bytes	2	Yes	No	No	N/A	N/A	N/A	
Backup	1	Yes	Yes	N/A ⁽¹⁾	No	No	N/A ⁽¹⁾	
registers	2	Yes	Yes	N/A	N/A	N/A	N/A	
SDAM2	1	Yes	Yes	Yes ⁽¹⁾	No	No	No ⁽¹⁾	
SRAM2	2	Yes	Yes	Yes	N/A	N/A	N/A	

Table 3. Access status versus readout protection level and execution modes

1. Erased when RDP change from Level 1 to Level 0.

- Write protection (WRP): the protected area is protected against erasing and programming. Two areas per bank can be selected, with 2-Kbyte granularity.
- Proprietary code readout protection (PCROP): a part of the flash memory can be
 protected against read and write from third parties. The protected area is execute-only:
 it can only be reached by the STM32 CPU, as an instruction code, while all other
 accesses (DMA, debug and CPU data read, write and erase) are strictly prohibited.
 One area per bank can be selected, with 64-bit granularity. An additional option bit
 (PCROP_RDP) allows to select if the PCROP area is erased or not when the RDP
 protection is changed from Level 1 to Level 0.

	Table 4. STM32L471 modes overview (continued)									
	Mode	Regulator (1)	CPU	Flash	SRAM	Clocks	DMA & Peripherals ⁽²⁾	Wakeup source	Consumption ⁽³⁾	Wakeup time
Do	Stop 1	LPR	No	Off	ON	LSE LSI	BOR, PVD, PVM RTC,IWDG COMPx (x=1,2) DACx (x=1,2) OPAMPx (x=1,2) USARTx (x=15) ⁽⁶⁾ LPUART1 ⁽⁶⁾ I2Cx (x=13) ⁽⁷⁾ LPTIMx (x=1,2) *** All other peripherals are frozen.	Reset pin, all I/Os BOR, PVD, PVM RTC,IWDG COMPx (x=12) USARTx (x=15) ⁽⁶⁾ LPUART1 ⁽⁶⁾ I2Cx (x=13) ⁽⁷⁾ LPTIMx (x=1,2) SWPMI1 ⁽⁸⁾	6.6 μA w/o RTC 6.9 μA w RTC	4 μs in SRAM 6 μs in Flash
DocID027226 Rev 1	Stop 2	LPR	No	Off	ON	LSE LSI	BOR, PVD, PVM RTC,IWDG COMPx (x=12) I2C3 ⁽⁷⁾ LPUART1 ⁽⁶⁾ LPTIM1 *** All other peripherals are frozen.	Reset pin, all I/Os BOR, PVD, PVM RTC,IWDG COMPx (x=12) I2C3 ⁽⁷⁾ LPUART1 ⁽⁶⁾ LPTIM1	1.1 μA w/o RTC 1.4 μA w/RTC	5 μs in SRAM 7 μs in Flash

23/218

Functional overview

STM32L471xx

Standby mode, supplied by the low-power Regulator (Standby with RAM2 retention mode).

The device exits Standby mode when an external reset (NRST pin), an IWDG reset, WKUP pin event (configurable rising or falling edge), or an RTC event occurs (alarm, periodic wakeup, timestamp, tamper) or a failure is detected on LSE (CSS on LSE).

The system clock after wakeup is MSI up to 8 MHz.

Shutdown mode

The Shutdown mode allows to achieve the lowest power consumption. The internal regulator is switched off so that the VCORE domain is powered off. The PLL, the HSI16, the MSI, the LSI and the HSE oscillators are also switched off.

The RTC can remain active (Shutdown mode with RTC, Shutdown mode without RTC).

The BOR is not available in Shutdown mode. No power voltage monitoring is possible in this mode, therefore the switch to Backup domain is not supported.

SRAM1, SRAM2 and register contents are lost except for registers in the Backup domain.

The device exits Shutdown mode when an external reset (NRST pin), a WKUP pin event (configurable rising or falling edge), or an RTC event occurs (alarm, periodic wakeup, timestamp, tamper).

The system clock after wakeup is MSI at 4 MHz.

- Transmission
 - Three transmit mailboxes
 - Configurable transmit priority
- Reception
 - Two receive FIFOs with three stages
 - 14 Scalable filter banks
 - Identifier list feature
 - Configurable FIFO overrun
- Time-triggered communication option
 - Disable automatic retransmission mode
 - 16-bit free running timer
 - Time Stamp sent in last two data bytes
- Management
 - Maskable interrupts
 - Software-efficient mailbox mapping at a unique address space

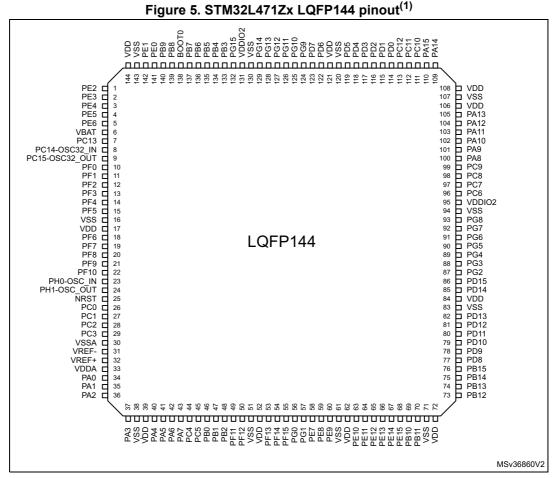
3.32 Secure digital input/output and MultiMediaCards Interface (SDMMC)

The card host interface (SDMMC) provides an interface between the APB peripheral bus and MultiMediaCards (MMCs), SD memory cards and SDIO cards.

The SDMMC features include the following:

- Full compliance with MultiMediaCard System Specification Version 4.2. Card support for three different databus modes: 1-bit (default), 4-bit and 8-bit
- Full compatibility with previous versions of MultiMediaCards (forward compatibility)
- Full compliance with SD Memory Card Specifications Version 2.0
- Full compliance with SD I/O Card Specification Version 2.0: card support for two different databus modes: 1-bit (default) and 4-bit
- Data transfer up to 48 MHz for the 8 bit mode
- Data write and read with DMA capability

3.33 Flexible static memory controller (FSMC)


The Flexible static memory controller (FSMC) includes two memory controllers:

- The NOR/PSRAM memory controller
- The NAND/memory controller

This memory controller is also named Flexible memory controller (FMC).

4 Pinouts and pin description

1. The above figure shows the package top view.

	Pin N	umbe	r			0		Pin funct	ions
LQFP64	LQFP100	UFBGA132	LQFP144	Pin name (function after reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions
14	23	L2	34	PA0	I/O) FT_a -		TIM2_CH1, TIM5_CH1, TIM8_ETR, USART2_CTS, UART4_TX, SAI1_EXTCLK, TIM2_ETR, EVENTOUT	OPAMP1_VINP, ADC12_IN5, RTC_TAMP2/WKUP1
-	-	M3	-	OPAMP1_VINM	Ι	TT	-	-	-
15	24	M2	35	PA1	I/O	FT_a	-	TIM2_CH2, TIM5_CH2, USART2_RTS_DE, UART4_RX, TIM15_CH1N, EVENTOUT	OPAMP1_VINM, ADC12_IN6
16	25	K3	36	PA2	I/O	FT_a	FT_a - TIM2_CH3, TIM5_CH3, USART2_TX, SAI2_EXTCLK, TIM15_CH1, EVENTOUT		ADC12_IN7, WKUP4/LSCO
17	26	L3	37	PA3	I/O	TT - TIM2_CH4, TIM5_CH4, USART2_RX, TIM15_CH2, EVENTOUT V		OPAMP1_ VOUT, ADC12_IN8	
18	27	E3	38	VSS	S	-	-	-	-
19	28	H3	39	VDD	S	-	-	-	-
20	29	J4	40	PA4	I/O	TT_a	-	SPI1_NSS, SPI3_NSS, USART2_CK, SAI1_FS_B, LPTIM2_OUT, EVENTOUT	ADC12_IN9, DAC1_OUT1
21	30	K4	41	PA5	I/O	TT_a	-	TIM2_CH1, TIM2_ETR, TIM8_CH1N, SPI1_SCK, LPTIM2_ETR, EVENTOUT	ADC12_IN10, DAC1_OUT2
22	31	L4	42	PA6	I/O	FT_a	TIM1_BKIN, TIM3_CH1, TIM8_BKIN, SPI1_MISO, USART3_CTS,		OPAMP2_VINP, ADC12_IN11
-	-	M4	-	OPAMP2_VINM	I	TT	-	-	-
23	32	J5	43	PA7	I/O	FT_a			OPAMP2_VINM, ADC12_IN12
24	33	K5	44	PC4	I/O	FT_a	-	USART3_TX, EVENTOUT	COMP1_INM, ADC12_IN13

Table 15. STM32L471xx pin definitions (continued)

	Pin N	lumbe	r			â		Pin funct	ions
LQFP64	LQFP100	UFBGA132	LQFP144	Pin name (function after reset)	Pin type	Pin type		Alternate functions	Additional functions
-	40	M8	60	PE9	I/O	FT	-	TIM1_CH1, DFSDM_CKOUT, FMC_D6, SAI1_FS_B, EVENTOUT	-
-	-	F6	61	VSS	S	-	-	-	-
-	-	G6	62	VDD	S	-	-	-	-
-	41	L8	63	PE10	I/O	FT	-	TIM1_CH2N, DFSDM_DATIN4, TSC_G5_IO1, QUADSPI_CLK, FMC_D7, SAI1_MCLK_B, EVENTOUT	-
-	42	M9	64	PE11	I/O	FT - TIM1_CH2, DFSDM_CKIN4, TSC_G5_IO2, QUADSPI_NCS, FMC_D8, EVENTOUT		DFSDM_CKIN4, TSC_G5_IO2, QUADSPI_NCS, FMC_D8,	-
-	43	L9	65	PE12	I/O	FT	-	TIM1_CH3N, SPI1_NSS, DFSDM_DATIN5, TSC_G5_IO3, QUADSPI_BK1_IO0, FMC_D9, EVENTOUT	-
-	44	M10	66	PE13	I/O	FT	-	TIM1_CH3, SPI1_SCK, DFSDM_CKIN5, TSC_G5_IO4, QUADSPI_BK1_IO1, FMC_D10, EVENTOUT	-
-	45	M11	67	PE14	I/O	FT	-	TIM1_CH4, TIM1_BKIN2, TIM1_BKIN2_COMP2, SPI1_MISO, QUADSPI_BK1_IO2, FMC_D11, EVENTOUT	-
-	46	M12	68	PE15	I/O	FT	-	TIM1_BKIN, TIM1_BKIN_COMP1, SPI1_MOSI, QUADSPI_BK1_IO3, FMC_D12, EVENTOUT	-

Table 15. STM32L471xx pin definitions (continued)

- For operation with voltage higher than Min (V_{DD}, V_{DDA}, V_{DDIO2}) +0.3 V, the internal Pull-up and Pull-Down resistors must be disabled.
- 4. If T_A is lower, higher P_D values are allowed as long as T_J does not exceed T_{Jmax} (see Section 7.5: Thermal characteristics).
- 5. In low-power dissipation state, T_A can be extended to this range as long as T_J does not exceed T_{Jmax} (see Section 7.5: Thermal characteristics).

6.3.2 Operating conditions at power-up / power-down

The parameters given in *Table 23* are derived from tests performed under the ambient temperature condition summarized in *Table 22*.

Table 23. Operating conditions at power-up / power-down								
Symbol	Parameter	Conditions	Min	Max	Unit			
+	V _{DD} rise time rate		0	8	uo/\/			
t _{VDD}	V _{DD} fall time rate	-	10	8	μs/V			
t	V _{DDA} rise time rate	_	0	8	µs/V			
t _{VDDA}	V _{DDA} fall time rate	-	10	8	μ5/ V			
t	V _{DDIO2} rise time rate	_	0	8	µs/V			
tvddio2	V _{DDIO2} fall time rate	-	10	8	μ3/ V			

Table 23. Operating conditions at power-up / power-down

6.3.3 Embedded reset and power control block characteristics

The parameters given in *Table 24* are derived from tests performed under the ambient temperature conditions summarized in *Table 22: General operating conditions*.

Symbol	Parameter	Conditions ⁽¹⁾	Min	Тур	Max	Unit	
t _{RSTTEMPO} ⁽²⁾	Reset temporization after BOR0 is detected	V _{DD} rising	-	250	400	μs	
V _{BOR0} ⁽²⁾	Brown-out reset threshold 0	Rising edge	1.62	1.66	1.7	V	
VBOR0	Brown-out reset threshold 0	Falling edge	1.6	1.64	1.69	v	
V	Brown-out reset threshold 1	Rising edge	2.06	2.1	2.14	V	
V _{BOR1}		Falling edge	1.96	2	2.04	v	
N.	Brown-out reset threshold 2	Rising edge	2.26	2.31	2.35	V	
V _{BOR2}	brown-out reset threshold 2	Falling edge	2.16	2.20	2.24	v	
N.	Brown-out reset threshold 3	Rising edge	2.56	2.61	2.66	V	
V _{BOR3}	Brown-out reset threshold 5	Falling edge	2.47	2.52	2.57	v	
V	Brown-out reset threshold 4	Rising edge	2.85	2.90	2.95	V	
V _{BOR4}	Brown-out reset threshold 4	Falling edge	2.76	2.81	2.86	v	
	Programmable voltage	Rising edge	2.1	2.15	2.19	v	
V _{PVD0}	detector threshold 0	Falling edge	2	2.05	2.1		

Table 24. Embedded reset and power control block characteristics

			Conditio	ons	TYP		ТҮР	
Symbol	Parameter	-	Voltage scaling	Code	25 °C	Unit	25 °C	Unit
			and the second sec	Reduced code ⁽¹⁾	2.9		111	
				Coremark	3.1		118	
		£ _ £		Dhrystone 2.1	3.1	mA	119	µA/MHz
		f _{HCLK} = f _{HSE} up to 48 MHz	Ran f _{HCLK} =	Fibonacci	2.9		112	
L (Bup)	Supply	included, bypass mode PLL ON	f	While(1)	2.8		108	
I _{DD} (Run)	D(Run) current in mode PLL ON Run mode above 48 MHz		e 1 0 MHz	Reduced code ⁽¹⁾	10.2		127	µA/MHz
		all peripherals disable		Coremark	10.9	mA	136	
				Dhrystone 2.1	11.0		137	
			Ra fHCLK	Fibonacci	10.5		131	
			Ļ,	While(1)	9.9		124	
				Reduced code ⁽¹⁾	272		136	
	Supply			Coremark	291		145	
I _{DD} (LPRun)	current in Low-power	f _{HCLK} = f _{MSI} = 2 M all peripherals dis		Dhrystone 2.1	302	μA	151	µA/MHz
	run		Fibonacci	269	1	135		
				While(1)	269		135	

Table 29. Typical current consumption in Run and Low-power run modes, with different codesrunning from Flash, ART enable (Cache ON Prefetch OFF)

1. Reduced code used for characterization results provided in Table 26, Table 27, Table 28.

Symbol	Parameter		Conditions	Тур	Max	Unit	
			Wakeup clock MSI = 48 MHz	6.2	10.2		
		Range 1	Wakeup clock HSI16 = 16 MHz	6.3	8.99		
	Wake up time from Stop 1 mode to Run mode in Flash		Wakeup clock MSI = 24 MHz	6.3	10.46	16	
		Range 2	Wakeup clock HSI16 = 16 MHz	6.3	8.87		
			Wakeup clock MSI = 4 MHz	8.0	13.23		
		Danas 1	Wakeup clock MSI = 48 MHz	4.5	5.78		
	Wake up time from Stop 1	Range 1	Wakeup clock HSI16 = 16 MHz	5.5	7.1		
t _{WUSTOP1}	mode to Run mode in		Wakeup clock MSI = 24 MHz	5.0	6.5	μs	
	SRAM1	Range 2	Wakeup clock HSI16 = 16 MHz	5.5	7.1		
			Wakeup clock MSI = 4 MHz	8.2	13.5		
	Wake up time from Stop 1 mode to Low-power run mode in Flash	Regulator in low-power	Wokeup eleek MSL = 2 MHz	12.7	20		
	Wake up time from Stop 1 mode to Low-power run mode in SRAM1	mode (LPR=1 in PWR_CR1)	Wakeup clock MSI = 2 MHz	10.7	21.5		
		Dense 1	Wakeup clock MSI = 48 MHz	8.0	9.4		
		Range 1	Wakeup clock HSI16 = 16 MHz	7.3	9.3		
	Wake up time from Stop 2 mode to Run mode in Flash		Wakeup clock MSI = 24 MHz	8.2	9.9		
		Range 2	Wakeup clock HSI16 = 16 MHz	7.3	9.3		
+			Wakeup clock MSI = 4 MHz	10.6	15.8		
twustop2		Range 1	Wakeup clock MSI = 48 MHz	5.1	6.7	μs	
	Wake up time from Stop 2	Range	Wakeup clock HSI16 = 16 MHz	5.7	8		
	mode to Run mode in		Wakeup clock MSI = 24 MHz	5.5	6.65		
	SRAM1	Range 2	Wakeup clock HSI16 = 16 MHz	5.7	7.53		
			Wakeup clock MSI = 4 MHz	8.2	16.6		
turiore	Wakeup time from Standby	Range 1	Wakeup clock MSI = 8 MHz	14.3	20.8	μs	
t _{WUSTBY}	mode to Run mode	Range 1	Wakeup clock MSI = 4 MHz	20.1	35.5	μο	
t _{WUSTBY}	Wakeup time from Standby	Range 1	Wakeup clock MSI = 8 MHz	14.3	24.3	μs	
SRAM2	with SRAM2 to Run mode		Wakeup clock MSI = 4 MHz	20.1	38.5	μo	
t _{WUSHDN}	Wakeup time from Shutdown mode to Run mode	Range 1	Wakeup clock MSI = 4 MHz	256	330.6	μs	

Table 41. Low-power mode wakeup timings⁽¹⁾ (continued)

1. Guaranteed by characterization results.

6.3.8 Internal clock source characteristics

The parameters given in *Table 47* are derived from tests performed under ambient temperature and supply voltage conditions summarized in *Table 22: General operating conditions*. The provided curves are characterization results, not tested in production.

High-speed internal (HSI16) RC oscillator

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit	
f _{HSI16}	HSI16 Frequency	V _{DD} =3.0 V, T _A =30 °C	15.88	-	16.08	MHz	
TRIM	HSI16 user trimming step	Trimming code is not a multiple of 64	0.2	0.3	0.4	%	
IRIM	nono user timining step	Trimming code is a multiple of 64	-4	-6	-8		
DuCy(HSI16) ⁽²⁾	Duty Cycle	-	45	-	55	%	
A (USI16)	HSI16 oscillator frequency	T _A = 0 to 85 °C	-1	-	1	%	
∆ _{Temp} (HSI16)	drift over temperature	T _A = -40 to 125 °C	-2	-	1.5	%	
∆ _{VDD} (HSI16)	HSI16 oscillator frequency drift over V _{DD}	V _{DD} =1.62 V to 3.6 V	-0.1	-	0.05	%	
t _{su} (HSI16) ⁽²⁾	HSI16 oscillator start-up time	-	-	0.8	1.2	μs	
t _{stab} (HSI16) ⁽²⁾	HSI16 oscillator stabilization time	-	-	3	5	μs	
I _{DD} (HSI16) ⁽²⁾	HSI16 oscillator power consumption	-	-	155	190	μA	

Table 47. HS	116 oscillator	^r characteristics ⁽¹⁾
--------------	----------------	---

1. Guaranteed by characterization results.

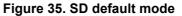
2. Guaranteed by design.

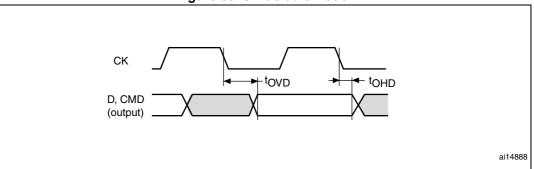
Sym- bol	Parameter	Conditions ⁽⁴⁾				Тур	Max	Unit	
			Single	Fast channel (max speed)	-	4	5		
ET	Total		ended	Slow channel (max speed)	-	4	5	1	
	unadjusted error		Differential	Fast channel (max speed)	-	3.5	4.5		
				Slow channel (max speed)	-	3.5	4.5		
	Offset		Single ended	Fast channel (max speed)	-	1	2.5		
EO				Slow channel (max speed)	-	1	2.5		
LU	error		Differential	Fast channel (max speed)	-	1.5	2.5		
		ADC clock frequency \leq 80 MHz, Sampling rate \leq 5.33 Msps, V _{DDA} = VREF + = 3 V, TA = 25 °Ctrive ber ofal-to- e and rtional-to- e		Slow channel (max speed)	-	1.5	2.5		
			Single ended	Fast channel (max speed)	-	2.5	4.5	LSB	
EG	Cain orror			Slow channel (max speed)	-	2.5	4.5		
EG	Gain error		Differential	Fast channel (max speed)	-	2.5	3.5		
				Slow channel (max speed)	-	2.5	3.5		
	Differential linearity error		Single ended	Fast channel (max speed)	-	1	1.5		
ED				Slow channel (max speed)	-	1	1.5		
ED			Differential	Fast channel (max speed)	-	1	1.2		
				Slow channel (max speed)	-	1	1.2		
	Integral linearity error		Single ended	Fast channel (max speed)	-	1.5	2.5		
EL				Slow channel (max speed)	-	1.5	2.5		
LL			Differential	Fast channel (max speed)	-	1	2		
				Slow channel (max speed)	-	1	2		
	Effective number of bits		Single ended	Fast channel (max speed)	10.4	10.5	-		
ENOB				Slow channel (max speed)	10.4	10.5	-		
LNOD			Differential	Fast channel (max speed)	10.8	10.9	-		
				Slow channel (max speed)	10.8	10.9	-		
	Signal-to- noise and distortion ratio		Single ended	Fast channel (max speed)	64.4	65	-		
SINAD				Slow channel (max speed)	64.4	65	-	- - - dB	
			Differential	Fast channel (max speed)	66.8	67.4	-		
				Slow channel (max speed)	66.8	67.4	-		
SNR	Signal-to-		Single ended	Fast channel (max speed)	65	66	-		
				Slow channel (max speed)	65	66	-		
GINIX	noise ratio		Differential	Fast channel (max speed)	67	68	-		
			Dincremual	Slow channel (max speed)	67	68	-		

Table 65. ADC accuracy	/ - limited test condition	ns 1 ⁽¹⁾⁽²⁾⁽³⁾
Table 05. ADC accuracy	- minieu lest conultion	13 1

Quad SPI characteristics

Unless otherwise specified, the parameters given in *Table 83* and *Table 84* for Quad SPI are derived from tests performed under the ambient temperature, f_{AHB} frequency and V_{DD} supply voltage conditions summarized in *Table 22: General operating conditions*, with the following configuration:


- Output speed is set to OSPEEDRy[1:0] = 11
- Capacitive load C = 15 or 20 pF
- Measurement points are done at CMOS levels: 0.5 x V_{DD}


Refer to Section 6.3.14: I/O port characteristics for more details on the input/output alternate function characteristics.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit	
F _{ск}	Quad SPI clock frequency	1.71 < V _{DD} < 3.6 V, C _{LOAD} = 20 pF Voltage Range 1	-	-	40		
		1.71 < V _{DD} < 3.6 V, C _{LOAD} = 15 pF Voltage Range 1		48	MHz		
1/t _(CK)		2.7 < V _{DD} < 3.6 V, C _{LOAD} = 15 pF Voltage Range 1		60			
		1.71 < V _{DD} < 3.6 V C _{LOAD} = 20 pF Voltage Range 2	-	-	26		
t _{w(CKH)}	Quad SPI clock high and	f _{AHBCLK} = 48 MHz, presc=0	t _(CK) /2-2	-	t _(CK) /2		
t _{w(CKL)}	low time	AHBCLK- 40 Min 12, prese-0	t _(СК) /2	-	t _(CK) /2+2		
t	Data input setup time	Voltage Range 1	4	-	-		
t _{s(IN)}	Data input setup time	Voltage Range 2	3.5	-	-]	
+	Data input hold time	Voltage Range 1	5.5	-	-	ne	
t _{h(IN)}	Data input hold time	Voltage Range 2	6.5	-	-	– ns –	
+	Data output valid time	Voltage Range 1	-	2.5	5		
t _{v(OUT)}	Data output valid time	Voltage Range 2	-	3	5		
+	Data output hold time	Voltage Range 1	1.5	-	-		
t _{h(OUT)}	Data output hold time	Voltage Range 2	2	-	-		

1. Guaranteed by characterization results.

CAN (controller area network) interface

Refer to Section 6.3.14: I/O port characteristics for more details on the input/output alternate function characteristics (CAN_TX and CAN_RX).

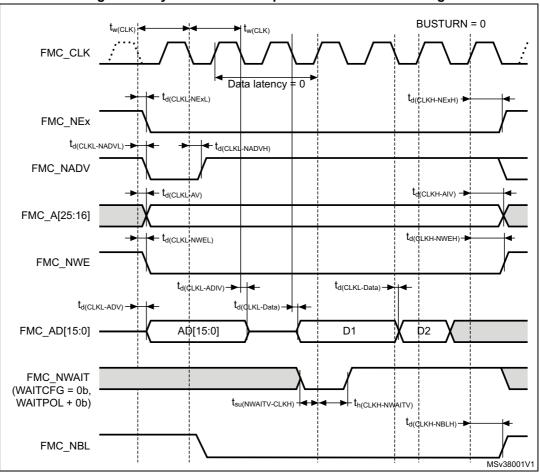


Figure 41. Synchronous multiplexed PSRAM write timings

7 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

7.1 LQFP144 package information

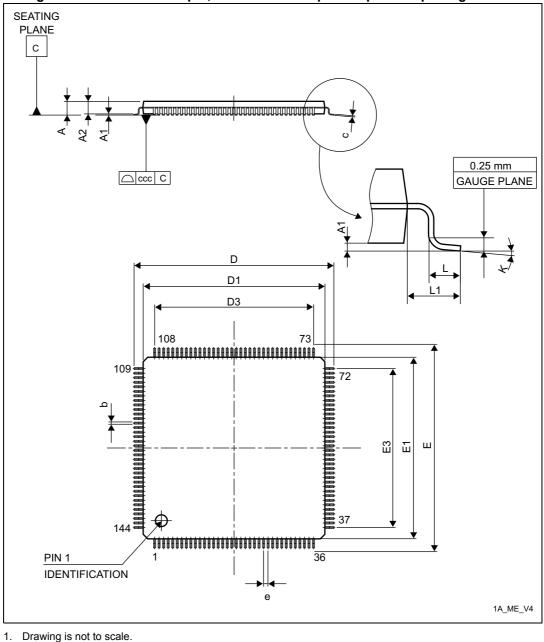
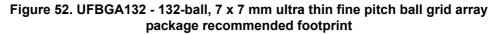


Figure 48. LQFP144 - 144-pin, 20 x 20 mm low-profile quad flat package outline

DocID027226 Rev 1

fff


0.0020

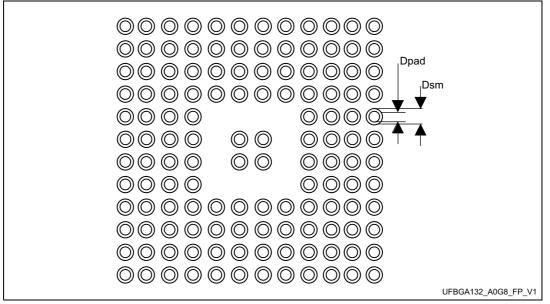

package mechanical data (continued)									
Symbol	millimeters			inches ⁽¹⁾					
	Min	Тур	Мах	Min	Тур	Мах			
е	-	0.500	-	-	0.0197	-			
Z	-	0.750	-	-	0.0295	-			
ddd	-	0.080	-	-	0.0031	-			
eee	-	0.150	-	-	0.0059	-			

Table 103. UFBGA132 - 132-ball, 7 x 7 mm ultra thin fine pitch ball grid array

1 Values in inches are converted from mm and rounded to 4 decimal digits.

0.050

Table 104. UFBGA132 recommended PCB design rules (0.5 mm pitch BGA)

Dimension	Recommended values				
Pitch	0.5 mm				
Dpad	0.280 mm				
Dsm	0.370 mm typ. (depends on the soldermask registration tolerance)				
Stencil opening	0.280 mm				
Stencil thickness	Between 0.100 mm and 0.125 mm				
Pad trace width	0.100 mm				
Ball diameter	0.280 mm				

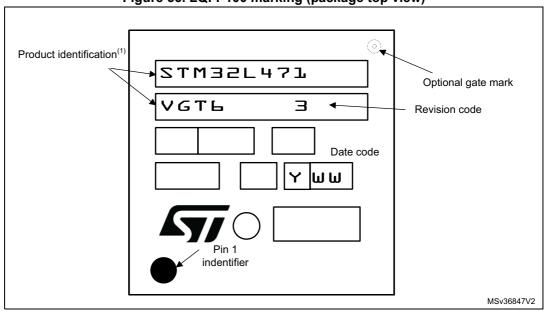


Figure 56. LQFP100 marking (package top view)

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity.

8 Part numbering

Table 108. STM32L471xx or	dering info	orma	tion so	chen	ne			
Example:	STM32	L	471	R	G	Т	6	TR
Device family								
STM32 = ARM [®] based 32-bit microcontroller								
Product type								
L = ultra-low-power								
Device subfamily								
471: STM32L471xx								
Pin count								
R = 64 pins								
V = 100 pins								
Q = 132 pins								
Z = 144 pins								
Flash memory size								
E = 512 KB of Flash memory								
G = 1 MB of Flash memory								
Package								
T = LQFP ECOPACK [®] 2								
I = UFBGA ECOPACK [®] 2								
Temperature range								
6 = Industrial temperature range, -40 to 85 °C (105	°C junction)						
7 = Industrial temperature range, -40 to 105 °C (12	5 °C junctio	n)						
3 = Industrial temperature range, -40 to 125 °C (13	0 °C junctio	n)						
Packing								

TR = tape and reel

xxx = programmed parts

