
E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	e200z6
Core Size	32-Bit Single-Core
Speed	132MHz
Connectivity	CANbus, EBI/EMI, Ethernet, SCI, SPI
Peripherals	DMA, POR, PWM, WDT
Number of I/O	256
Program Memory Size	3MB (3M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	128K x 8
Voltage - Supply (Vcc/Vdd)	1.35V ~ 1.65V
Data Converters	A/D 40x12b
Oscillator Type	External
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	416-BBGA
Supplier Device Package	416-PBGA (27x27)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mpc5566mvr132

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.2.1 General Notes for Specifications at Maximum Junction Temperature

An estimation of the device junction temperature, T_{μ} , can be obtained from the equation:

$$T_{J} = T_{A} + (R_{\theta JA} \times P_{D})$$

 T_A = ambient temperature for the package (°C)

 $R_{\theta JA}$ = junction to ambient thermal resistance (°C/W)

 P_D = power dissipation in the package (W)

The thermal resistance values used are based on the JEDEC JESD51 series of standards to provide consistent values for estimations and comparisons. The difference between the values determined for the single-layer (1s) board compared to a four-layer board that has two signal layers, a power and a ground plane (2s2p), demonstrate that the effective thermal resistance is not a constant. The thermal resistance depends on the:

- Construction of the application board (number of planes)
- Effective size of the board which cools the component
- Quality of the thermal and electrical connections to the planes
- Power dissipated by adjacent components

Connect all the ground and power balls to the respective planes with one via per ball. Using fewer vias to connect the package to the planes reduces the thermal performance. Thinner planes also reduce the thermal performance. When the clearance between the vias leave the planes virtually disconnected, the thermal performance is also greatly reduced.

As a general rule, the value obtained on a single-layer board is within the normal range for the tightly packed printed circuit board. The value obtained on a board with the internal planes is usually within the normal range if the application board has:

- One oz. (35 micron nominal thickness) internal planes
- Components are well separated
- Overall power dissipation on the board is less than 0.02 W/cm^2

The thermal performance of any component depends on the power dissipation of the surrounding components. In addition, the ambient temperature varies widely within the application. For many natural convection and especially closed box applications, the board temperature at the perimeter (edge) of the package is approximately the same as the local air temperature near the device. Specifying the local ambient conditions explicitly as the board temperature provides a more precise description of the local ambient conditions that determine the temperature of the device.

1.5 V POR asserts and stops the system clock, causing the voltage on V_{DD} to rise until the 1.5 V POR negates again. All oscillations stop when V_{RC33} is powered sufficiently.

When powering down, V_{RC33} and V_{DDSYN} have no delta requirement to each other, because the bypass capacitors internal and external to the device are already charged. When not powering up or down, no delta between V_{RC33} and V_{DDSYN} is required for the V_{RC} to operate within specification.

There are no power up/down sequencing requirements to prevent issues such as latch-up, excessive current spikes, and so on. Therefore, the state of the I/O pins during power up and power down varies depending on which supplies are powered.

Table 7 gives the pin state for the sequence cases for all pins with pad type pad_fc (fast type).

V _{DDE}	V _{DD33}	V _{DD}	POR	Pin Status for Fast Pad Output Driver pad_fc (fast)
Low	—	_	Asserted	Low
V_{DDE}	Low	Low	Asserted	High
V_{DDE}	Low	V _{DD}	Asserted	High
V_{DDE}	V _{DD33}	Low	Asserted	High impedance (Hi-Z)
V_{DDE}	V _{DD33}	V _{DD}	Asserted	Hi-Z
V_{DDE}	V _{DD33}	V _{DD}	Negated	Functional

Table 7. Pin Status for Fast Pads During the Power Sequence

Table 8 gives the pin state for the sequence cases for all pins with pad type pad_mh (medium type) and pad_sh (slow type).

Table 8. Pin Status for Medium and Slow Pads During the Power Sequence

V _{DDEH}	V _{DD}	POR	Pin Status for Medium and Slow Pad Output Driver pad_mh (medium) pad_sh (slow)
Low	_	Asserted	Low
V _{DDEH}	Low	Asserted	High impedance (Hi-Z)
V _{DDEH}	V_{DD}	Asserted	Hi-Z
V _{DDEH}	V_{DD}	Negated	Functional

The values in Table 7 and Table 8 do not include the effect of the weak-pull devices on the output pins during power up.

Before exiting the internal POR state, the voltage on the pins go to a high-impedance state until POR negates. When the internal POR negates, the functional state of the signal during reset applies and the weak-pull devices

(up or down) are enabled as defined in the device reference manual. If V_{DD} is too low to correctly propagate the logic signals, the weak-pull devices can pull the signals to V_{DDE} and V_{DDEH} .

To avoid this condition, minimize the ramp time of the V_{DD} supply to a time period less than the time required to enable the external circuitry connected to the device outputs.

During initial power ramp-up, when V_{stby} is 0.6v or above. a typical current of 1-3mA and maximum of 4mA may be seen until V_{DD} is applied. This current will not reoccur until V_{stby} is lowered below V_{stby} min. specification.

Figure 2 shows an approximate interpolation of the I_{STBY} worst-case specification to estimate values at different voltages and temperatures. The vertical lines shown at 25 °C, 60 °C, and 150 °C in Figure 2 are the actual I_{DD} STBY specifications (27d) listed in Table 9.



Figure 2. fl_{STBY} Worst-case Specifications

3.7.1 Input Value of Pins During POR Dependent on V_{DD33}

When powering up the device, V_{DD33} must not lag the latest V_{DDSYN} or RESET power pin (V_{DDEH6}) by more than the V_{DD33} lag specification listed in Table 6, spec 8. This avoids accidentally selecting the bypass clock mode because the internal versions of PLLCFG[0:1] and RSTCFG are not powered and therefore cannot read the default state when POR negates. V_{DD33} can lag V_{DDSYN} or the RESET power pin (V_{DDEH6}), but cannot lag both by more than the V_{DD33} lag specification. This V_{DD33} lag specification applies during power up only. V_{DD33} has no lead or lag requirements when powering down.

3.7.2 Power-Up Sequence (V_{RC33} Grounded)

The 1.5 V V_{DD} power supply must rise to 1.35 V before the 3.3 V V_{DDSYN} power supply and the RESET power supply rises above 2.0 V. This ensures that digital logic in the PLL for the 1.5 V power supply does not begin to operate below the specified operation range lower limit of 1.35 V. Because the internal 1.5 V POR is disabled, the internal 3.3 V POR or the RESET power POR must hold the device in reset. Since they can negate as low as 2.0 V, V_{DD} must be within specification before the 3.3 V POR and the RESET POR negate.

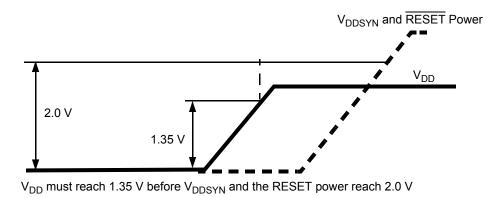


Figure 3. Power-Up Sequence (V_{RC33} Grounded)

3.7.3 Power-Down Sequence (V_{RC33} Grounded)

The only requirement for the power-down sequence with V_{RC33} grounded is if V_{DD} decreases to less than its operating range, V_{DDSYN} or the RESET power must decrease to less than 2.0 V before the V_{DD} power increases to its operating range. This ensures that the digital 1.5 V logic, which is reset only by an ORed POR and can cause the 1.5 V supply to decrease less than its specification value, resets correctly. See Table 6, footnote 1.

Table 12. FMPLL Electrical Specifications (continued)

Spec	Characteristic	Symbol	Minimum	Maximum	Unit
19	CLKOUT period jitter, measured at f _{SYS} max: ^{13, 14} Peak-to-peak jitter (clock edge to clock edge) Long term jitter (averaged over a 2 ms interval)	C _{JITTER}		5.0 0.01	% f _{clkout}
20	Frequency modulation range limit ¹⁵ (do not exceed f _{sys} maximum)	C _{MOD}	0.8	2.4	%f _{SYS}
21	$ \begin{array}{l} \text{ICO frequency} \\ f_{ico} = [f_{ref_crystal} \times (\text{MFD} + 4)] \div (\text{PREDIV} + 1) \\ f_{ico} = [f_{ref_ext} \times (\text{MFD} + 4)] \div (\text{PREDIV} + 1) \end{array} $	f _{ico}	48	f _{MAX}	MHz
22	Predivider output frequency (to PLL)	f _{PREDIV}	4	20 ¹⁷	MHz

$(V_{DDSYN} = 3.0-3.6 \text{ V}; V_{SS} = V_{SSSYN} = 0.0 \text{ V}; T_A = T_L \text{ to } T_H)$

¹ Nominal crystal and external reference values are worst-case not more than 1%. The device operates correctly if the frequency remains within ± 5% of the specification limit. This tolerance range allows for a slight frequency drift of the crystals over time. The designer must thoroughly understand the drift margin of the source clock.

² All internal registers retain data at 0 Hz.

³ Up to the maximum frequency rating of the device (refer to Table 1).

⁴ Loss of reference frequency is defined as the reference frequency detected internally, which transitions the PLL into self-clocked mode.

⁵ The PLL operates at self-clocked mode (SCM) frequency when the reference frequency falls below f_{LOR}. SCM frequency is measured on the CLKOUT ball with the divider set to divide-by-two of the system clock. NOTE: In SCM, the MFD and PREDIV have no effect and the RFD is bypassed.

⁶ Use the EXTAL input high voltage parameter when using the FlexCAN oscillator in crystal mode (no quartz crystals or resonators). (V_{extal} – V_{xtal}) must be ≥ 400 mV for the oscillator's comparator to produce the output clock.

⁷ Use the EXTAL input low voltage parameter when using the FlexCAN oscillator in crystal mode (no quartz crystals or resonators). (V_{xtal} – V_{extal}) must be ≥ 400 mV for the oscillator's comparator to produce the output clock.

⁸ I_{xtal} is the oscillator bias current out of the XTAL pin with both EXTAL and XTAL pins grounded.

⁹ C_{PCB EXTAL} and C_{PCB XTAL} are the measured PCB stray capacitances on EXTAL and XTAL, respectively.

¹⁰ This specification applies to the period required for the PLL to relock after changing the MFD frequency control bits in the synthesizer control register (SYNCR). From power up with crystal oscillator reference, the lock time also includes the crystal startup time.

¹¹ PLL is operating in 1:1 PLL mode.

 12 V_{DDE} = 3.0–3.6 V.

¹³ Jitter is the average deviation from the programmed frequency measured over the specified interval at maximum f_{sys}. Measurements are made with the device powered by filtered supplies and clocked by a stable external clock signal. Noise injected into the PLL circuitry via V_{DDSYN} and V_{SSSYN} and variation in crystal oscillator frequency increase the jitter percentage for a given interval. CLKOUT divider is set to divide-by-two.

¹⁴ Values are with frequency modulation disabled. If frequency modulation is enabled, jitter is the sum of (jitter + Cmod).

¹⁵ Modulation depth selected must not result in f_{svs} value greater than the f_{svs} maximum specified value.

¹⁶ $f_{SVS} = f_{iCO} \div (2^{RFD}).$

¹⁷ Maximum value for dual controller (1:1) mode is (f_{MAX} ÷ 2) with the predivider set to 1 (FMPLL_SYNCR[PREDIV] = 0b001).

3.11 H7Fa Flash Memory Electrical Characteristics

Table 14. Flash Program and Erase Specifications ($T_A = T_L$ to T_H)

Spec	Flash Program Characteristic	Symbol	Min.	Typical ¹	Initial Max. ²	Max. ³	Unit
3	Doubleword (64 bits) program time ⁴	T _{dwprogram}	_	10	_	500	μs
4	Page program time ⁴	T _{pprogram}	_	22	44 ⁵	500	μs
7	16 KB block pre-program and erase time	T _{16kpperase}	—	265	400	5000	ms
9	48 KB block pre-program and erase time	T _{48kpperase}	—	345	400	5000	ms
10	64 KB block pre-program and erase time	T _{64kpperase}	—	415	500	5000	ms
8	128 KB block pre-program and erase time	T _{128kpperase}	_	500	1250	7500	ms
11	Minimum operating frequency for program and erase operations ⁶	_	25	_		_	MHz

¹ Typical program and erase times are calculated at 25 °C operating temperature using nominal supply values.

² Initial factory condition: ≤ 100 program/erase cycles, 25 °C, using a typical supply voltage measured at a minimum system frequency of 80 MHz.

³ The maximum erase time occurs after the specified number of program/erase cycles. This maximum value is characterized but not guaranteed.

⁴ Actual hardware programming times. This does not include software overhead.

⁵ Page size is 256 bits (8 words).

⁶ The read frequency of the flash can range up to the maximum operating frequency. There is no minimum read frequency condition.

Spec	Characteristic	Symbol	Min.	Typical ¹	Unit
1a	Number of program/erase cycles per block for 16 KB, 48 KB, and 64 KB blocks over the operating temperature range (T_J)	P/E	100,000	—	cycles
1b	Number of program/erase cycles per block for 128 KB blocks over the operating temperature range (T $_{\rm J}$)	P/E	1000	100,000	cycles
2	Data retention Blocks with 0–1,000 P/E cycles Blocks with 1,001–100,000 P/E cycles	Retention	20 5	_	years

Table 15. Flash EEPROM Module Life ($T_A = T_L$ to T_H)

Typical endurance is evaluated at 25^o C. Product qualification is performed to the minimum specification. For additional information on the Freescale definition of typical endurance, refer to engineering bulletin EB619 Typical Endurance for Nonvolatile Memory.

Table 16 shows the FLASH_BIU settings versus frequency of operation. Refer to the device reference manual for definitions of these bit fields.

Maximum Frequency (MHz)	APC	RWSC	wwsc	DPFEN ²	IPFEN ²	PFLIM ³	BFEN ⁴
Up to and including 82 MHz ⁵	0b001	0b001	0b01	0b00 0b01 0b11	0b00 0b01 0b11	0b000 to 0b110	0b0 0b1
Up to and including 102 MHz ⁶	0b001	0b010	0b01	0b00 0b01 0b11	0b00 0b01 0b11	0b000 to 0b110	0b0 0b1
Up to and including 135 MHz ⁷	0b010	0b011	0b01	0b00 0b01 0b11	0b00 0b01 0b11	0b000 to 0b110	0b0 0b1
Up to and including 147 MHz ⁸	0b011	0b100	0b01	0b00 0b01 0b11	0b00 0b01 0b11	0b000 to 0b110	0b0 0b1
Default setting after reset	0b111	0b111	0b11	0b00	0b00	0b000	0b0

Table 16. FLASH_BIU Settings vs. Frequency of Operation ¹

¹ Illegal combinations exist. Use entries from the same row in this table.

² For maximum flash performance, set to 0b11.

³ For maximum flash performance, set to 0b110.

⁴ For maximum flash performance, set to 0b1.

⁵ 82 MHz parts allow for 80 MHz system clock + 2% frequency modulation (FM).

⁶ 102 MHz parts allow for 100 MHz system clock + 2% FM.

⁷ 135 MHz parts allow for 132 MHz system clock + 2% FM.

⁸ 147 MHz parts allow for 144 MHz system clock + 2% FM.

3.12 AC Specifications

3.12.1 Pad AC Specifications

Table 17. Pad AC Specifications (V_{DDEH} = 5.0 V, V_{DDE} = 1.8 V) ¹

Spec	Pad	SRC / DSC (binary)	Out Delay ^{2, 3, 4} (ns)	Rise / Fall ^{4, 5} (ns)	Load Drive (pF)
		11	26	15	50
	Slow high voltage (SH)		82	60	200
1		01	75	40	50
			137	80	200
		00 -	377	200	50
			476	260	200

Spec	Pad	SRC/DSC (binary)	Out Delay ^{2, 3, 4} (ns)	Rise / Fall ^{3, 5} (ns)	Load Drive (pF)
		00		2.4	10
3	Fast	01	3.2	2.2	20
3		10		2.1	30
		11		2.1	50
4	Pullup/down (3.6 V max)	—	—	7500	50
5	Pullup/down (5.5 V max)	—	—	9500	50

Table 18. Derated Pad AC Specifications (V_{DDEH} = 3.3 V, V_{DDE} = 3.3 V)¹ (continued)

¹ These are worst-case values that are estimated from simulation (not tested). The values in the table are simulated at: $V_{DD} = 1.35-1.65 \text{ V}; V_{DDE} = 3.0-3.6 \text{ V}; V_{DDEH} = 3.0-3.6 \text{ V}; V_{DD33} \text{ and } V_{DDSYN} = 3.0-3.6 \text{ V}; \text{ and } T_A = T_L \text{ to } T_H.$

² This parameter is supplied for reference and guaranteed by design (not tested).

³ The output delay, and the rise and fall, are calculated to 20% or 80% of the respective signal.

- ⁴ The output delay is shown in Figure 4. To calculate the output delay with respect to the system clock, add a maximum of one system clock to the output delay.
- ⁵ This parameter is guaranteed by characterization rather than 100% tested.

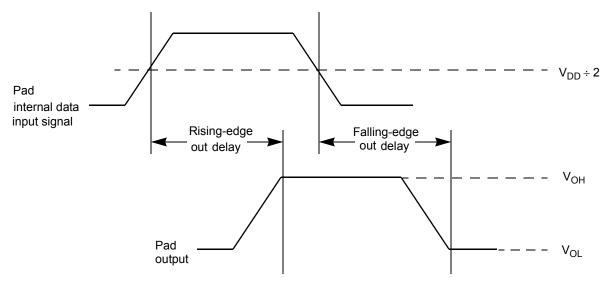


Figure 4. Pad Output Delay

3.13 AC Timing

3.13.1 Reset and Configuration Pin Timing

Table 19. Reset and Configuration Pin Timing ¹

Spec	Characteristic	Symbol	Min.	Max.	Unit
1	RESET pulse width	t _{RPW}	10	_	t _{CYC}
2	RESET glitch detect pulse width	t _{GPW}	2	_	t _{CYC}

Spec	Characteristic	Symbol	Min.	Max.	Unit
3	PLLCFG, BOOTCFG, WKPCFG, RSTCFG setup time to RSTOUT valid	t _{RCSU}	10	_	t _{CYC}
4	PLLCFG, BOOTCFG, WKPCFG, RSTCFG hold time from RSTOUT valid	t _{RCH}	0	_	t _{CYC}
4		Ron			0

Table 19. Reset and Configuration Pi	in Timing ¹	(continued)
--------------------------------------	------------------------	-------------

¹ Reset timing specified at: V_{DDEH} = 3.0–5.25 V and T_A = T_L to T_H .

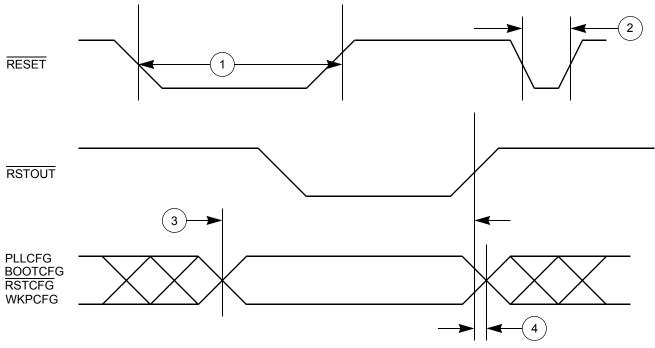


Figure 5. Reset and Configuration Pin Timing

3.13.2 IEEE 1149.1 Interface Timing

Table 20. JTAG Pin AC Electrical Characteristics ¹

Spec	Characteristic	Symbol	Min.	Max.	Unit
1	TCK cycle time	t _{JCYC}	100	_	ns
2	TCK clock pulse width (measured at $V_{DDE} \div 2$)	t _{JDC}	40	60	ns
3	TCK rise and fall times (40% to 70%)	t _{TCKRISE}	—	3	ns
4	TMS, TDI data setup time	t _{TMSS} , t _{TDIS}	5	_	ns
5	TMS, TDI data hold time	t _{TMSH} , t _{TDIH}	25	_	ns
6	TCK low to TDO data valid	t _{TDOV}	—	20	ns
7	TCK low to TDO data invalid	t _{TDOI}	0		ns
8	TCK low to TDO high impedance	t _{TDOHZ}	_	20	ns
9	JCOMP assertion time	t _{JCMPPW}	100		ns
10	JCOMP setup time to TCK low	t _{JCMPS}	40	_	ns
11	TCK falling-edge to output valid	t _{BSDV}	—	50	ns

Nexus Timing 3.13.3

Spec	Characteristic	Symbol	Min.	Max.	Unit
1	MCKO cycle time	t _{MCYC}	1 ²	8	t _{CYC}
2	MCKO duty cycle	t _{MDC}	40	60	%
3	MCKO low to MDO data valid ³	t _{MDOV}	-1.5	3.0	ns
4	MCKO low to MSEO data valid ³	t _{MSEOV}	-1.5	3.0	ns
5	MCKO low to EVTO data valid ³	t _{EVTOV}	-1.5	3.0	ns
6	EVTI pulse width	t _{EVTIPW}	4.0	_	t _{TCYC}
7	EVTO pulse width	t _{EVTOPW}	1	_	t _{MCYC}
8	TCK cycle time	t _{TCYC}	4 ⁴	_	t _{CYC}
9	TCK duty cycle	t _{TDC}	40	60	%
10	TDI, TMS data setup time	t _{NTDIS} , t _{NTMSS}	8	_	ns
11	TDI, TMS data hold time	t _{NTDIH} , t _{NTMSH}	5	_	ns
	TCK low to TDO data valid	t _{JOV}			
12	V _{DDE} = 2.25–3.0 V		0	12	ns
	V _{DDE} = 3.0–3.6 V		0	10	ns
13	RDY valid to MCKO ⁵	—	—		_

Table 21. Nexus Debug Port Timing ¹

1 JTAG specifications apply when used for debug functionality. All Nexus timing relative to MCKO is measured from 50% of MCKO and 50% of the respective signal. Nexus timing specified at V_{DD} = 1.35–1.65 V, V_{DDE} = 2.25–3.6 V,

 V_{DD33} and V_{DDSYN} = 3.0–3.6 V, T_A = T_L to T_H , and CL = 30 pF with DSC = 0b10.

- ² The Nexus AUX port runs up to 82 MHz. Set NPC_PCR[MCKO_DIV] to divide-by-two if the system frequency is greater than 82 MHz.
- ³ MDO, MSEO, and EVTO data is held valid until the next MCKO low cycle occurs.
- ⁴ Limit the maximum frequency to approximately 16 MHz (V_{DDE} = 2.25–3.0 V) or 20 MHz (V_{DDE} = 3.0–3.6 V) to meet the timing specification for t_{JOV} of [0.2 x t_{JCYC}] as outlined in the IEEE-ISTO 5001-2003 specification.
- ⁵ The RDY pin timing is asynchronous to MCKO and is guaranteed by design to function correctly.

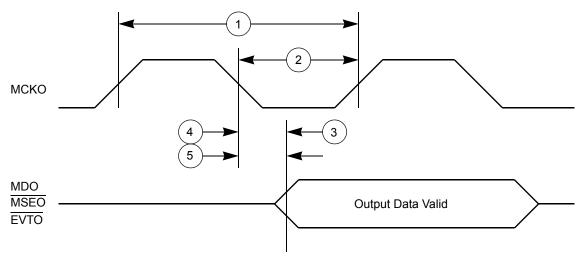
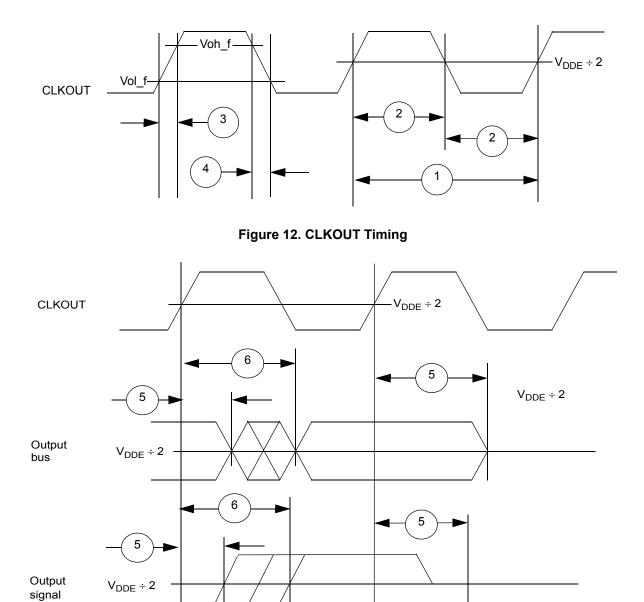



Figure 10. Nexus Output Timing

6

MPC5566 Microcontroller Data Sheet, Rev. 3

 $V_{DDE} \div 2$

Output

signal

3.13.7 eMIOS Timing

Spec	Characteristic	Symbol	Min.	Max.	Unit
1	eMIOS input pulse width	t _{MIPW}	4	_	t _{CYC}
2	eMIOS output pulse width	t _{MOPW}	1 ²		t _{CYC}

Table 25. eMIOS Timing ¹

¹ eMIOS timing specified at: V_{DDEH} = 3.0–5.25 V and T_A = T_L to T_H .

² This specification does not include the rise and fall times. When calculating the minimum eMIOS pulse width, include the rise and fall times defined in the slew rate control field (SRC) in the pad configuration register (PCR).

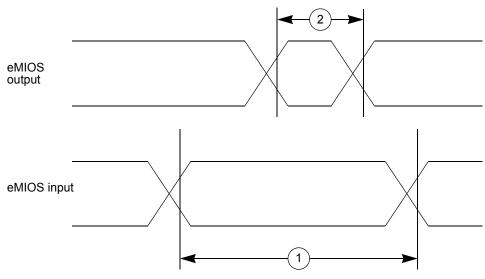


Figure 17. eMIOS Timing

3.13.8 DSPI Timing

Spec	Spec Characteristic		80	MHz	112	MHz	132	MHz	144	MHz	Unit
Opec	Unaracteristic	Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Unit — ns ns ns ns
1	SCK cycle time ^{3, 4}	t _{SCK}	24.4 ns	2.9 ms	17.5 ns	2.1 ms	14.8 ns	1.8 ms	13.6 ns	1.6 ms	_
2	PCS to SCK delay ⁵	t _{CSC}	23	—	15	—	13	—	12	—	ns
3	After SCK delay ⁶	t _{ASC}	22	—	14	—	12	—	11	—	ns
4	SCK duty cycle	t _{SDC}	(t _{SCK} ÷ 2) – 2 ns	(t _{SCK} ÷ 2) + 2 ns	(t _{SCK} ÷ 2) – 2 ns	(t _{SCK} ÷ 2) + 2 ns	(t _{SCK} ÷ 2) – 2 ns	(t _{SCK} ÷ 2) + 2 ns	(t _{SCK} ÷ 2) – 2 ns	(t _{SCK} ÷ 2) + 2 ns	ns
5	Slave access time (SS active to SOUT driven)	t _A	_	25	_	25	_	25	_	25	ns
6	Slave SOUT disable time (SS inactive to SOUT Hi-Z, or invalid)	t _{DIS}	_	25	_	25	_	25	_	25	ns
7	PCSx to PCSS time	t _{PCSC}	4	—	4		4	—	4		ns

Table 26. MPC5566 DSPI Timing ^{1, 2}

3.14 Fast Ethernet AC Timing Specifications

Media Independent Interface (MII) Fast Ethernet Controller (FEC) signals use transistor-to-transistor logic (TTL) signal levels compatible with devices operating at 3.3 V. The timing specifications for the MII FEC signals are independent of the system clock frequency (part speed designation).

3.14.1 MII FEC Receive Signal Timing FEC_RXD[3:0], FEC_RX_DV, FEC_RX_ER, and FEC_RX_CLK

The receive functions correctly up to an FEC_RX_CLK maximum frequency of 25 MHz plus one percent. There is no minimum frequency requirement. The processor clock frequency must exceed four times the FEC_RX_CLK frequency.

Table 28 lists MII FEC receive channel timings.

Spec	Characteristic	Min.	Max	Unit
1	FEC_RXD[3:0], FEC_RX_DV, FEC_RX_ER to FEC_RX_CLK setup	5	_	ns
2	FEC_RX_CLK to FEC_RXD[3:0], FEC_RX_DV, FEC_RX_ER hold	5	-	ns
3	FEC_RX_CLK pulse-width high	35%	65%	FEC_RX_CLK period
4	FEC_RX_CLK pulse-width low	35%	65%	FEC_RX_CLK period

Figure 28 shows MII FEC receive signal timings listed in Table 28.



Figure 28. MII FEC Receive Signal Timing Diagram

3.14.3 MII FEC Asynchronous Inputs Signal Timing FEC_CRS and FEC_COL

Table 30 lists MII FEC asynchronous input signal timing.

Table 30. MII FEC Asynchronous Inputs Signal Timing

Spec	Characteristic	Min.	Max	Unit
9	FEC_CRS, FEC_COL minimum pulse width	1.5		FEC_TX_CLK period

Figure 30 shows MII FEC asynchronous input timing listed in Table 30.

Figure 30. MII FEC Asynchronous Inputs Timing Diagram

3.14.4 MII FEC Serial Management Channel Timing FEC_MDIO and FEC_MDC

Table 31 lists MII FEC serial management channel timing. The FEC functions correctly with a maximum FEC_MDC frequency of 2.5 MHz.

Spec	Characteristic	Min.	Мах	Unit
10	FEC_MDC falling-edge to FEC_MDIO output invalid (minimum propagation delay)	0	-	ns
11	FEC_MDC falling-edge to FEC_MDIO output valid (maximum propagation delay)	_	25	ns
12	FEC_MDIO (input) to FEC_MDC rising-edge setup	10	_	ns
13	FEC_MDIO (input) to FEC_MDC rising-edge hold	0	_	ns
14	FEC_MDC pulse-width high	40%	60%	FEC_MDC period
15	FEC_MDC pulse-width low	40%	60%	FEC_MDC period

Table 31. MII FEC Serial Management Channel Timing

Figure 31 shows MII FEC serial management channel timing listed in Table 31.

Location	Description of Changes
Table 3, Mi	PC5566 Thermal Characteristics:
	Changed for production purposes, footnote 1 from: Junction temperature is a function of on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other <i>components on the board</i> , and board thermal resistance. to: Junction temperature is a function of on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other <i>board components</i> , and board thermal resistance.
Table 6, VC	CR/POR Electrical Specifications:
	Added footnote 1 to specs 1, 2, and 3 that reads: On power up, assert RESET before V _{POR15} , V _{POR33} , and V _{POR5} negate (internal POR). RESET must remain asserted until the power supplies are within the operating conditions as specified in Table 9 <i>DC Electrical Specifications</i> . On power down, assert RESET before any power supplies fall outside the operating conditions and until the internal POR asserts.
Table 9, DO	Electrical Specifications:
	 Added footnote that reads: V_{DDE2} and V_{DDE3} are limited to 2.25–3.6 V only if EBTS = 0; V_{DDE2} and V_{DDE3} have a range of 1.6–3.6 V if EBTS =1. Removed footnote to specs 27a, b, and c on the max values that read: "Preliminary. Specification pending final characterization." Removed footnote to specs 27a, b, and c on the max values that read: "Specification pending final characterization."
Table 16, I	Flash BIU Settings vs. Frequency of Operation:
	• Removed footnote 9 in columns APC and RWSC for 147 MHz row that read: Preliminary setting. Final setting pending characterization.
Table 22, I	Bus Operation Timing:
	 External Bus Frequency in the table heading: Added footnote that reads: Speed is the nominal maximum frequency. Max speed is the maximum speed allowed including frequency modulation (FM). 82 MHz parts allow for 80 MHz system clock + 2% FM; 114 MHz parts allow for 112 MHz system clock + 2% FM, 135 MHz parts allow for 132 MHz system clock + 2% FM; and 147 MHz parts allow for 144 MHz system clock + 2% FM. Spec 1: Changed the values in Min. columns: 40 MHz from 25 to 24.4; 56 MHz from 17.9 to 17.5 Specs 7 and 8: Removed from external bus interface: BDIP, OE, TSIZ[0:1], and WE/BE[0:3].
Table 26, D	OSPI Timing:
	 Table Title: Added footnote that reads: Speed is the nominal maximum frequency. Max speed is the maximum speed allowed including frequency modulation (FM). 82 MHz parts allow for 80 MHz system clock + 2% FM; 114 MHz parts allow for 112 MHz system clock + 2% FM, 135 MHz parts allow for 132 MHz system clock + 2% FM, and 147 MHz parts allow for 144 MHz system clock + 2% FM. Removed footnote that reads: "Specification pending final characterization." Spec 2, <i>PCS to SCK delay</i>, 144 MHz, min. 12 Spec 3, <i>After SCK delay</i>, 144 MHz, min. 11 Spec 9, <i>Master (MTFE = 1, CPHA = 0)</i>, 144 MHz, min. 7 Spec 10, <i>Master (MTFE = 1, CPHA = 0)</i>, 144 MHz, min. 11 Spec 11, <i>Master (MTFE = 1, CPHA = 0)</i>, 144 MHz, max. 12

Spec 11, Master (MTFE = 1, CPHA = 0), 144 MHz, max. 12
 Spec 12, Master (MTFE = 1, CPHA = 0), 144 MHz, min. 1

Location	Description of Changes
Section 3.7	7.1, "Input Value of Pins During POR Dependent on VDD33:"
	Added the following text directly before this section and after Table 8 <i>Pin Status for Medium / Slow Pads During the Power-on Sequence</i> : 'The values in Table 7 and Table 8 do not include the effect of the weak pull devices on the output pins during power up.
	Before exiting the internal POR state, the voltage on the pins goes to high-impedance until POR negates. When the internal POR negates, the functional state of the signal during reset applies and the weak pull devices (up or down) are enabled as defined in the device <i>Reference Manual</i> . If V_{DD} is too low to correctly propagate the logic signals, the weak-pull devices can pull the signals to V_{DDE} and V_{DDEH} .
	To avoid this condition, minimize the ramp time of the V _{DD} supply to a time period less than the time required to enable the external circuitry connected to the device outputs.'
Section 3.7	7.3, "Power-Down Sequence (VRC33 Grounded)" Deleted the underscore in ORed POR to become ORed POR.

Table 34. Global and Text Changes Between Rev. 0.0 and 1.0 (continued)

The following table lists the information that changed in the figures or tables between Rev. 0.0 and 1.0.

 Table 35. Table and Figure Changes Between Rev. 0.0 and Rev. 1.0

Location	Description of Changes
Figure 1, M	IPC5500 Family Part Numbers:
	 Removed the 2 in the tape and reel designator in both the graphic and in the Tape and Reel Status text. Changed Qualification Status by adding ', general market flow' to the M designator, and added an 'S' designator with the description of 'Fully spec. qualified, automotive flow.
Table 1, Or	rderable Part Numbers:
	 Added a 144 MHz system frequency option for: MPC5566MVR144, Pb-Free (lead free), nominal 144, maximum 147 MPC5566MZP144, SnPb (leaded), nominal 144, maximum 147 Changed the 132 MHz maximum operating frequency to 135 MHz.

- Reordered rows to group devices by lead-free package types in descending frequency order, and leaded package types.
- Footnote 1 added that reads: All devices are PPC5566, rather than MPC5566 or SPC5566, until product qualifications are complete. Not all configurations are available in the PPC parts.
- Footnote 2 added that reads: The lowest ambient operating temperature is referenced by T_L; the highest ambient operating temperature is referenced by T_H.
- Changed footnote 3 from '132 MHz allows only 128 MHz + 2% FM' to '135 MHz parts allow for 132 MHz systems clock + 2% FM'; and added '147 MHz parts allow for 144 MHz systems clock + 2% FM.

Table 35. Table and Figure Changes Between Rev. 0.0 and Rev. 1.0 (continued)

Location	Description of Changes					
Table 2, Ab	le 2, Absolute Maximum Ratings:					
	 Deleted Spec 3, "Flash core voltage." Spec 12 "DC Input Voltage": Deleted from second line' except for eTPUB15 and SINB (DSPI_B_SIN)' leaving V_{DDEH} powered I/O pads. Deleted third line 'V_{DDEH} powered by I/O pads (eTPUB15 and SINB), including the min. and max values of -0.3 and 6.5 respectively, and deleted old footnote 7. Spec 12 "DC Input Voltage": Added footnote 8 to second line "V_{DDE} powered I/O pads" that reads: 'Internal structures hold the input voltage less than the maximum voltage on all pads powered by the V_{DDE} supplies, if the maximum injection current specification is met (s mA for all pins) and V_{DDE} is within the operating voltage specifications. Spec 14, column 2, changed: 'V_{SS} differential voltage' to 'V_{SS} to V_{SSA} differential voltage.' Spec 15, column 2, changed: 'V_{DD} differential voltage' to 'V_{DD} to V_{DDA} differential voltage.' Spec 21, Added the name of the spec, 'V_{RC33} to V_{DDSYN} differential voltage, as well as the name and cross reference to Table 9, <i>DC Electrical Specifications</i>, to which the Spec was moved. Spec 28 "Maximum Solder Temperature": Added two subordinate lines: Lead free (PbFree) and Leaded (SnPb) with maximum values of 260 C and 245 C respectively. Footnote 1, added: 'any of between 'beyond' and 'the listed maxima.' Deleted footnote 2: 'Absolute maximum voltages are currently maximum burn-in voltages. Absolute maximum specifications for device stress have not yet been determined.'Spec 26 "Maximum Operating Temperature Range": replaced -40 C with T_L. Footnote 6 (now footnote 5): Changed to the following sentence to the end, "Internal structures hold the input voltage greater than -1.0 V if the injection current limit of 2 mA is met. Keep the negative DC voltage greater than -0.6 V on eTPU[15] and on SINB during the internal power-on reset (POR) state." 					
Table 4, EM	Il Testing Specifications:					
	 Changed the maximum operating frequency to from 132 to f_{MAX}. Footnote 2: Deleted 'Refer to Table 1 for the maximum operating frequency.' 					

Table 35. Table and Figure Changes Between Rev. 0.0 and Rev. 1.0 (continued)

Location	Description of Changes
Table 9, DC	C Electrical Specifications:
Table 9, DC	 Electrical Specifications: Spelled out meaning of the slash '/ as 'and' as well as 'I/O' as 'input/output.' Sentence still very confusing. Deleted 'input/output from the specs to improve clarity. Spec 20, column 2, <i>Characteristics</i>, 'Slow and medium output high voltage (I_{OH_S} = -2.0 mA).'' Created a left-justified second line and noved 'I_{OH_S} = -2.0 mA.' Spec 20, column 4, <i>Min</i>: Added a blank line before and after '0.80 × V_{DDEH}' on the last line. Spec 20, column 4, <i>Min</i>: Added a blank line before and after '0.80 × V_{DDEH}' and put' 0.85 × V_{DDEH}' on the last line. Spec 22, column 4, <i>Min</i>: Added a blank line before and after '0.80 × V_{DDEH}' and put' 0.85 × V_{DDEH}' on the last line. Spec 22, column 5, <i>Max</i>: Added a blank line before and after '0.20 × V_{DDEH}' and put '0.15 × V_{DDEH}' on the last line. Spec 26: Changed 'AN[12]_MA[1]_SDO' to 'AN[13]_MA[1]_SDO'. Added footnote 10 to specs 27a, b, and c on the 4-way cache line that reads: Four-way cache enabled (L1CSR0[CORG] = 0b1) or (L1CSR0[CORG] = 0b0 with L1CSR0[WAMD] = 0b1, L1CSR0[WID] = 0b1111, L1CSR0[WDD] = 0b1 and L1CSR0[WAMD] = 0b1, and theracterization.'' Spec 27a. Operating current 1.5 V supplies @ 132 MHz: Changed 132 MHz to 135 MHz. Changed away cache with footnote 10: 1.65 high = 630 1.35 high
	 1.65 typical = 630 1.35 typical = 500 1.65 high = 785 1.35 high = 630 Changed 4-way cache with footnote 10: 1.65 high = 685 1.35 high = TBD with footnote 19. Spec 27b, Operating current 1.5 V supplies @ 114 MHz: Changed maximum values for 8-way cache. All 8-way cache max values have footnote 18: 1.65 typical = 600 1.35 typical = 450 1.65 high = 680 1.35 high = TBD with footnote 19. Changed 4-way cache values: 1.65 high = 680 1.35 high = TBD with footnote 19 5 pec 27c, Operating current 1.5 V supplies @ 82 MHz: Changed maximum values for 8-way cache: All 8-way cache max values have footnote 18. 1.65 high = TBD with footnote 19 1.35 high = TBD with footnote 19. Spec 27c, Operating current 1.5 V supplies @ 82 MHz: Changed maximum values for 8-way cache: All 8-way cache max values have footnote 18. 1.65 high = 360, 1.35 typical = 490, 1.35 typical = 360, 1.35 high = 390. Changed 4-way cache values:

	Table 35. Table and Figure Changes Between Rev. 0.0 and Rev. 1.0 (continued)
Location	Description of Changes
Table 9, DC	Electrical Specifications (continued)
	 Spec 27e, Operating current 1.5 V supplies @ 147 MHz: Added maximum values for 8-way cache: all with footnote 11. - 1.65 typical = 650, - 1.35 typical = 530, - 1.65 high = 820, - 1.35 high = 650. Added 4-way cache: all with footnote 11. - 1.65 high = 720 - 1.35 high = 585 Spec 28: Changed 132 MHz to f_{MAX} MHz. Spec 29: Deleted @ 132 MHz. Spec 29: Deleted @ 132 MHz. Corrected footnote 3 to read: If standby operation is not required, connect the V_{STBY} to ground. Combined old footnotes 11 and 12 for new footnote 6 and added to specs 27a, b, and c on the 8-way cache lin that reads: Eight-way cache enabled (L1CSR0[CORG] = 0b0). Deleted footnotes 12 and 13 about preliminary specifications and specification pending characterization.
Figure 2, A	dded figure to show interpolated IDD _{STBY} values listed in Table 9.
Table 12, F	MPLL Electrical Characteristics:
	 Added (T_A = T_L - T_H) to the end of the second line in the table title. Spec 1, footnote 1 in column 2: '<i>PLL reference frequency range</i>': Changed to read 'Nominal crystal and external reference values are worst-case not more than 1%. The device operates correctly if the frequency remains withit ± 5% of the specification limit. This tolerance range allows for a slight frequency drift of the crystals over time. The designer must thoroughly understand the drift margin of the source clock.' Spec 21, column 2: Changed (2 x Cl). Spec 21, column 2: Changed f_{ref_crystal} to f_{ref} in ICO frequency equation, and added the same equation but substituted f_{ref_ext} for f_{ref} for the external reference clock, giving: f_{ico} = [f_{ref_crystal} × (MFD + 4)] ÷ (PREDIV + 1) f_{ico} = [f_{ref_ext} × (MFD + 4)] ÷ (PREDIV + 1) Spec 21, column 4, Max: Deleted old footnote 18 that reads: The ICO frequency can be higher than the maximum allowable system frequency. For this case, set the CMPL synthesizer control register reduced frequency divider (FMPLL_SYNCR[RFD]) to divide-by-two (RFD = 0b001 Therefore, for a 40 MHz maximum device (system frequency), program the FMPLL to generate 80 MHz at the ICO output and then divide-by-two the RFD to provide the 40 MHz system clock.' Spec 21: Changed column 4, <i>Max Value</i> from f_{MAX} to 20, and added footnote 17 to read, 'Maximum value for dual controller (1:1) mode is (f_{MAX} ÷ 2) and the predivider set to 1 (FMPLL_SYNCR[PREDIV] = 0b001).'
Table 13, e	QADC Conversion Specifications:
	Added ($T_A = T_L - T_H$) to the table title.
Table 14, F	lash Program and Erase Specifications:
	 Added (T_A = T_L - T_H) to the table title. Specs 7, 8, 9, and 10 Inserted new values for the H7Fa Flash pre-program and erase times and used the previou values for Typical values. 48 KB: from 340 to 345 64 KB: from 400 to 415

- Spec 8, 128KB block pre-program and erase time, Max column value from 15,000 to 7,500.
 Moved footnote 1 from the table title to directly after the 'Typical' in the column 5 header.
- Footnote 2: Changed from: 'Initial factory condition: < 100 program/erase cycles, 25 °C, typical supply voltage, 80 MHz minimum system frequency.' To: 'Initial factory condition: ≤ 100 program/erase cycles, 25 °C, using a typical supply voltage measured at a minimum system frequency of 80 MHz.'

Table 35. Table and Figure Changes Between Rev. 0.0 and Rev. 1.0 (continued)

Location	Description of Changes
Table 27, E	QADC SSI Timing Characteristics:
	 Deleted from table title '(Pads at 3.3 V or 5.0 V)' Deleted 1st line in table 'CLOAD = 25 pF on all outputs. Pad drive strength set to maximum.' Spec 1: FCK frequency removed. Combined footnotes 1 and 2, and moved the new footnote to Spec 2. Moved old footnote 3 that is now footnote 2 to Spec 2. Footnote 1, deleted 'V_{DD} = 1.35–1.65 V' and 'V_{DD33} and V_{DDSYN} = 3.0–3.6 V.' Changed 'CL = 50 pF' to 'CL = 25 pF.' Footnote 2: added 'cycle' after 'duty' to read: FCK duty cycle is not 50% when
Figure 35,	MPC5566 416 Package: Deleted the version number and date.