E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	80MHz
Connectivity	CANbus, EBI/EMI, I ² C, IrDA, LINbus, MMC/SD, QSPI, SAI, SPI, SWPMI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, PWM, WDT
Number of I/O	82
Program Memory Size	1MB (1M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	128K x 8
Voltage - Supply (Vcc/Vdd)	1.71V ~ 3.6V
Data Converters	A/D 16x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	100-LQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32l471vgt3

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Peripheral	STM32L471Zx	STM32L471Qx	STM32L471Vx	STM32L471Rx			
Operating temperature	Ambient operating temperature: -40 to 85 °C / -40 to 105 °C / -40 to 125 °C Junction temperature: -40 to 105 °C / -40 to 125 °C / -40 to 130 °C						
Packages	LQFP144	UFBGA132	LQFP100	LQFP64			

Table 2. STM32L471xx family device features and peripheral counts (continued)

1. For the LQFP100 package, only FMC Bank1 is available. Bank1 can only support a multiplexed NOR/PSRAM memory using the NE1 Chip Select.

\sim
N
Ñ
<u></u>
8

DocID027226 Rev 1

5

Table 4. STM32L471 modes overview									
Mode	Regulator (1)	CPU	Flash	SRAM	Clocks	DMA & Peripherals ⁽²⁾	Wakeup source	Consumption ⁽³⁾	Wakeup time
Dun	Range 1	Vaa	$ON^{(4)}$		Anv	All	N/A	112 µA/MHz	N1/A
Rull	Range2	res	UN ^V	ON	Апу	All except RNG	N/A	100 µA/MHz	IN/A
LPRun	LPR	Yes	ON ⁽⁴⁾	ON	Any except PLL	All except RNG	N/A	136 µA/MHz	to Range 1: 4 μs to Range 2: 64 μs
Sloop	Range 1	No	ON(4)	ON ⁽⁵⁾	Δον	All	Any interrupt or	37 µA/MHz	6 cycles
Sleep	Range 2	INO	UN.	UN ⁽³⁾	Апу	All except RNG	event	35 µA/MHz	6 cycles
LPSleep	LPR	No	ON ⁽⁴⁾	ON ⁽⁵⁾	Any except PLL	All except RNG	Any interrupt or event	40 µA/MHz	6 cycles
Stop 0	Range 1	No	Off	ON	LSE	BOR, PVD, PVM RTC,IWDG COMPx (x=1,2) DACx (x=1,2) OPAMPx (x=1,2) USARTx (x=15) ⁽⁶⁾ LPUART1 ⁽⁶⁾	Reset pin, all I/Os BOR, PVD, PVM RTC,IWDG COMPx (x=12) USARTx (x=15) ⁽⁶⁾	108 µA	0.7 μs in SRAM 4.5 μs in Flash
	Range 2					I2Cx (x=13) ⁽⁷⁾ LPTIMx (x=1,2) *** All other peripherals are frozen.	I2Cx (x=13) ⁽⁷⁾ LPTIMx (x=1,2) SWPMI1 ⁽⁸⁾		

Functional overview

STM32L471xx

By default, the microcontroller is in Run mode after a system or a power Reset. It is up to the user to select one of the low-power modes described below:

Sleep mode

In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can wake up the CPU when an interrupt/event occurs.

• Low-power run mode

This mode is achieved with VCORE supplied by the low-power regulator to minimize the regulator's operating current. The code can be executed from SRAM or from Flash, and the CPU frequency is limited to 2 MHz. The peripherals with independent clock can be clocked by HSI16.

Low-power sleep mode

This mode is entered from the low-power run mode. Only the CPU clock is stopped. When wakeup is triggered by an event or an interrupt, the system reverts to the lowpower run mode.

• Stop 0, Stop 1 and Stop 2 modes

Stop mode achieves the lowest power consumption while retaining the content of SRAM and registers. All clocks in the VCORE domain are stopped, the PLL, the MSI RC, the HSI16 RC and the HSE crystal oscillators are disabled. The LSE or LSI is still running.

The RTC can remain active (Stop mode with RTC, Stop mode without RTC).

Some peripherals with wakeup capability can enable the HSI16 RC during Stop mode to detect their wakeup condition.

Three Stop modes are available: Stop 0, Stop 1 and Stop 2 modes. In Stop 2 mode, most of the VCORE domain is put in a lower leakage mode.

Stop 1 offers the largest number of active peripherals and wakeup sources, a smaller wakeup time but a higher consumption than Stop 2. In Stop 0 mode, the main regulator remains ON, allowing a very fast wakeup time but with much higher consumption.

The system clock when exiting from Stop 0, Stop1 or Stop2 modes can be either MSI up to 48 MHz or HSI16, depending on software configuration.

• Standby mode

The Standby mode is used to achieve the lowest power consumption with BOR. The internal regulator is switched off so that the VCORE domain is powered off. The PLL, the MSI RC, the HSI16 RC and the HSE crystal oscillators are also switched off.

The RTC can remain active (Standby mode with RTC, Standby mode without RTC).

The brown-out reset (BOR) always remains active in Standby mode.

The state of each I/O during standby mode can be selected by software: I/O with internal pull-up, internal pull-down or floating.

After entering Standby mode, SRAM1 and register contents are lost except for registers in the Backup domain and Standby circuitry. Optionally, SRAM2 can be retained in

Standby mode, supplied by the low-power Regulator (Standby with RAM2 retention mode).

The device exits Standby mode when an external reset (NRST pin), an IWDG reset, WKUP pin event (configurable rising or falling edge), or an RTC event occurs (alarm, periodic wakeup, timestamp, tamper) or a failure is detected on LSE (CSS on LSE).

The system clock after wakeup is MSI up to 8 MHz.

Shutdown mode

The Shutdown mode allows to achieve the lowest power consumption. The internal regulator is switched off so that the VCORE domain is powered off. The PLL, the HSI16, the MSI, the LSI and the HSE oscillators are also switched off.

The RTC can remain active (Shutdown mode with RTC, Shutdown mode without RTC).

The BOR is not available in Shutdown mode. No power voltage monitoring is possible in this mode, therefore the switch to Backup domain is not supported.

SRAM1, SRAM2 and register contents are lost except for registers in the Backup domain.

The device exits Shutdown mode when an external reset (NRST pin), a WKUP pin event (configurable rising or falling edge), or an RTC event occurs (alarm, periodic wakeup, timestamp, tamper).

The system clock after wakeup is MSI at 4 MHz.

3.10 Interconnect matrix

Several peripherals have direct connections between them. This allows autonomous communication between peripherals, saving CPU resources thus power supply consumption. In addition, these hardware connections allow fast and predictable latency.

Depending on peripherals, these interconnections can operate in Run, Sleep, low-power run and sleep, Stop 0, Stop 1 and Stop 2 modes.

Interconnect source	Interconnect Interconnect Interconnect action		una	Sleep	Low-power run	Low-power sleep	Stop 0 / Stop 1	Stop 2
	TIMx	Timers synchronization or chaining	Y	Y	Y	Y	-	-
TIMx	ADCx DACx DFSDM	Conversion triggers	Y	Y	Y	Y	I	-
	DMA	Memory to memory transfer trigger	Y	Υ	Y	Υ	-	-
	COMPx	Comparator output blanking	Y	Y	Y	Y	-	-
COMPY	TIM1, 8 TIM2, 3	Timer input channel, trigger, break from analog signals comparison		Y	Y	Y	-	-
COMPX	LPTIMERx	Low-power timer triggered by analog signals comparison		Y	Y	Y	Y	Y (1)
ADCx	TIM1, 8	Timer triggered by analog watchdog	Y	Y	Y	Y	-	-
	TIM16	Timer input channel from RTC events		Υ	Y	Υ	-	-
RTC	LPTIMERx	Low-power timer triggered by RTC alarms or tampers	Y	Y	Y	Y	Y	Y (1)
All clocks sources (internal and external)	TIM2 TIM15, 16, 17	Clock source used as input channel for RC measurement and trimming	Y	Y	Y	Y	1	-
CSS CPU (hard fault) RAM (parity error) Flash memory (ECC error) COMPx PVD DFSDM (analog watchdog, short circuit detection)	TIM1,8 TIM15,16,17	Timer break	Y	Y	Y	Y	-	-

Table 6. STM32L471xx peripherals interconnect matrix

3.12 General-purpose inputs/outputs (GPIOs)

Each of the GPIO pins can be configured by software as output (push-pull or open-drain), as input (with or without pull-up or pull-down) or as peripheral alternate function. Most of the GPIO pins are shared with digital or analog alternate functions. Fast I/O toggling can be achieved thanks to their mapping on the AHB2 bus.

The I/Os alternate function configuration can be locked if needed following a specific sequence in order to avoid spurious writing to the I/Os registers.

3.13 Direct memory access controller (DMA)

The device embeds 2 DMAs. Refer to *Table 7: DMA implementation* for the features implementation.

Direct memory access (DMA) is used in order to provide high-speed data transfer between peripherals and memory as well as memory to memory. Data can be quickly moved by DMA without any CPU actions. This keeps CPU resources free for other operations.

The two DMA controllers have 14 channels in total, each dedicated to managing memory access requests from one or more peripherals. Each has an arbiter for handling the priority between DMA requests.

The DMA supports:

- 14 independently configurable channels (requests)
- Each channel is connected to dedicated hardware DMA requests, software trigger is also supported on each channel. This configuration is done by software.
- Priorities between requests from channels of one DMA are software programmable (4 levels consisting of very high, high, medium, low) or hardware in case of equality (request 1 has priority over request 2, etc.)
- Independent source and destination transfer size (byte, half word, word), emulating packing and unpacking. Source/destination addresses must be aligned on the data size.
- Support for circular buffer management
- 3 event flags (DMA Half Transfer, DMA Transfer complete and DMA Transfer Error) logically ORed together in a single interrupt request for each channel
- Memory-to-memory transfer
- Peripheral-to-memory and memory-to-peripheral, and peripheral-to-peripheral transfers
- Access to Flash, SRAM, APB and AHB peripherals as source and destination
- Programmable number of data to be transferred: up to 65536.

Table 7. DMA implementation

DMA features	DMA1	DMA2
Number of regular channels	7	7

3.27 Low-power universal asynchronous receiver transmitter (LPUART)

The device embeds one Low-Power UART. The LPUART supports asynchronous serial communication with minimum power consumption. It supports half duplex single wire communication and modem operations (CTS/RTS). It allows multiprocessor communication.

The LPUART has a clock domain independent from the CPU clock, and can wakeup the system from Stop mode. The wake up events from Stop mode are programmable and can be:

- Start bit detection
- Any received data frame
- A specific programmed data frame

Only a 32.768 kHz clock (LSE) is needed to allow LPUART communication up to 9600 baud. Therefore, even in Stop mode, the LPUART can wait for an incoming frame while having an extremely low energy consumption. Higher speed clock can be used to reach higher baudrates.

LPUART interface can be served by the DMA controller.

3.28 Serial peripheral interface (SPI)

Three SPI interfaces allow communication up to 40 Mbits/s in master and up to 24 Mbits/s slave modes, in half-duplex, full-duplex and simplex modes. The 3-bit prescaler gives 8 master mode frequencies and the frame size is configurable from 4 bits to 16 bits. The SPI interfaces support NSS pulse mode, TI mode and Hardware CRC calculation.

All SPI interfaces can be served by the DMA controller.

3.29 Serial audio interfaces (SAI)

The device embeds 2 SAI. Refer to *Table 13: SAI implementation* for the features implementation. The SAI bus interface handles communications between the microcontroller and the serial audio protocol.

The SAI peripheral supports:

- Two independent audio sub-blocks which can be transmitters or receivers with their respective FIFO.
- 8-word integrated FIFOs for each audio sub-block.
- Synchronous or asynchronous mode between the audio sub-blocks.
- Master or slave configuration independent for both audio sub-blocks.
- Clock generator for each audio block to target independent audio frequency sampling when both audio sub-blocks are configured in master mode.
- Data size configurable: 8-, 10-, 16-, 20-, 24-, 32-bit.
- Peripheral with large configurability and flexibility allowing to target as example the following audio protocol: I2S, LSB or MSB-justified, PCM/DSP, TDM, AC'97 and SPDIF out.
- Up to 16 slots available with configurable size and with the possibility to select which ones are active in the audio frame.
- Number of bits by frame may be configurable.
- Frame synchronization active level configurable (offset, bit length, level).
- First active bit position in the slot is configurable.
- LSB first or MSB first for data transfer.
- Mute mode.
- Stereo/Mono audio frame capability.
- Communication clock strobing edge configurable (SCK).
- Error flags with associated interrupts if enabled respectively.
 - Overrun and underrun detection.
 - Anticipated frame synchronization signal detection in slave mode.
 - Late frame synchronization signal detection in slave mode.
 - Codec not ready for the AC'97 mode in reception.
- Interruption sources when enabled:
 - Errors.
 - FIFO requests.
- DMA interface with 2 dedicated channels to handle access to the dedicated integrated FIFO of each SAI audio sub-block.

Figure 8. STM32L471Rx LQFP64 pinout⁽¹⁾

1. The above figure shows the package top view.

Na	me	Abbreviation	Definition			
Pin r	name	Unless otherwise specified in reset is the same as the actual	brackets below the pin name, the pin function during and after al pin name			
		S	Supply pin			
Pin	type	I	Input only pin			
		I/O	Input / output pin			
		FT	5 V tolerant I/O			
		TT	3.6 V tolerant I/O			
		B Dedicated BOOT0 pin				
		RST Bidirectional reset pin with embedded weak pull-up r				
I/O str	ucture	Option for TT or FT I/Os				
		_f ⁽¹⁾	I/O, Fm+ capable			
		a ⁽²⁾	I/O, with Analog switch function supplied by V{DDA}			
		s ⁽³⁾	I/O supplied only by V{DDIO2}			
Notes		Unless otherwise specified by a note, all I/Os are set as analog inputs during and after reset.				
Pin	Alternate functions	Functions selected through GPIOx_AFR registers				
functions	Additional functions	Functions directly selected/enabled through peripheral registers				

Table 14. Legend/abbreviations used in the pinout table

1. The related I/O structures in *Table 15* are: FT_f, FT_fa.

2. The related I/O structures in *Table 15* are: FT_a, FT_fa, TT_a.

3. The related I/O structures in *Table 15* are: FT_s, FT_fs.

		AF8	AF9	AF10	AF11	AF12	AF13	AF14	AF15
P	ort	UART4, UART5, LPUART1	CAN1, TSC	QUADSPI		SDMMC1, COMP1, COMP2, FMC, SWPMI1	SAI1, SAI2	TIM2, TIM15, TIM16, TIM17, LPTIM2	EVENTOL
	PC0 LPUART1_ RX		-	-	-	-	-	LPTIM2_IN1	EVENTOL
	PC1	LPUART1_TX	-	-	-	-	-	-	EVENTOL
	PC2	-	-	-	-	-	-	-	EVENTOL
	PC3	-	-	-	-	-	SAI1_SD_A	LPTIM2_ETR	EVENTOL
	PC4	-	-	-	-	-	-	-	EVENTOL
	PC5	-	-	-	-	-	-	-	EVENTOL
	PC6	-	TSC_G4_IO1	-	-	SDMMC1_D6	SAI2_MCLK_ A	-	EVENTOL
	PC7	-	TSC_G4_IO2	-	-	SDMMC1_D7	SAI2_MCLK_ B	-	EVENTO
Port C	PC8	-	TSC_G4_IO3	-	-	SDMMC1_D0	-	-	EVENTO
	PC9	-	TSC_G4_IO4	-	-	SDMMC1_D1	SAI2_EXTCLK	TIM8_BKIN2_ COMP1	EVENTO
	PC10	UART4_TX	TSC_G3_IO2	-	-	SDMMC1_D2	SAI2_SCK_B	-	EVENTO
	PC11	UART4_RX	TSC_G3_IO3	_	-	SDMMC1_D3	SAI2_MCLK_ B	-	EVENTOL
	PC12	UART5_TX	TSC_G3_IO4	-	-	SDMMC1_CK	SAI2_SD_B	-	EVENTOU
	PC13	-	-	-	-	-	-	-	EVENTO
	PC14	-	-	-	-	-	-	-	EVENTO
	PC15	-	-	-	-	-	-	-	EVENTO

Pinouts and pin description

STM32L471xx

	Table 17. Alternate function AF8 to AF15 (for AF0 to AF7 see Table 16) (continued)											
	Port		AF8	AF9	AF10	AF11	AF12	AF13	AF14	AF15		
			UART4, UART5, LPUART1	CAN1, TSC	QUADSPI	-	SDMMC1, COMP1, COMP2, FMC, SWPMI1	SAI1, SAI2	TIM2, TIM15, TIM16, TIM17, LPTIM2	EVENTOUT		
	Dort H	PH0	-	-	-	-	-	-	-	EVENTOUT		
	FUILT	PH1	-	-	-	-	-	-	-	EVENTOUT		

Symbol	Ratings	Max	Unit
ΣIV _{DD}	Total current into sum of all V_{DD} power lines (source) ⁽¹⁾	150	
ΣIV _{SS}	Total current out of sum of all V_{SS} ground lines (sink) ⁽¹⁾	150	
IV _{DD(PIN)}	Maximum current into each V _{DD} power pin (source) ⁽¹⁾	100	
IV _{SS(PIN)}	Maximum current out of each V_{SS} ground pin (sink) ⁽¹⁾	100	1
	Output current sunk by any I/O and control pin except FT_f	20	
I _{IO(PIN)}	Output current sunk by any FT_f pin	20	1
	Output current sourced by any I/O and control pin	20	mA
ΣI	Total output current sunk by sum of all I/Os and control pins ⁽²⁾	100	
∠ ^I IO(PIN)	Total output current sourced by sum of all I/Os and control pins ⁽²⁾	100	
I _{INJ(PIN)} ⁽³⁾	Injected current on FT_xxx, TT_xx, RST and B pins, except PA4, PA5	-5/+0 ⁽⁴⁾	
	Injected current on PA4, PA5	-5/0	1
Σ I _{INJ(PIN)}	Total injected current (sum of all I/Os and control pins) ⁽⁵⁾	25	1

1. All main power (V_{DD} , V_{DDA} , V_{DDIO2} , V_{BAT}) and ground (V_{SS} , V_{SSA}) pins must always be connected to the external power supplies, in the permitted range.

2. This current consumption must be correctly distributed over all I/Os and control pins. The total output current must not be sunk/sourced between two consecutive power supply pins referring to high pin count QFP packages.

3. Positive injection (when $V_{IN} > V_{DDIOx}$) is not possible on these I/Os and does not occur for input voltages lower than the specified maximum value.

A negative injection is induced by V_{IN} < V_{SS}. I_{INJ(PIN)} must never be exceeded. Refer also to *Table 19: Voltage characteristics* for the minimum allowed input voltage values.

When several inputs are submitted to a current injection, the maximum ∑II_{INJ(PIN)}I is the absolute sum of the negative injected currents (instantaneous values).

Table 21. Thermal characteristics

Symbol	Ratings	Value	Unit
T _{STG}	Storage temperature range	–65 to +150	°C
TJ	Maximum junction temperature	150	°C

		Conditions					тур			MAX(1)				1			
Symbol	Parameter	Conditions				ITP								Unit			
	-	V_{DD}	25 °C	55 °C	85 °C	105 °C	125 °C	25 °C	55 °C	85 °C	105 °C	125 °C					
			1.8 V	210	378	1299	3437	9357	-	-	-	-	-				
	Supply current RTC clocked by LSE	2.4 V	303	499	1577	4056	10825	-	-	-	-	-					
in Shutdown	bypassed at 32768 Hz	3 V	422	655	1925	4820	12569	-	-	-	-	-					
I _{DD} (Shutdown	(Shutdown (healuur		3.6 V	584	888	2511	6158	15706	-	-	-	-	-				
with RTC)	registers		1.8 V	329	499	1408	3460	-	-	-	-	-	-	- IIA			
	retained) RTC RTC clocked	retained) RTC	RTC clocked by LSE	RTC clocked by LSE	RTC clocked by LSE	2.4 V	431	634	1688	4064	-	-	-	-	-	-	
	enabled	mode	3 V	554	791	2025	4795	-	-	-	-	-	-				
			3.6 V	729	1040	2619	6129	-	-	-	-	-	-				
l _{DD} (wakeup from Shutdown)	Supply current during wakeup from Shutdown mode	Wakeup clock is MSI = 4 MHz. See $^{(3)}$.	3 V	0.6	-	-	-	-	-	-	-	-	-	mA			

1. Guaranteed by characterization results, unless otherwise specified.

2. Based on characterization done with a 32.768 kHz crystal (MC306-G-06Q-32.768, manufacturer JFVNY) with two 6.8 pF loading capacitors.

3. Wakeup with code execution from Flash. Average value given for a typical wakeup time as specified in *Table 41: Low-power mode wakeup timings*.

DocID027226 Rev 1

Note: For information on selecting the crystal, refer to the application note AN2867 "Oscillator design guide for ST microcontrollers" available from the ST website <u>www.st.com</u>.

Figure 17. Typical application with an 8 MHz crystal

1. R_{EXT} value depends on the crystal characteristics.

Low-speed external clock generated from a crystal resonator

The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal resonator oscillator. All the information given in this paragraph are based on design simulation results obtained with typical external components specified in *Table 46*. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy).

Symbol	Parameter	Conditions ⁽²⁾	Min	Тур	Max	Unit	
		LSEDRV[1:0] = 00 Low drive capability	-	250	-		
1	LSE ourrent concumption	LSEDRV[1:0] = 01 Medium low drive capability	-	315	-		
IDD(LSE)		LSEDRV[1:0] = 10 Medium high drive capability	-	500	-	IIA	
		LSEDRV[1:0] = 11 High drive capability	-	630	-		
		LSEDRV[1:0] = 00 Low drive capability	-	-	0.5		
Gm	Maximum critical crystal gm	LSEDRV[1:0] = 01 Medium low drive capability	-	-	0.75		
GIIIcritmax		LSEDRV[1:0] = 10 Medium high drive capability	-	-	1.7	_ μΑ/ν _	
		LSEDRV[1:0] = 11 High drive capability	-	-	2.7		
t _{SU(LSE)} ⁽³⁾	Startup time	V _{DD} is stabilized	-	2	-	s	

Table 46. LSE oscillator characteristics	(f _{LSE}	= 32.7	'68 kHz)) ⁽¹⁾
--	-------------------	--------	----------	------------------

6.3.17 Analog-to-Digital converter characteristics

Unless otherwise specified, the parameters given in *Table 63* are preliminary values derived from tests performed under ambient temperature, f_{PCLK} frequency and V_{DDA} supply voltage conditions summarized in *Table 22: General operating conditions*.

Note: It is recommended to perform a calibration after each power-up.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit	
V _{DDA}	Analog supply voltage	-	1.62	-	3.6	V	
M	Desitive reference veltare	V _{DDA} ≥ 2 V	2	-	V _{DDA}	V	
V _{REF+}	Positive reference voltage	V _{DDA} < 2 V		V _{DDA}		V	
V _{REF-}	Negative reference voltage	-		V_{SSA}		V	
£		Range 1	-	-	80		
IADC	ADC Clock frequency	Range 2	-	-	26	INITZ	
		Resolution = 12 bits	-	-	5.33		
	Sampling rate for FAST	Resolution = 10 bits	-	-	6.15		
	channels	Resolution = 8 bits	-	-	7.27		
£		Resolution = 6 bits	-	-	8.88	Maraa	
T _S		Resolution = 12 bits	-	-	4.21	Msps	
	Sampling rate for SLOW channels	Resolution = 10 bits	-	-	4.71		
		Resolution = 8 bits	-	-	5.33		
		Resolution = 6 bits	-	-	6.15		
f _{TRIG}	External trigger frequency	f _{ADC} = 80 MHz Resolution = 12 bits	-	-	5.33	MHz	
		Resolution = 12 bits	-	-	15	1/f _{ADC}	
V _{AIN} ⁽³⁾	Conversion voltage range(2)	-	0	-	V _{REF+}	V	
R _{AIN}	External input impedance	-	-	-	50	kΩ	
C _{ADC}	Internal sample and hold capacitor	-	-	5	-	pF	
t _{STAB}	Power-up time	wer-up time - 1		1		conversion cycle	
+	Collibration time	f _{ADC} = 80 MHz		1.45		μs	
^I CAL		-		116		1/f _{ADC}	
	Trianan ann an tao	CKMODE = 00	1.5	2	2.5		
4	latency Regular and	CKMODE = 01	-	-	2.0	A /5	
LATR	injected channels without	CKMODE = 10	-	-	2.25	1/1ADC	
		CKMODE = 11	-	-	2.125	1	

Table 63		characte	ristics(1) (2)
Fable 63	. ADC	characte	ristics ^{(1) (}	2

6.3.20 Comparator characteristics

Symbol	Parameter	Conditions		Min	Тур	Max	Unit	
V _{DDA}	Analog supply voltage		-	1.62	-	3.6		
V _{IN}	Comparator input voltage range	-		0	-	V _{DDA}	V	
V _{BG} ⁽²⁾	Scaler input voltage		-		V _{REFINT}	-		
V _{SC}	Scaler offset voltage		-	-	±5	±10	mV	
	Scaler static consumption B	BRG_EN=0 (bridge disable)		-	200	300	nA	
IDDA(SCALER)	from V _{DDA}	BRG_EN=1 (br	ridge enable)	-	0.8	1	μA	
t _{START_SCALER}	Scaler startup time		-	-	100	200	μs	
		High-speed	V _{DDA} ≥ 2.7 V	-	-	5		
	Comparator startup time to	mode	V _{DDA} < 2.7 V	-	-	7		
t _{START}	reach propagation delay	Modium modo	V _{DDA} ≥ 2.7 V	-	-	15	μs	
	specification	medium mode	V _{DDA} < 2.7 V	-	-	25		
		Ultra-low-powe	r mode	-	-	80		
	Propagation delay for 200 mV step with 100 mV overdrive	High-speed mode	V _{DDA} ≥ 2.7 V	-	55	80	ns	
			V _{DDA} < 2.7 V	-	65	100		
t _D ⁽³⁾		Madiumamada	V _{DDA} ≥ 2.7 V	-	0.55	0.9		
		medium mode	V _{DDA} < 2.7 V	-	0.65	1	μs	
		Ultra-low-powe	r mode	-	5	12		
V _{offset}	Comparator offset error	Full common mode range	-	-	±5	±20	mV	
		No hysteresis		-	0	-		
		Low hysteresis		-	8	-		
v _{hys}	Comparator hysteresis	Medium hyster	esis	-	15	-	mv	
		High hysteresis	-	27	-			
			Static	-	400	600		
		Ultra-low- power mode	With 50 kHz ±100 mV overdrive square signal	-	1200	-	nA	
I _{DDA} (COMP)			Static	-	5	7		
	Comparator consumption from V _{DDA}	Medium mode	With 50 kHz ±100 mV overdrive square signal	-	6	-		
			Static	-	70	100	μA	
		High-speed mode	With 50 kHz ±100 mV overdrive square signal	-	75	-		

Table	72.	СОМР	characteristics ⁽¹⁾
-------	-----	------	--------------------------------

Symbol	Parameter	Conditions	Min	Мах	Unit
+	Timor resolution time	-	1	-	t _{TIMxCLK}
^t res(TIM)		f _{TIMxCLK} = 80 MHz	12.5	-	ns
f	Timer external clock	-	0	f _{TIMxCLK} /2	MHz
'EXT	requency on CH1 to CH4	f _{TIMxCLK} = 80 MHz	0	40	MHz
Resтим	Timer resolution	TIMx (except TIM2 and TIM5)	-	16	bit
		TIM2 and TIM5	-	32	
+	16-bit counter clock	-	1	65536	t _{TIMxCLK}
COUNTER	period	f _{TIMxCLK} = 80 MHz	0.0125	819.2	μs
t	Maximum possible count	-	-	65536 × 65536	t _{TIMxCLK}
'MAX_COUNT	with 32-bit counter	f _{TIMxCLK} = 80 MHz	-	53.68	s

Table 78. TIMx⁽¹⁾ characteristics

1. TIMx, is used as a general term in which x stands for 1,2,3,4,5,6,7,8,15,16 or 17.

Table 79. IWDG	min/max ti	imeout i	period	at 32	kHz	(LSI))(1)
	minina c	meour	perioa				,

Prescaler divider	PR[2:0] bits	Min timeout RL[11:0]= 0x000	Max timeout RL[11:0]= 0xFFF	Unit
/4	0	0.125	512	
/8	1	0.250	1024	
/16	2	0.500	2048	
/32	3	1.0	4096	ms
/64	4	2.0	8192	
/128	5	4.0	16384	
/256	6 or 7	8.0	32768	

The exact timings still depend on the phasing of the APB interface clock versus the LSI clock so that there
is always a full RC period of uncertainty.

Prescaler	WDGTB	Min timeout value	Max timeout value	Unit
1	0	0.0512	3.2768	
2	1	0.1024	6.5536	me
4	2	0.2048	13.1072	1115
8	3	0.4096	26.2144	

Table 80, WWDG min/max timeout value at 80 MHz ((PCLK)

SAI characteristics

Unless otherwise specified, the parameters given in *Table 85* for SAI are derived from tests performed under the ambient temperature, f_{PCLKx} frequency and V_{DD} supply voltage conditions summarized in*Table 22: General operating conditions*, with the following configuration:

- Output speed is set to OSPEEDRy[1:0] = 10
- Capacitive load C = 30 pF
- Measurement points are done at CMOS levels: $0.5 \times V_{DD}$

Refer to Section 6.3.14: I/O port characteristics for more details on the input/output alternate function characteristics (CK,SD,FS).

Symbol	Parameter	Conditions	Min	Max	Unit
f _{MCLK}	SAI Main clock output	-	-	50	MHz
f _{СК}	SAI clock frequency ⁽²⁾	Master transmitter 2.7 ≤ V _{DD} ≤ 3.6 Voltage Range 1	-	18.5	MHz
		Master transmitter 1.71 ≤ V _{DD} ≤ 3.6 Voltage Range 1	-	12.5	
		Master receiver Voltage Range 1	-	25	
		Slave transmitter 2.7 ≤ V _{DD} ≤ 3.6 Voltage Range 1	-	22.5	
		Slave transmitter 1.71 ≤ V _{DD} ≤ 3.6 Voltage Range 1	-	14.5	
		Slave receiver Voltage Range 1	-	25	
		Voltage Range 2	- - - - - - - - - - - - - - - - - - -	12.5	
t _{v(FS)}	FS valid time	Master mode 2.7 \leq V _{DD} \leq 3.6	-	22	- ns
		Master mode 1.71 \leq V _{DD} \leq 3.6	-	40	
t _{h(FS)}	FS hold time	Master mode	10	-	ns
t _{su(FS)}	FS setup time	Slave mode	1	-	ns
t _{h(FS)}	FS hold time	Slave mode	2	-	ns
$t_{su(SD_A_MR)}$	Data input setup time	Master receiver	2.5	-	- ns
$t_{su(SD_B_SR)}$		Slave receiver	3	-	
t _{h(SD_A_MR)}	Data input hold time	Master receiver	8	-	ns
$t_{h(SD_B_SR)}$		Slave receiver	4	-	115

Table	85.	SAI	characteristics ⁽¹⁾
-------	-----	-----	--------------------------------

Figure 42. Synchronous non-multiplexed NOR/PSRAM read timings

Table 98. Synchronous non	tiplexed NOR/PSRAM read timings ⁽¹⁾⁽²
---------------------------	--

Symbol	Parameter	Min	Мах	Unit
t _{w(CLK)}	FMC_CLK period	2T _{HCLK}	-	
t _{d(CLKL-NExL)}	FMC_CLK low to FMC_NEx low (x=02)	-	2.5	
t _{d(CLKH-NExH)}	FMC_CLK high to FMC_NEx high (x= 02)	T _{HCLK} -0.5	-	
t _{d(CLKL-NADVL)}	FMC_CLK low to FMC_NADV low	-	2	
t _{d(CLKL-NADVH)}	FMC_CLK low to FMC_NADV high	0.5	-	
t _{d(CLKL-AV)}	FMC_CLK low to FMC_Ax valid (x=1625)	-	3.5	
t _{d(CLKH-AIV)}	FMC_CLK high to FMC_Ax invalid (x=1625)	T _{HCLK}	-	ns
t _{d(CLKL-NOEL)}	FMC_CLK low to FMC_NOE low	-	2	
t _{d(CLKH-NOEH)}	FMC_CLK high to FMC_NOE high	T _{HCLK} -0.5	-	
t _{su(DV-CLKH)}	FMC_D[15:0] valid data before FMC_CLK high	0	-	
t _{h(CLKH-DV)}	FMC_D[15:0] valid data after FMC_CLK high	5	-	
t _{su(NWAIT-CLKH)}	FMC_NWAIT valid before FMC_CLK high	0	-	
t _{h(CLKH-NWAIT)}	FMC_NWAIT valid after FMC_CLK high	4	-	

7.5 Thermal characteristics

The maximum chip junction temperature (T_Jmax) must never exceed the values given in *Table 22: General operating conditions*.

The maximum chip-junction temperature, T_J max, in degrees Celsius, may be calculated using the following equation:

$$T_J max = T_A max + (P_D max x \Theta_{JA})$$

Where:

- T_A max is the maximum ambient temperature in °C,
- Θ_{JA} is the package junction-to-ambient thermal resistance, in °C/W,
- P_D max is the sum of P_{INT} max and P_{I/O} max (P_D max = P_{INT} max + P_{I/O}max),
- P_{INT} max is the product of I_{DD} and V_{DD}, expressed in Watts. This is the maximum chip internal power.

 $\mathsf{P}_{\mathsf{I/O}}$ max represents the maximum power dissipation on output pins where:

 $\mathsf{P}_{\mathsf{I/O}} \max = \Sigma \; (\mathsf{V}_{\mathsf{OL}} \times \mathsf{I}_{\mathsf{OL}}) + \Sigma \; ((\mathsf{V}_{\mathsf{DDIOx}} - \mathsf{V}_{\mathsf{OH}}) \times \mathsf{I}_{\mathsf{OH}}),$

taking into account the actual V_{OL} / I_{OL} and V_{OH} / I_{OH} of the I/Os at low and high level in the application.

Symbol	Parameter	Value	Unit	
	Thermal resistance junction-ambient LQFP64 - 10 × 10 mm / 0.5 mm pitch	45		
0	Thermal resistance junction-ambient LQFP100 - 14 × 14mm	42	°CAN	
O _{JA}	Thermal resistance junction-ambient32LQFP144 - 20 × 20 mm32		0/11	
	Thermal resistance junction-ambient UFBGA132 - 7 × 7 mm	55		

Table 107. Package thermal characteristics

7.5.1 Reference document

JESD51-2 Integrated Circuits Thermal Test Method Environment Conditions - Natural Convection (Still Air). Available from www.jedec.org

7.5.2 Selecting the product temperature range

When ordering the microcontroller, the temperature range is specified in the ordering information scheme shown in *Section 8: Part numbering*.

Each temperature range suffix corresponds to a specific guaranteed ambient temperature at maximum dissipation and, to a specific maximum junction temperature.

As applications do not commonly use the STM32L471xx at maximum dissipation, it is useful to calculate the exact power consumption and junction temperature to determine which temperature range will be best suited to the application.

