E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	80MHz
Connectivity	CANbus, EBI/EMI, I ² C, IrDA, LINbus, MMC/SD, QSPI, SAI, SPI, SWPMI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, PWM, WDT
Number of I/O	82
Program Memory Size	1MB (1M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	128K x 8
Voltage - Supply (Vcc/Vdd)	1.71V ~ 3.6V
Data Converters	A/D 16x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	100-LQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32l471vgt6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.12 General-purpose inputs/outputs (GPIOs)

Each of the GPIO pins can be configured by software as output (push-pull or open-drain), as input (with or without pull-up or pull-down) or as peripheral alternate function. Most of the GPIO pins are shared with digital or analog alternate functions. Fast I/O toggling can be achieved thanks to their mapping on the AHB2 bus.

The I/Os alternate function configuration can be locked if needed following a specific sequence in order to avoid spurious writing to the I/Os registers.

3.13 Direct memory access controller (DMA)

The device embeds 2 DMAs. Refer to *Table 7: DMA implementation* for the features implementation.

Direct memory access (DMA) is used in order to provide high-speed data transfer between peripherals and memory as well as memory to memory. Data can be quickly moved by DMA without any CPU actions. This keeps CPU resources free for other operations.

The two DMA controllers have 14 channels in total, each dedicated to managing memory access requests from one or more peripherals. Each has an arbiter for handling the priority between DMA requests.

The DMA supports:

- 14 independently configurable channels (requests)
- Each channel is connected to dedicated hardware DMA requests, software trigger is also supported on each channel. This configuration is done by software.
- Priorities between requests from channels of one DMA are software programmable (4 levels consisting of very high, high, medium, low) or hardware in case of equality (request 1 has priority over request 2, etc.)
- Independent source and destination transfer size (byte, half word, word), emulating packing and unpacking. Source/destination addresses must be aligned on the data size.
- Support for circular buffer management
- 3 event flags (DMA Half Transfer, DMA Transfer complete and DMA Transfer Error) logically ORed together in a single interrupt request for each channel
- Memory-to-memory transfer
- Peripheral-to-memory and memory-to-peripheral, and peripheral-to-peripheral transfers
- Access to Flash, SRAM, APB and AHB peripherals as source and destination
- Programmable number of data to be transferred: up to 65536.

Table 7. DMA implementation

DMA features	DMA1	DMA2
Number of regular channels	7	7

3.15 Analog to digital converter (ADC)

The device embeds 3 successive approximation analog-to-digital converters with the following features:

- 12-bit native resolution, with built-in calibration
- 5.33 Msps maximum conversion rate with full resolution
 - Down to 18.75 ns sampling time
 - Increased conversion rate for lower resolution (up to 8.88 Msps for 6-bit resolution)
- Up to 24 external channels, some of them shared between ADC1 and ADC2, or ADC1, ADC2 and ADC3.
- 5 Internal channels: internal reference voltage, temperature sensor, VBAT/3, DAC1 and DAC2 outputs.
- One external reference pin is available on some package, allowing the input voltage range to be independent from the power supply
- Single-ended and differential mode inputs
- Low-power design
 - Capable of low-current operation at low conversion rate (consumption decreases linearly with speed)
 - Dual clock domain architecture: ADC speed independent from CPU frequency
- Highly versatile digital interface
 - Single-shot or continuous/discontinuous sequencer-based scan mode: 2 groups of analog signals conversions can be programmed to differentiate background and high-priority real-time conversions
 - Handles two ADC converters for dual mode operation (simultaneous or interleaved sampling modes)
 - Each ADC support multiple trigger inputs for synchronization with on-chip timers and external signals
 - Results stored into 3 data register or in RAM with DMA controller support
 - Data pre-processing: left/right alignment and per channel offset compensation
 - Built-in oversampling unit for enhanced SNR
 - Channel-wise programmable sampling time
 - Three analog watchdog for automatic voltage monitoring, generating interrupts and trigger for selected timers
 - Hardware assistant to prepare the context of the injected channels to allow fast context switching

3.15.1 Temperature sensor

The temperature sensor (TS) generates a voltage V_{TS} that varies linearly with temperature.

The temperature sensor is internally connected to the ADC1_IN17 and ADC3_IN17 input channels which is used to convert the sensor output voltage into a digital value.

The sensor provides good linearity but it has to be calibrated to obtain good overall accuracy of the temperature measurement. As the offset of the temperature sensor varies from chip to chip due to process variation, the uncalibrated internal temperature sensor is suitable for applications that detect temperature changes only.

DocID027226 Rev 1

3.22 Random number generator (RNG)

All devices embed an RNG that delivers 32-bit random numbers generated by an integrated analog circuit.

3.23 Timers and watchdogs

The STM32L471 includes two advanced control timers, up to nine general-purpose timers, two basic timers, two low-power timers, two watchdog timers and a SysTick timer. The table below compares the features of the advanced control, general purpose and basic timers.

Timer type	Timer resolution type factor		Prescaler factor	DMA Capture/ request compare generation channels		Complementary outputs						
Advanced control	TIM1, TIM8	16-bit	Up, down, Up/down	Any integer between 1 and 65536	Yes	4	3					
General- purpose	TIM2, TIM5	32-bit	Up, down, Up/down	Any integer between 1 and 65536	Yes	4	No					
General- purpose	TIM3, TIM4	16-bit	Up, down, Up/down	Any integer between 1 and 65536	Yes	4	No					
General- purpose	TIM15	16-bit	Up	Any integer between 1 and 65536	Yes	2	1					
General- purpose	TIM16, TIM17	16-bit	Up	Any integer between 1 and 65536	Yes	1	1					
Basic	TIM6, TIM7	16-bit	Up	Any integer between 1 and 65536	Yes	0	No					

Table 10. Timer feature comparison

3.23.1 Advanced-control timer (TIM1, TIM8)

The advanced-control timer can each be seen as a three-phase PWM multiplexed on 6 channels. They have complementary PWM outputs with programmable inserted dead-times. They can also be seen as complete general-purpose timers. The 4 independent channels can be used for:

- Input capture
- Output compare
- PWM generation (edge or center-aligned modes) with full modulation capability (0-100%)
- One-pulse mode output

In debug mode, the advanced-control timer counter can be frozen and the PWM outputs disabled to turn off any power switches driven by these outputs.

DocID027226 Rev 1

SAI features ⁽¹⁾	SAI1	SAI2
I2S, LSB or MSB-justified, PCM/DSP, TDM, AC'97	Х	Х
Mute mode	Х	Х
Stereo/Mono audio frame capability.	Х	Х
16 slots	Х	Х
Data size configurable: 8-, 10-, 16-, 20-, 24-, 32-bit	Х	X
FIFO Size	X (8 Word)	X (8 Word)
SPDIF	Х	Х

Table 13. SAI implementation

1. X: supported

3.30 Single wire protocol master interface (SWPMI)

The Single wire protocol master interface (SWPMI) is the master interface corresponding to the Contactless Frontend (CLF) defined in the ETSI TS 102 613 technical specification. The main features are:

- full-duplex communication mode
- automatic SWP bus state management (active, suspend, resume)
- configurable bitrate up to 2 Mbit/s
- automatic SOF, EOF and CRC handling

SWPMI can be served by the DMA controller.

3.31 Controller area network (CAN)

The CAN is compliant with specifications 2.0A and B (active) with a bit rate up to 1 Mbit/s. It can receive and transmit standard frames with 11-bit identifiers as well as extended frames with 29-bit identifiers. It has three transmit mailboxes, two receive FIFOs with 3 stages and 14 scalable filter banks.

The CAN peripheral supports:

- Supports CAN protocol version 2.0 A, B Active
- Bit rates up to 1 Mbit/s

	Pin N	umbe	r					Pin funct	ions		
LQFP64	LQFP100	UFBGA132	LQFP144	Pin name (function after reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions		
25	34	L5	45	PC5	I/O	FT_a	-	USART3_RX, EVENTOUT	COMP1_INP, ADC12_IN14, WKUP5		
26	35	M5	46	PB0	I/O	TT_a	-	TIM1_CH2N, TIM3_CH3, TIM8_CH2N, USART3_CK, QUADSPI_BK1_IO1, COMP1_OUT, EVENTOUT	OPAMP2_ VOUT, ADC12_IN15		
27	36	M6	47	PB1	I/O	FT_a	-	TIM1_CH3N, TIM3_CH4, TIM8_CH3N, DFSDM_DATIN0, USART3_RTS_DE, QUADSPI_BK1_IO0, LPTIM2_IN1, EVENTOUT	COMP1_INM, ADC12_IN16		
28	37	L6	48	PB2	I/O	FT_a	-	RTC_OUT, LPTIM1_OUT, I2C3_SMBA, DFSDM_CKIN0, EVENTOUT	COMP1_INP		
-	-	K6	49	PF11	I/O	FT	-	EVENTOUT	-		
-	-	J7	50	PF12	I/O	FT	-	FMC_A6, EVENTOUT	-		
-	-	-	51	VSS	S	-	-	-	-		
-	-	-	52	VDD	S	-	-	-	-		
-	-	K7	53	PF13	I/O	FT	-	DFSDM_DATIN6, FMC_A7, EVENTOUT	-		
-	-	J8	54	PF14	I/O	FT	-	DFSDM_CKIN6, TSC_G8_IO1, FMC_A8, EVENTOUT	-		
-	-	J9	55	PF15	I/O	FT	-	TSC_G8_IO2, FMC_A9, EVENTOUT	-		
-	-	H9	56	PG0	I/O	FT	-	TSC_G8_IO3, FMC_A10, EVENTOUT	-		
-	-	G9	57	PG1	I/O	FT	-	TSC_G8_IO4, FMC_A11, EVENTOUT	-		
-	38	M7	58	PE7	I/O	FT	-	TIM1_ETR, DFSDM_DATIN2, FMC_D4, SAI1_SD_B, EVENTOUT	-		
-	39	L7	59	PE8	I/O	FT	-	TIM1_CH1N, DFSDM_CKIN2, FMC_D5, SAI1_SCK_B, EVENTOUT	-		

Table 15. STM32L471xx pin definitions (continued)

	Pin N	umbe	r					Pin funct	ions
LQFP64	LQFP100	UFBGA132	LQFP144	Pin name (function after reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions
44	70	B12	103	PA11	I/O	FT	-	TIM1_CH4, TIM1_BKIN2, USART1_CTS, CAN1_RX, TIM1_BKIN2_COMP1, EVENTOUT	-
45	71	A12	104	PA12	I/O	FT	-	TIM1_ETR, USART1_RTS_DE, CAN1_TX, EVENTOUT	-
46	72	A11	105	PA13 (JTMS-SWDIO)	I/O	FT	(3)	JTMS-SWDIO, IR_OUT, EVENTOUT	-
47	-	-	-	VSS	S	-	-	-	-
48	73	C11	106	VDD	S	-	-	-	-
-	74	F11	107	VSS	S	-	-	-	-
-	75	G11	108	VDD	S	-	-	-	-
49	76	A10	109	PA14 (JTCK-SWCLK)	I/O	FT	(3)	JTCK-SWCLK, EVENTOUT	-
50	77	A9	110	PA15 (JTDI)	I/O	FT	(3)	JTDI, TIM2_CH1, TIM2_ETR, SPI1_NSS, SPI3_NSS, UART4_RTS_DE, TSC_G3_IO1, SAI2_FS_B, EVENTOUT	-
51	78	B11	111	PC10	I/O	FT	-	SPI3_SCK, USART3_TX, UART4_TX, TSC_G3_IO2, SDMMC1_D2, SAI2_SCK_B, EVENTOUT	-
52	79	C10	112	PC11	I/O	FT	-	SPI3_MISO, USART3_RX, UART4_RX, TSC_G3_IO3, SDMMC1_D3, SAI2_MCLK_B, EVENTOUT	-
53	80	B10	113	PC12	I/O	FT	-	SPI3_MOSI, USART3_CK, UART5_TX, TSC_G3_IO4, SDMMC1_CK, SAI2_SD_B, EVENTOUT	-
-	81	C9	114	PD0	I/O	FT	-	SPI2_NSS, DFSDM_DATIN7, CAN1_RX, FMC_D2, EVENTOUT	-

S
_
2
_
ω
N
4
1
-
×
- Q
~

Pinouts and pin description

		AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7
Port		SYS_AF	TIM1/TIM2/ TIM5/TIM8/ LPTIM1	TIM1/TIM2/ TIM3/TIM4/ TIM5	TIM8	12C1/12C2/12C3	SPI1/SPI2	SPI3/DFSDM	USART1/ USART2/ USART3
	PA0	-	TIM2_CH1	TIM5_CH1	TIM8_ETR	-	-	-	USART2_CT
	PA1	-	TIM2_CH2	TIM5_CH2	-	-	-	-	USART2_RTS DE
	PA2	-	TIM2_CH3	TIM5_CH3	-	-	-	-	USART2_T>
	PA3	-	TIM2_CH4	TIM5_CH4	-	-	-	-	USART2_R
	PA4	4		-	-	SPI1_NSS	SPI3_NSS	USART2_C	
	PA5	-	TIM2_CH1	TIM2_ETR	TIM8_CH1N	-	SPI1_SCK	-	-
	PA6	-	TIM1_BKIN	TIM3_CH1	TIM8_BKIN	-	- SPI1_MISO		USART3_CT
	PA7	-	TIM1_CH1N	TIM3_CH2	TIM8_CH1N	-	SPI1_MOSI	-	-
Port A	PA8	МСО	TIM1_CH1	-	-	-	-	-	USART1_C
	PA9	-	TIM1_CH2	-	-	-	-	-	USART1_T
	PA10	-	TIM1_CH3	-	-	-	-	-	USART1_R
	PA11	-	TIM1_CH4	TIM1_BKIN2	-	-	-	-	USART1_C1
	PA12	-	TIM1_ETR	-	-	-	_	-	USART1_RT DE
	PA13	JTMS-SWDIO	IR_OUT	-	-	-	-	-	-
	PA14	JTCK-SWCLK	-	-	-	-	-	-	-
	PA15	JTDI	TIM2_CH1	TIM2_ETR	-	-	SPI1_NSS	SPI3_NSS	_

DocID027226 Rev 1

5

71/218

		AF8	AF9	AF10	AF11	AF12	AF13	AF14	AF15	
Port		UART4, UART5, LPUART1	CAN1, TSC	QUADSPI	-	SDMMC1, COMP1, COMP2, FMC, SWPMI1	SAI1, SAI2	TIM2, TIM15, TIM16, TIM17, LPTIM2	EVENTOUT	
	PE0	-	-	-	-	FMC_NBL0	-	TIM16_CH1	EVENTOU	
	PE1	-	-	-	-	FMC_NBL1	-	TIM17_CH1	EVENTOU	
	PE2	-	TSC_G7_IO1	-	-	FMC_A23	SAI1_MCLK_ A	-	EVENTOU	
	PE3	-	TSC_G7_IO2	-	-	FMC_A19	SAI1_SD_B	-	EVENTOU	
-	PE4	-	TSC_G7_IO3	-	-	FMC_A20	SAI1_FS_A	-	EVENTOU	
	PE5	-	TSC_G7_IO4	-	-	FMC_A21	SAI1_SCK_A	-	EVENTOU	
	PE6	-	-	-	-	FMC_A22	SAI1_SD_A	-	EVENTOU	
	PE7	-	-	-	-	FMC_D4	SAI1_SD_B	-	EVENTOU	
Port E	PE8	-	-	-	-	FMC_D5	SAI1_SCK_B	-	EVENTOU	
	PE9	-	-	-	-	FMC_D6	SAI1_FS_B	-	EVENTOU	
	PE10	-	TSC_G5_IO1	QUADSPI_CLK	-	FMC_D7	FMC_D7 SAI1_MCLK_ B		EVENTOU	
	PE11	-	TSC_G5_IO2	QUADSPI_NCS	-	FMC_D8	-	-	EVENTOU	
	PE12	-	TSC_G5_IO3	QUADSPI_BK1_IO0	-	FMC_D9	-	-	EVENTOU	
	PE13	-	TSC_G5_IO4	QUADSPI_BK1_IO1	-	FMC_D10	-	-	EVENTOU	
	PE14	-	-	QUADSPI_BK1_IO2	-	FMC_D11	-	-	EVENTOU	
	PE15	_	-	QUADSPI_BK1_IO3	-	FMC_D12	-	-	EVENTOL	

5

STM32L471xx

Pinouts and pin description

			Table 26. Currer		ption in F from Flasl		-					process	ing			
			Conditions			ТҮР						MAX ⁽¹⁾				
	Symbol	Parameter	-	Voltage scaling	f _{HCLK}	25 °C	55 °C	85 °C	105 °C	125 °C	25 °C	55 °C	85 °C	105 °C	125 °C	Unit
			f _{HCLK} = f _{HSE} up to 48MHz included, bypass mode PLL ON above 48 MHz all peripherals disable		26 MHz	2.88	2.93	3.05	3.23	3.58	3.20	3.37	3.51	3.93	4.76	
					16 MHz	1.83	1.87	1.98	2.16	2.49	2.01	2.16	2.30	2.72	3.34	
					8 MHz	0.98	1.02	1.12	1.29	1.62	1.10	1.17	1.31	1.73	2.56	
				Range 2	4 MHz	0.55	0.59	0.69	0.85	1.18	0.61	0.70	0.89	1.24	1.95	
					2 MHz	0.34	0.37	0.47	0.64	0.96	0.37	0.46	0.64	0.98	1.71	
					1 MHz	0.23	0.26	0.36	0.53	0.85	0.27	0.33	0.50	0.86	1.57	
D	L (Bup)	Supply current in			100 kHz	0.14	0.17	0.27	0.43	0.75	0.17	0.21	0.38	0.74	1.44	mA
DocID027226 Rev 1	I _{DD} (Run)	Run mode			80 MHz	10.2	10.3	10.5	10.7	11.1	11.22	11.8	12.1	12.5	13.3	IIIA
)272					72 MHz	9.24	9.31	9.47	9.69	10.1	10.16	10.7	11.0	11.4	12.2	
26 F					64 MHz	8.25	8.32	8.46	8.68	9.09	9.08	9.6	9.9	10.3	11.1	
ζev γ				Range 1	48 MHz	6.28	6.35	6.5	6.72	7.11	6.91	7.3	7.6	8.0	8.8	1
-					32 MHz	4.24	4.30	4.44	4.65	5.04	4.66	4.97	5.26	5.67	6.51	1
					24 MHz	3.21	3.27	3.4	3.61	3.98	3.53	3.76	4.05	4.46	5.30	1
					16 MHz	2.19	2.24	2.36	2.56	2.94	2.41	2.66	2.95	3.16	3.99	1
		Quant		•	2 MHz	272	303	413	592	958	330	393	579	954	1704	
		Supply current in	f _{HCLK} = f _{MSI}		1 MHz	154	184	293	473	835	195	265	457	822	1572	
	I _{DD} (LPRun)	Low-power	all peripherals disat	ole	400 kHz	78	108	217	396	758	110	180	380	755	1505	μA
		run mode			100 kHz	42	73	182	360	723	75	138	331	706	1456	1

1. Guaranteed by characterization results, unless otherwise specified.

			Conditio	ons	TYP		ТҮР		
Symbol	Parameter	-	- Voltage Code		25 °C	Unit	25 °C	Unit	
			z	Reduced code ⁽¹⁾	2.9		111		
			2 MH	Coremark	3.1		118		
		$f_{HCLK} = f_{HSE}$ up to 48 MHz included, bypass mode PLL ON above 48 MHz all peripherals disable	Range 2 _{:LK} = 26 MHz	Dhrystone 2.1	3.1	mA	119	µA/MHz	
	Supply current in Run mode		Ran f _{HCLK} =	Fibonacci	2.9		112		
I _{DD} (Run)			Ę.	While(1)	2.8		108		
			Range 1 f _{HCLK} = 80 MHz	Reduced code ⁽¹⁾	10.2		127	µA/MHz	
				Coremark	10.9	mA	136		
				Dhrystone 2.1	11.0		137		
				Fibonacci	10.5		131		
			Ļ.	While(1)	9.9		124		
				Reduced code ⁽¹⁾	272		136		
	Supply			Coremark	291		145		
I _{DD} (LPRun)	current in Low-power	f _{HCLK} = f _{MSI} = 2 M all peripherals dis		Dhrystone 2.1	302	μA	151	µA/MHz	
	run	- P		Fibonacci	269		135		
				While(1)	269		135		

Table 29. Typical current consumption in Run and Low-power run modes, with different codesrunning from Flash, ART enable (Cache ON Prefetch OFF)

1. Reduced code used for characterization results provided in Table 26, Table 27, Table 28.

			Table 38. Curre	ent cor	isumpt	ion in :	Shutdo	wn mod	le (cont	inued)					
Svi	Cumhal	Devenuetor	Conditions				TYP					MAX ⁽¹⁾)		11
	Symbol	mbol Parameter	-	V _{DD}	25 °C	55 °C	85 °C	105 °C	125 °C	25 °C	55 °C	85 °C	105 °C	- - - - -	
				1.8 V	210	378	1299	3437	9357	-	-	-	-	-	
		Supply current	RTC clocked by LSE	2.4 V	303	499	1577	4056	10825	-	-	-	-	-	
		in Shutdown	bypassed at 32768 Hz	3 V	422	655	1925	4820	12569	-	-	-	-	-	
	I _{DD} (Shutdown	mode (backup		3.6 V	584	888	2511	6158	15706	-	-	-	-	-	n A
	with RTC)	registers		1.8 V	329	499	1408	3460	-	-	-	-	-	-	
		retained) RTC	RTC clocked by LSE quartz ⁽²⁾ in low drive	2.4 V	431	634	1688	4064	-	-	-	-	-	-	
		enabled	mode	3 V	554	791	2025	4795	-	-	-	-	-	-	nA
				3.6 V	729	1040	2619	6129	-	-	-	-	-	-	
DocID0	I _{DD} (wakeup from Shutdown)	Supply current during wakeup from Shutdown mode	Wakeup clock is MSI = 4 MHz. See ⁽³⁾ .	3 V	0.6	-	-	-	-	-	-	-	-	-	mA

1. Guaranteed by characterization results, unless otherwise specified.

2. Based on characterization done with a 32.768 kHz crystal (MC306-G-06Q-32.768, manufacturer JFVNY) with two 6.8 pF loading capacitors.

3. Wakeup with code execution from Flash. Average value given for a typical wakeup time as specified in *Table 41: Low-power mode wakeup timings*.

DocID027226 Rev 1

6.3.8 Internal clock source characteristics

The parameters given in *Table 47* are derived from tests performed under ambient temperature and supply voltage conditions summarized in *Table 22: General operating conditions*. The provided curves are characterization results, not tested in production.

High-speed internal (HSI16) RC oscillator

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
f _{HSI16}	HSI16 Frequency	V _{DD} =3.0 V, T _A =30 °C	15.88	-	16.08	MHz
TRIM	HSI16 user trimming step	Trimming code is not a multiple of 64	0.2	0.3	0.4	%
I INIM	nono user timining step	Trimming code is a multiple of 64	-4	-6	-8	70
DuCy(HSI16) ⁽²⁾	Duty Cycle	-	45	-	55	%
A (USI16)	HSI16 oscillator frequency	T _A = 0 to 85 °C	-1	-	1	%
∆ _{Temp} (HSI16)	drift over temperature	T _A = -40 to 125 °C	-2	-	1.5	%
∆ _{VDD} (HSI16)	HSI16 oscillator frequency drift over V _{DD}	V _{DD} =1.62 V to 3.6 V	-0.1	-	0.05	%
t _{su} (HSI16) ⁽²⁾	HSI16 oscillator start-up time	-	-	0.8	1.2	μs
t _{stab} (HSI16) ⁽²⁾	HSI16 oscillator stabilization time	-	-	3	5	μs
I _{DD} (HSI16) ⁽²⁾	HSI16 oscillator power consumption	-	-	155	190	μA

Table 47. HS	116 oscillator	^r characteristics ⁽¹⁾
--------------	----------------	---

1. Guaranteed by characterization results.

2. Guaranteed by design.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
		$V_{IN} \le Max(V_{DDXXX})^{(4)}$	-	-	±100	
	FT_xx input leakage current ⁽³⁾	$\begin{array}{l} Max(V_{DDXXX}) \leq V_{IN} \leq \\ Max(V_{DDXXX}) + 1 \ V^{(4)(5)} \end{array}$	-	-	650 ⁽³⁾⁽⁶⁾	
		$\begin{array}{l} {\sf Max}({\sf V}_{{\sf DDXXX}})\text{+1 V} < \\ {\sf VIN} \leq 5.5 \; {\sf V}^{(3)(5)} \end{array}$	-	-	200 ⁽⁶⁾	
		$V_{IN} \le Max(V_{DDXXX})^{(4)}$	-	-	±150	
	FT_lu, FT_u and PC3 IO	$ \begin{array}{c c} Max(V_{DDXXX}) \leq V_{IN} \leq \\ Max(V_{DDXXX}) + 1 \ V^{(4)} \end{array} & - \\ \hline Max(V_{DDXXX}) + 1 \ V < \\ VIN \leq 5.5 \ V^{(4)(5)(7)} \end{array} & - \\ \end{array} $	-	-	2500 ⁽³⁾⁽⁷⁾	
l _{lkg}		$\begin{array}{l} {\sf Max}({\sf V}_{{\sf DDXXX}}){\rm +1~V} < \\ {\sf VIN} \leq 5.5~{\sf V}^{(4)(5)(7)} \end{array}$	-	-	250 ⁽⁷⁾	nA
	TT xx input leakage	$V_{\text{IN}} \leq \text{Max}(V_{\text{DDXXX}})^{(6)}$	-	-	±150	
	current	Max(V _{DDXXX}) ≤ V _{IN} < 3.6 V ⁽⁶⁾	-	-	2000 ⁽³⁾	
	OPAMPx_VINM (x=1,2) dedicated input leakage current (UFBGA132 only)	T _J = 75 °C	-	-	1	
R _{PU}	Weak pull-up equivalent resistor ⁽⁸⁾	V _{IN} = V _{SS}	25	40	55	kΩ
R _{PD}	Weak pull-down equivalent resistor ⁽⁸⁾	V _{IN} = V _{DDIOx}	25	40	55	kΩ
C _{IO}	I/O pin capacitance	-	-	5	-	pF

Table 58. I/O static characteristics (c	continued)
---	------------

1. Refer to Figure 21: I/O input characteristics.

- 2. Tested in production.
- 3. Guaranteed by design.
- 4. Max(V_{DDXXX}) is the maximum value of all the I/O supplies. Refer to Table: Legend/Abbreviations used in the pinout table.
- 5. All TX_xx IO except FT_lu, FT_u and PC3.
- 6. This value represents the pad leakage of the IO itself. The total product pad leakage is provided by this formula: $I_{Total_lleak_max} = 10 \ \mu A + [number of IOs where V_{IN} is applied on the pad] \times I_{lkg}(Max)$.
- 7. To sustain a voltage higher than MIN(V_{DD} , V_{DDA} , V_{DDIO2}) +0.3 V, the internal Pull-up and Pull-Down resistors must be disabled.
- 8. Pull-up and pull-down resistors are designed with a true resistance in series with a switchable PMOS/NMOS. This PMOS/NMOS contribution to the series resistance is minimal (~10% order).

	145	ne or . Abo accuracy - III			nava	/		
Sym- bol	Parameter	C	Min	Тур	Max	Unit		
		ADC clock frequency ≤	Single	Fast channel (max speed)	-	-69	-67	
	Total	80 MHz, Sampling rate ≤ 5.33 Msps,	ended	Slow channel (max speed)	-	-71	-67	
THD	harmonic distortion	$1.65 \text{ V} \le \text{V}_{\text{DDA}} = \text{V}_{\text{REF+}} \le$		Fast channel (max speed)	-	-72	-71	dB
		3.6 V, Voltage scaling Range 1	Differential	Slow channel (max speed)	-	-72	-71	

Table 67. ADC accuracy - limited test conditions $3^{(1)(2)(3)}$ (continued)

1. Guaranteed by design.

2. ADC DC accuracy values are measured after internal calibration.

3. ADC accuracy vs. negative Injection Current: Injecting negative current on any analog input pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to analog pins which may potentially inject negative current.

^{4.} The I/O analog switch voltage booster is enable when V_{DDA} < 2.4 V (BOOSTEN = 1 in the SYSCFG_CFGR1 when V_{DDA} < 2.4 V). It is disable when V_{DDA} \geq 2.4 V. No oversampling.

Symbol	Parameter	Conditions			Тур	Max	Unit
		PGA Gain = 2		-	80/80	-	
	R2/R1 internal	PGA Gain = 4		-	120/ 40	-	
R _{network}	resistance values in PGA mode ⁽⁵⁾	PGA Gain = 8		-	140/ 20	-	kΩ/kΩ
		PGA Gain = 16		-	150/ 10	-	
Delta R	Resistance variation (R1 or R2)	-			-	15	%
PGA gain error	PGA gain error		-	-1	-	1	%
		Gain = 2	-	-	GBW/ 2	-	
PGA BW	PGA bandwidth for different non inverting gain	Gain = 4	-	-	GBW/ 4	-	MHz
FGA BW		Gain = 8	-	-	GBW/ 8	-	INITIZ
		Gain = 16	-	-	GBW/ 16	-	
		Normal mode	at 1 kHz, Output loaded with 4 kΩ	-	500	-	
en	Voltage noise	Low-power mode	at 1 kHz, Output loaded with 20 k Ω	-	600	-	nV/√Hz
en	density	Normal mode	at 10 kHz, Output loaded with 4 kΩ	-	180	-	
		Low-power mode at 10 kHz, Output loaded with 20 kΩ		-	290	-	
	OPAMP	Normal mode	no Load, quiescent	-	120	260	
I _{DDA} (OPAMP) ⁽³⁾	consumption from V _{DDA}	Low-power mode	mode	-	45	100	μA

 Table 73. OPAMP characteristics⁽¹⁾ (continued)

1. Guaranteed by design, unless otherwise specified.

2. The temperature range is limited to 0 °C-125 °C when V_{DDA} is below 2 V

3. Guaranteed by characterization results.

4. Mostly I/O leakage, when used in analog mode. Refer to IIkg parameter in Table 58: I/O static characteristics.

5. R2 is the internal resistance between OPAMP output and OPAMP inverting input. R1 is the internal resistance between OPAMP inverting input and ground. The PGA gain =1+R2/R1

Quad SPI characteristics

Unless otherwise specified, the parameters given in *Table 83* and *Table 84* for Quad SPI are derived from tests performed under the ambient temperature, f_{AHB} frequency and V_{DD} supply voltage conditions summarized in *Table 22: General operating conditions*, with the following configuration:

- Output speed is set to OSPEEDRy[1:0] = 11
- Capacitive load C = 15 or 20 pF
- Measurement points are done at CMOS levels: 0.5 x V_{DD}

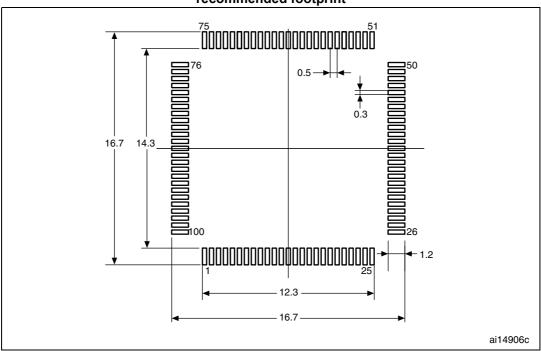
Refer to Section 6.3.14: I/O port characteristics for more details on the input/output alternate function characteristics.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
		1.71 < V _{DD} < 3.6 V, C _{LOAD} = 20 pF Voltage Range 1	-	-	40	
F _{СК}	Quad SPI clock frequency	1.71 < V _{DD} < 3.6 V, C _{LOAD} = 15 pF Voltage Range 1	-	-	48	MHz
1/t _(CK)		2.7 < V _{DD} < 3.6 V, C _{LOAD} = 15 pF Voltage Range 1	-	-	60	
		1.71 < V _{DD} < 3.6 V C _{LOAD} = 20 pF Voltage Range 2	-	-	26	
t _{w(CKH)}	Quad SPI clock high and	f _{AHBCLK} = 48 MHz, presc=0	t _(CK) /2-2	-	t _(CK) /2	
t _{w(CKL)}	low time	AHBCLK- 40 Min 12, prese-0	t _(СК) /2	-	t _(CK) /2+2	
t	Data input setup time	Voltage Range 1	4	-	-	
t _{s(IN)}	Data input setup time	Voltage Range 2	3.5			
+	Data input hold time	Voltage Range 1		-	-	ns
t _{h(IN)}	Data input hold time	Voltage Range 2	6.5	-	-	115
+	Data output valid time	Voltage Range 1	-	2.5	5	
t _{v(OUT)}	Data output valid time	Voltage Range 2	-	3	5	
+	Data output hold time	Voltage Range 1	1.5	-	-	
^t h(OUT)	Data output hold time	Voltage Range 2	2	-	-	

1. Guaranteed by characterization results.

Symbol	Parameter	Min	Мах	Unit
t _{w(CLK)}	FMC_CLK period	2T _{HCLK} -1	-	
t _{d(CLKL-NExL)}	FMC_CLK low to FMC_NEx low (x=02)	-	2	
t _{d(CLKH-NExH)}	FMC_CLK high to FMC_NEx high (x= 02)	T _{HCLK} +0.5	-	
t _{d(CLKL-NADVL)}	FMC_CLK low to FMC_NADV low	-	2.5	
t _{d(CLKL-NADVH)}	FMC_CLK low to FMC_NADV high	1	-	
t _{d(CLKL-AV)}	FMC_CLK low to FMC_Ax valid (x=1625)	-	3.5	
t _{d(CLKH-AIV)}	FMC_CLK high to FMC_Ax invalid (x=1625)	T _{HCLK}	-	
t _{d(CLKL-NWEL)}	FMC_CLK low to FMC_NWE low	-	2	
t _{d(CLKH-NWEH)}	FMC_CLK high to FMC_NWE high	T _{HCLK} +1	-	ns
t _{d(CLKL-ADV)}	FMC_CLK low to FMC_AD[15:0] valid	-	4	
t _{d(CLKL-ADIV)}	FMC_CLK low to FMC_AD[15:0] invalid	0	-	
t _{d(CLKL-DATA)}	FMC_A/D[15:0] valid data after FMC_CLK low	-	5.5	
t _{d(CLKL-NBLL)}	FMC_CLK low to FMC_NBL low	-	2.5	
t _{d(CLKH-NBLH)}	FMC_CLK high to FMC_NBL high	T _{HCLK} +1	-	
t _{su(NWAIT-CLKH)}	FMC_NWAIT valid before FMC_CLK high	0	-	
t _{h(CLKH-NWAIT)}	FMC_NWAIT valid after FMC_CLK high	4	-	

1. CL = 30 pF.


2. Guaranteed by characterization results.

Symbol		millimeters		inches ⁽¹⁾			
	Min	Тур	Мах	Min	Тур	Max	
D3	-	12.000	-	-	0.4724	-	
Е	15.800	16.000	16.200	0.6220	0.6299	0.6378	
E1	13.800	14.000	14.200	0.5433	0.5512	0.5591	
E3	-	12.000	-	-	0.4724	-	
е	-	0.500	-	-	0.0197	-	
L	0.450	0.600	0.750	0.0177	0.0236	0.0295	
L1	-	1.000	-	-	0.0394	-	
k	0.0°	3.5°	7.0°	0.0°	3.5°	7.0°	
ccc	-	-	0.080	-	-	0.0031	

Table 105. LQPF100 - 100-pin, 14 x 14 mm low-profile quad flat package mechanical data (continued)

1. Values in inches are converted from mm and rounded to 4 decimal digits.

Figure 55. LQFP100 - 100-pin, 14 x 14 mm low-profile quad flat recommended footprint

1. Dimensions are expressed in millimeters.

Device marking

The following figure gives an example of topside marking orientation versus pin 1 identifier location.

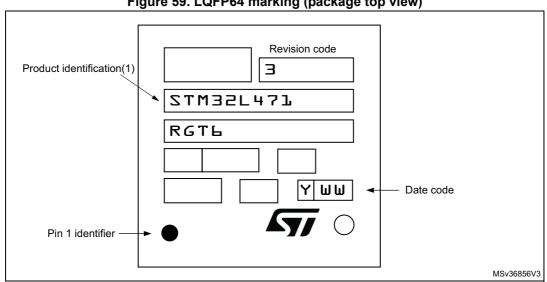


Figure 59. LQFP64 marking (package top view)

Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering complex to run qualification activity. 1. samples to run qualification activity.

7.5 Thermal characteristics

The maximum chip junction temperature (T_Jmax) must never exceed the values given in *Table 22: General operating conditions*.

The maximum chip-junction temperature, T_J max, in degrees Celsius, may be calculated using the following equation:

$$T_J max = T_A max + (P_D max x \Theta_{JA})$$

Where:

- T_A max is the maximum ambient temperature in °C,
- Θ_{JA} is the package junction-to-ambient thermal resistance, in °C/W,
- P_D max is the sum of P_{INT} max and P_{I/O} max (P_D max = P_{INT} max + P_{I/O}max),
- P_{INT} max is the product of I_{DD} and V_{DD}, expressed in Watts. This is the maximum chip internal power.

 $\mathsf{P}_{\mathsf{I/O}}$ max represents the maximum power dissipation on output pins where:

 $\mathsf{P}_{\mathsf{I/O}} \max = \Sigma \; (\mathsf{V}_{\mathsf{OL}} \times \mathsf{I}_{\mathsf{OL}}) + \Sigma \; ((\mathsf{V}_{\mathsf{DDIOx}} - \mathsf{V}_{\mathsf{OH}}) \times \mathsf{I}_{\mathsf{OH}}),$

taking into account the actual V_{OL} / I_{OL} and V_{OH} / I_{OH} of the I/Os at low and high level in the application.

Symbol	Parameter	Value	Unit
Θ _{JA}	Thermal resistance junction-ambient LQFP64 - 10 × 10 mm / 0.5 mm pitch	45	°C/W
	Thermal resistance junction-ambient LQFP100 - 14 × 14mm	42	
	Thermal resistance junction-ambient LQFP144 - 20 × 20 mm	32	
	Thermal resistance junction-ambient UFBGA132 - 7 × 7 mm	55	

Table 107. Package thermal characteristics

7.5.1 Reference document

JESD51-2 Integrated Circuits Thermal Test Method Environment Conditions - Natural Convection (Still Air). Available from www.jedec.org

7.5.2 Selecting the product temperature range

When ordering the microcontroller, the temperature range is specified in the ordering information scheme shown in *Section 8: Part numbering*.

Each temperature range suffix corresponds to a specific guaranteed ambient temperature at maximum dissipation and, to a specific maximum junction temperature.

As applications do not commonly use the STM32L471xx at maximum dissipation, it is useful to calculate the exact power consumption and junction temperature to determine which temperature range will be best suited to the application.

