
E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	e200z6
Core Size	32-Bit Single-Core
Speed	144MHz
Connectivity	CANbus, EBI/EMI, Ethernet, SCI, SPI
Peripherals	DMA, POR, PWM, WDT
Number of I/O	256
Program Memory Size	3MB (3M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	128K x 8
Voltage - Supply (Vcc/Vdd)	1.35V ~ 1.65V
Data Converters	A/D 40x12b
Oscillator Type	External
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	416-BBGA
Supplier Device Package	416-PBGA (27x27)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/spc5566mzp144

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Overview

The MPC5500 family of parts contains many new features coupled with high performance CMOS technology to provide significant performance improvement over the MPC565x.

The host processor core of the MPC5566 also includes an instruction set enhancement allowing variable length encoding (VLE). This allows optional encoding of mixed 16- and 32-bit instructions. With this enhancement, it is possible to significantly reduce the code size footprint.

The MPC5566 has two levels of memory hierarchy. The fastest accesses are to the 32-kilobytes (KB) unified cache. The next level in the hierarchy contains the 128-KB on-chip internal SRAM and three-megabytes (MB) internal flash memory. The internal SRAM and flash memory hold instructions and data. The external bus interface is designed to support most of the standard memories used with the MPC5*xx* family.

The complex input/output timer functions of the MPC5566 are performed by two enhanced time processor unit (eTPU) engines. Each eTPU engine controls 32 hardware channels, providing a total of 64 hardware channels. The eTPU has been enhanced over the TPU by providing: 24-bit timers, double-action hardware channels, variable number of parameters per channel, angle clock hardware, and additional control and arithmetic instructions. The eTPU is programmed using a high-level programming language.

The less complex timer functions of the MPC5566 are performed by the enhanced modular input/output system (eMIOS). The eMIOS' 24 hardware channels are capable of single-action, double-action, pulse-width modulation (PWM), and modulus-counter operations. Motor control capabilities include edge-aligned and center-aligned PWM.

Off-chip communication is performed by a suite of serial protocols including controller area networks (FlexCANs), enhanced deserial/serial peripheral interfaces (DSPIs), and enhanced serial communications interfaces (eSCIs). The DSPIs support pin reduction through hardware serialization and deserialization of timer channels and general-purpose input/output (GPIOs) signals.

The MCU has an on-chip enhanced queued dual analog-to-digital converter (eQADC).s 40-channels.

The system integration unit (SIU) performs several chip-wide configuration functions. Pad configuration and general-purpose input and output (GPIO) are controlled from the SIU. External interrupts and reset control are also determined by the SIU. The internal multiplexer submodule provides multiplexing of eQADC trigger sources, daisy chaining the DSPIs, and external interrupt signal multiplexing.

The Fast Ethernet (FEC) module is a RISC-based controller that supports both 10 and 100 Mbps Ethernet/IEEE® 802.3 networks and is compatible with three different standard MAC (media access controller) PHY (physical) interfaces to connect to an external Ethernet bus. The FEC supports the 10 or 100 Mbps MII (media independent interface), and the 10 Mbps-only with a seven-wire interface, which uses a subset of the MII signals. The upper 16-bits of the 32-bit external bus interface (EBI) are used to connect to an external Ethernet device. The FEC contains built-in transmit and receive message FIFOs and DMA support.

3.2.1 General Notes for Specifications at Maximum Junction Temperature

An estimation of the device junction temperature, T_{μ} , can be obtained from the equation:

$$T_{J} = T_{A} + (R_{\theta JA} \times P_{D})$$

 T_A = ambient temperature for the package (°C)

 $R_{\theta JA}$ = junction to ambient thermal resistance (°C/W)

 P_D = power dissipation in the package (W)

The thermal resistance values used are based on the JEDEC JESD51 series of standards to provide consistent values for estimations and comparisons. The difference between the values determined for the single-layer (1s) board compared to a four-layer board that has two signal layers, a power and a ground plane (2s2p), demonstrate that the effective thermal resistance is not a constant. The thermal resistance depends on the:

- Construction of the application board (number of planes)
- Effective size of the board which cools the component
- Quality of the thermal and electrical connections to the planes
- Power dissipated by adjacent components

Connect all the ground and power balls to the respective planes with one via per ball. Using fewer vias to connect the package to the planes reduces the thermal performance. Thinner planes also reduce the thermal performance. When the clearance between the vias leave the planes virtually disconnected, the thermal performance is also greatly reduced.

As a general rule, the value obtained on a single-layer board is within the normal range for the tightly packed printed circuit board. The value obtained on a board with the internal planes is usually within the normal range if the application board has:

- One oz. (35 micron nominal thickness) internal planes
- Components are well separated
- Overall power dissipation on the board is less than 0.02 W/cm^2

The thermal performance of any component depends on the power dissipation of the surrounding components. In addition, the ambient temperature varies widely within the application. For many natural convection and especially closed box applications, the board temperature at the perimeter (edge) of the package is approximately the same as the local air temperature near the device. Specifying the local ambient conditions explicitly as the board temperature provides a more precise description of the local ambient conditions that determine the temperature of the device.

3.5 ESD (Electromagnetic Static Discharge) Characteristics

Characteristic	Symbol	Value	Unit
ESD for human body model (HBM)		2000	V
SD for human body model (HBM) BM circuit description SD for field induced charge model (FDCM) umber of pulses per pin: Positive pulses (HBM)	R1	1500	Ω
	С	100	pF
ECD for field induced aborgo model (EDCM)		500 (all pins)	
ESD for held induced charge model (FDCM)		750 (corner pins)	V
Number of pulses per pin:			
	_	1	_
Negative pulses (HBM)	—	1	—
Interval of pulses	_	1	second

Table 5. ESD Ratings ^{1, 2}

¹ All ESD testing conforms to CDF-AEC-Q100 Stress Test Qualification for Automotive Grade Integrated Circuits.

² Device failure is defined as: 'If after exposure to ESD pulses, the device does not meet the device specification requirements, which includes the complete DC parametric and functional testing at room temperature and hot temperature.

3.6 Voltage Regulator Controller (V_{RC}) and Power-On Reset (POR) Electrical Specifications

The following table lists the V_{RC} and POR electrical specifications:

Spec	c Characteristic		Symbol	Min.	Max.	Units
1	1.5 V (V _{DD}) POR ¹	Negated (ramp up) Asserted (ramp down)	V _{POR15}	1.1 1.1	1.35 1.35	V
2	3.3 V (V _{DDSYN}) POR ¹	Asserted (ramp up) Negated (ramp up) Asserted (ramp down) Negated (ramp down)	V _{POR33}	0.0 2.0 2.0 0.0	0.30 2.85 2.85 0.30	V
3	RESET pin supply (V _{DDEH6}) POR ^{1, 2}	Negated (ramp up) Asserted (ramp down)	V _{POR5}	2.0 2.0	2.85 2.85	V
4		Before V _{RC} allows the pass transistor to start turning on	V _{TRANS_START}	1.0	2.0	V
5	V _{RC33} voltage	When V_{RC} allows the pass transistor to completely turn on ^{3, 4}	V _{TRANS_ON}	2.0	2.85	V
6		When the voltage is greater than the voltage at which the V _{RC} keeps the 1.5 V supply in regulation $^{5, 6}$	V _{VRC33REG}	3.0	_	V
	Current can be sourced	–40° C		11.0	_	mA
7	by V _{RCCTL} at Tj:	25° C	I _{VRCCTL} ⁷	9.0	_	mA
		150° C		7.5	—	mA
8	Voltage differential during power up such that: V_{DD33} can lag V_{DDSYN} or V_{DDEH6} before V_{DDSYN} and V_{DDEH6} reach the V_{POR33} and V_{POR5} minimums respectively.		V _{DD33_LAG}	_	1.0	V

Table 6. V_{RC} and POR Electrical Specifications

1.5 V POR asserts and stops the system clock, causing the voltage on V_{DD} to rise until the 1.5 V POR negates again. All oscillations stop when V_{RC33} is powered sufficiently.

When powering down, V_{RC33} and V_{DDSYN} have no delta requirement to each other, because the bypass capacitors internal and external to the device are already charged. When not powering up or down, no delta between V_{RC33} and V_{DDSYN} is required for the V_{RC} to operate within specification.

There are no power up/down sequencing requirements to prevent issues such as latch-up, excessive current spikes, and so on. Therefore, the state of the I/O pins during power up and power down varies depending on which supplies are powered.

Table 7 gives the pin state for the sequence cases for all pins with pad type pad_fc (fast type).

V _{DDE}	V _{DD33}	V _{DD}	POR	Pin Status for Fast Pad Output Driver pad_fc (fast)
Low	—	_	Asserted	Low
V_{DDE}	Low	Low	Asserted	High
V_{DDE}	Low	V _{DD}	Asserted	High
V_{DDE}	V _{DD33}	Low	Asserted	High impedance (Hi-Z)
V_{DDE}	V _{DD33}	V _{DD}	Asserted	Hi-Z
V_{DDE}	V _{DD33}	V _{DD}	Negated	Functional

Table 7. Pin Status for Fast Pads During the Power Sequence

Table 8 gives the pin state for the sequence cases for all pins with pad type pad_mh (medium type) and pad_sh (slow type).

Table 8. Pin Status for Medium and Slow Pads During the Power Sequence

V _{DDEH}	V _{DD}	POR	Pin Status for Medium and Slow Pad Output Driver pad_mh (medium) pad_sh (slow)
Low	_	Asserted	Low
V _{DDEH}	Low	Asserted	High impedance (Hi-Z)
V _{DDEH}	V_{DD}	Asserted	Hi-Z
V _{DDEH}	V_{DD}	Negated	Functional

The values in Table 7 and Table 8 do not include the effect of the weak-pull devices on the output pins during power up.

Before exiting the internal POR state, the voltage on the pins go to a high-impedance state until POR negates. When the internal POR negates, the functional state of the signal during reset applies and the weak-pull devices

(up or down) are enabled as defined in the device reference manual. If V_{DD} is too low to correctly propagate the logic signals, the weak-pull devices can pull the signals to V_{DDE} and V_{DDEH} .

To avoid this condition, minimize the ramp time of the V_{DD} supply to a time period less than the time required to enable the external circuitry connected to the device outputs.

Electrical Characteristics

Spec	Characteristic	Symbol	Min	Max.	Unit
27e	Operating current 1.5 V supplies @ 147 MHz: ⁶ 8-way cache ⁷				
	V _{DD} (including V _{DDF} max current) @1.65 V typical use ^{8, 9}	I _{DD}	_	650	mA
	V _{DD} (including V _{DDF} max current) @1.35 V typical use ^{8, 9}	I _{DD}	—	530	mA
	V_{DD} (including V_{DDF} max current) @1.65 V high use $\frac{9, 10}{2}$	I _{DD}	—	820	mA
	V _{DD} (including V _{DDF} max current) @1.35 V high use ^{9, 10} 4-way cache ¹¹	I _{DD}	—	650	mA
	V _{DD} (including V _{DDE} max current) @1.65 V high use ^{9, 10}	I _{DD}	—	750	mA
	V_{DD} (including V_{DDF} max current) @1.35 V high use ^{9, 10}	I _{DD}	—	585	mA
27a	Operating current 1.5 V supplies @ 135 MHz: ⁶ 8-way cache ⁷				
	V _{DD} (including V _{DDF} max current) @1.65 V typical use ^{8, 9}	I _{DD}	—	630	mA
	V_{DD} (including V_{DDF} max current) @1.35 V typical use 8,9	I _{DD}	—	500	mA
	V_{DD} (including V_{DDF} max current) @1.65 V high use $\frac{9, 10}{10}$	l _{DD}	—	785	mA
	V _{DD} (including V _{DDF} max current) @1.35 V high use ^{9, 10} 4-way cache ¹¹	I _{DD}	—	630	mA
	V _{DD} (including V _{DDF} max current) @1.65 V high use ^{9, 10}	I _{DD}	_	710	mA
	V_{DD} (including V_{DDF} max current) @1.35 V high use ^{9, 10}	I _{DD}	—	550	mA
27b	Operating current 1.5 V supplies @ 114 MHz: ⁶ 8-way cache ⁷				
	V _{DD} (including V _{DDF} max current) @1.65 V typical use ^{8, 9}	I _{DD}	—	600	mA
	V_{DD} (including V_{DDF} max current) @1.35 V typical use $\frac{8,9}{10}$	I _{DD}	—	450	mA
	V_{DD} (including V_{DDF} max current) @1.65 V high use $9, 10$	I _{DD}	—	680	mA
	V_{DD} (including V_{DDF} max current) @1.35 V high use ^{9, 10}	I _{DD}	—	500	mA
	4-way cache ¹¹ V _{DD} (including V _{DDF} max current) @1.65 V high use ^{9, 10}	I _{DD}		650	mA
	V_{DD} (including V_{DDF} max current) @1.35 V high use ^{9, 10}	I _{DD}	—	490	mA
27c	Operating current 1.5 V supplies @ 82 MHz: ⁶ 8-way cache ⁷				
	V _{DD} (including V _{DDF} max current) @1.65 V typical use ^{8, 9}	I _{DD}	_	490	mA
	V_{DD} (including V_{DDF} max current) @1.35 V typical use ^{8, 9}	I _{DD}	_	360	mA
	V _{DD} (including V _{DDF} max current) @1.65 V high use ^{9, 10}	I _{DD}	_	545	mA
	V _{DD} (including V _{DDF} max current) @1.35 V high use ^{9, 10}	I _{DD}	—	400	mA
	4-way cache ¹¹			520	
	V_{DD} (including V_{DDF} max current) @1.65 V high use ^{9, 10} V_{DD} (including V_{DDF} max current) @1.35 V high use ^{9, 10}	I _{DD} I _{DD}	_	530 395	mA mA
27d	RAM standby current. ¹²				
	I _{DD_STBY} @ 25° C			20	
	Ū _{STBY} @ 0.8 V V _{STBY} @ 1.0 V	DD_STBY		20 30	μΑ μΑ
	V _{STBY} @ 1.2 V	I _{DD_STBY} I _{DD_STBY}	_	50	μΑ
		00_3101			
	I _{DD_STBY} @ 60 ^o C			70	
	V _{STBY} @ 0.8 V V _{STBY} @ 1.0 V	IDD_STBY		100	μA μA
	V _{STBY} @ 1.2 V	I _{DD_STBY} I _{DD_STBY}	_	200	μΑ μΑ
	I _{DD_STBY} @ 150 ^o C (Tj)				
	V _{STBY} @ 0.8 V	IDD_STBY	—	1200	μA
	V _{STBY} @ 1.0 V V _{STBY} @ 1.2 V	IDD_STBY		1500 2000	μΑ
	VSIBY W I. Z V	I _{DD_STBY}		2000	μA

Spec	Characteristic	Symbol	Min	Max.	Unit
28	Operating current 3.3 V supplies @ f _{MAX} MHz				
	V _{DD33} ¹³	I _{DD_33}	_	2 + (values derived from procedure of footnote ¹³)	mA
	V _{FLASH}	I _{VFLASH}	_	10	mA
	V _{DDSYN}	IDDSYN	—	15	mA
29	Operating current 5.0 V supplies (12 MHz ADCLK): V _{DDA} (V _{DDA0} + V _{DDA1}) Analog reference supply current (V _{RH} , V _{RL}) V _{PP}	I _{DD_A} I _{REF} I _{PP}		20.0 1.0 25.0	mA mA mA
30	Operating current V _{DDE} supplies: ¹⁴ V _{DDEH1} V _{DDE2} V _{DDE3} V _{DDE44} V _{DDE5} V _{DDE46} V _{DDE7} V _{DDE48} V _{DDE49}	I _{DD1} I _{DD2} I _{DD3} I _{DD4} I _{DD5} I _{DD6} I _{DD7} I _{DD8} I _{DD9}		Refer to footnote ¹⁴	mA mA mA mA mA mA mA
31	Fast I/O weak pullup current ¹⁵ 1.62–1.98 V 2.25–2.75 V 3.00–3.60 V	I _{ACT_F}	10 20 20	110 130 170	μΑ μΑ μΑ
	Fast I/O weak pulldown current ¹⁵ 1.62–1.98 V 2.25–2.75 V 3.00–3.60 V		10 20 20	100 130 170	μΑ μΑ μΑ
32	Slow and medium I/O weak pullup/down current ¹⁵ 3.0–3.6 V 4.5–5.5 V	I _{ACT_S}	10 20	150 170	μΑ μΑ
33	I/O input leakage current ¹⁶	I _{INACT_D}	-2.5	2.5	μA
34	DC injection current (per pin)	I _{IC}	-2.0	2.0	mA
35	Analog input current, channel off ¹⁷	I _{INACT_A}	-150	150	nA
35a	Analog input current, shared analog / digital pins (AN[12], AN[13], AN[14], AN[15])	IINACT_AD	-2.5	2.5	μA
36	V_{SS} to V_{SSA} differential voltage ¹⁸	V _{SS} – V _{SSA}	-100	100	mV
37	Analog reference low voltage	V _{RL}	V _{SSA} – 0.1	V _{SSA} + 0.1	V
38	V _{RL} differential voltage	V _{RL} – V _{SSA}	-100	100	mV
39	Analog reference high voltage	V _{RH}	V _{DDA} – 0.1	V _{DDA} + 0.1	V
40	V _{REF} differential voltage	V _{RH} – V _{RL}	4.5	5.25	V

Table 9. DC Electrical Specifications ($T_A = T_L \text{ to } T_H$) (continued)

3.8.2 I/O Pad V_{DD33} Current Specifications

The power consumption of the V_{DD33} supply dependents on the usage of the pins on all I/O segments. The power consumption is the sum of all input and output pin V_{DD33} currents for all I/O segments. The output pin V_{DD33} current can be calculated from Table 11 based on the voltage, frequency, and load on all fast (pad_fc) pins. The input pin V_{DD33} current can be calculated from Table 11 based on the voltage, frequency, and load on all pad_sh and pad_mh pins. Use linear scaling to calculate pin currents for voltage, frequency, and load parameters that fall outside the values given in Table 11.

Spec	Pad Type	Symbol	Frequency (MHz)	Load ² (pF)	V _{DD33} (V)	V _{DDE} (V)	Drive Select	Current (mA)
				Inputs	;	L		
1	Slow	I _{33_SH}	66	0.5	3.6	5.5	NA	0.003
2	Medium	I _{33_MH}	66	0.5	3.6	5.5	NA	0.003
	Outputs							
3			66	10	3.6	3.6	00	0.35
4			66	20	3.6	3.6	01	0.53
5			66	30	3.6	3.6	10	0.62
6			66	50	3.6	3.6	11	0.79
7			66	10	3.6	1.98	00	0.35
8			66	20	3.6	1.98	01	0.44
9		Fast I _{33_FC}	66	30	3.6	1.98	10	0.53
10			66	50	3.6	1.98	11	0.70
11			56	10	3.6	3.6	00	0.30
12			56	20	3.6	3.6	01	0.45
13			56	30	3.6	3.6	10	0.52
14	Fast		56	50	3.6	3.6	11	0.67
15			56	10	3.6	1.98	00	0.30
16			56	20	3.6	1.98	01	0.37
17			56	30	3.6	1.98	10	0.45
18			56	50	3.6	1.98	11	0.60
19			40	10	3.6	3.6	00	0.21
20	1		40	20	3.6	3.6	01	0.31
21			40	30	3.6	3.6	10	0.37
22	1		40	50	3.6	3.6	11	0.48
23]		40	10	3.6	1.98	00	0.21
24]		40	20	3.6	1.98	01	0.27
25	1		40	30	3.6	1.98	10	0.32
26	1		40	50	3.6	1.98	11	0.42

Table 11. V_{DD33} Pad Average DC Current ($T_A = T_L$ to T_H) ¹	Table 11. \	V _{DD33} Pad	Average [DC Current	(T _Δ =	$T_{\rm H}$ to $T_{\rm H}$) ¹
---	-------------	-----------------------	-----------	------------	-------------------	---

¹ These values are estimated from simulation and not tested. Currents apply to output pins for the fast pads only and to input pins for the slow and medium pads only.

² All loads are lumped.

3.9 Oscillator and FMPLL Electrical Characteristics

Table 12. FMPLL Electrical Specifications

 $(V_{DDSYN} = 3.0-3.6 \text{ V}; V_{SS} = V_{SSSYN} = 0.0 \text{ V}; T_A = T_L \text{ to } T_H)$

Spec	Characteristic	Symbol	Minimum	Maximum	Unit
1	PLL reference frequency range: ¹ Crystal reference External reference Dual controller (1:1 mode)	f _{ref_crystal} f _{ref_ext} f _{ref_1:1}	8 8 24	20 20 f _{sys} ÷2	MHz
2	System frequency ²	f _{sys}	$f_{ICO(MIN)} \div 2^{RFD}$	f _{MAX} ³	MHz
3	System clock period	t _{CYC}	—	1 ÷ f _{sys}	ns
4	Loss of reference frequency ⁴	f _{LOR}	100	1000	kHz
5	Self-clocked mode (SCM) frequency ⁵	f _{SCM}	7.4	17.5	MHz
	EXTAL input high voltage crystal mode ⁶	V _{IHEXT}	V _{XTAL} + 0.4 V	—	V
6	All other modes [dual controller (1:1), bypass, external reference]	V _{IHEXT}	(V _{DDE5} ÷ 2) + 0.4 V	_	V
	EXTAL input low voltage crystal mode ⁷	V _{ILEXT}	—	V _{XTAL} – 0.4 V	V
7	All other modes [dual controller (1:1), bypass, external reference]	V _{ILEXT}	_	(V _{DDE5} ÷ 2) – 0.4 V	V
8	XTAL current ⁸	I _{XTAL}	2	6	mA
9	Total on-chip stray capacitance on XTAL	C _{S_XTAL}	—	1.5	pF
10	Total on-chip stray capacitance on EXTAL	C _{S_EXTAL}	—	1.5	pF
11	Crystal manufacturer's recommended capacitive load	CL	Refer to crystal specification	Refer to crystal specification	pF
12	Discrete load capacitance to connect to EXTAL	C _{L_EXTAL}	_	$(2 \times C_L) - C_{S_EXTAL} - C_{PCB_EXTAL}$	pF
13	Discrete load capacitance to connect to XTAL	C _{L_XTAL}	_	$(2 \times C_L) - C_{S_XTAL} - C_{PCB_XTAL}$	pF
14	PLL lock time ¹⁰	t _{ipii}	—	750	μs
15	Dual controller (1:1) clock skew (between CLKOUT and EXTAL) ^{11, 12}	t _{skew}	-2	2	ns
16	Duty cycle of reference	t _{DC}	40	60	%
17	Frequency unLOCK range	f _{UL}	-4.0	4.0	% f _{SYS}
18	Frequency LOCK range	f _{LCK}	-2.0	2.0	% f _{SYS}

3.11 H7Fa Flash Memory Electrical Characteristics

Table 14. Flash Program and Erase Specifications ($T_A = T_L$ to T_H)

Spec	Flash Program Characteristic	Symbol	Min.	Typical ¹	Initial Max. ²	Max. ³	Unit
3	Doubleword (64 bits) program time ⁴	T _{dwprogram}	_	10	_	500	μs
4	Page program time ⁴	T _{pprogram}	_	22	44 ⁵	500	μs
7	16 KB block pre-program and erase time	T _{16kpperase}	—	265	400	5000	ms
9	48 KB block pre-program and erase time	T _{48kpperase}	—	345	400	5000	ms
10	64 KB block pre-program and erase time	T _{64kpperase}	—	415	500	5000	ms
8	128 KB block pre-program and erase time	T _{128kpperase}	_	500	1250	7500	ms
11	Minimum operating frequency for program and erase operations ⁶	_	25	_		_	MHz

¹ Typical program and erase times are calculated at 25 °C operating temperature using nominal supply values.

² Initial factory condition: ≤ 100 program/erase cycles, 25 °C, using a typical supply voltage measured at a minimum system frequency of 80 MHz.

³ The maximum erase time occurs after the specified number of program/erase cycles. This maximum value is characterized but not guaranteed.

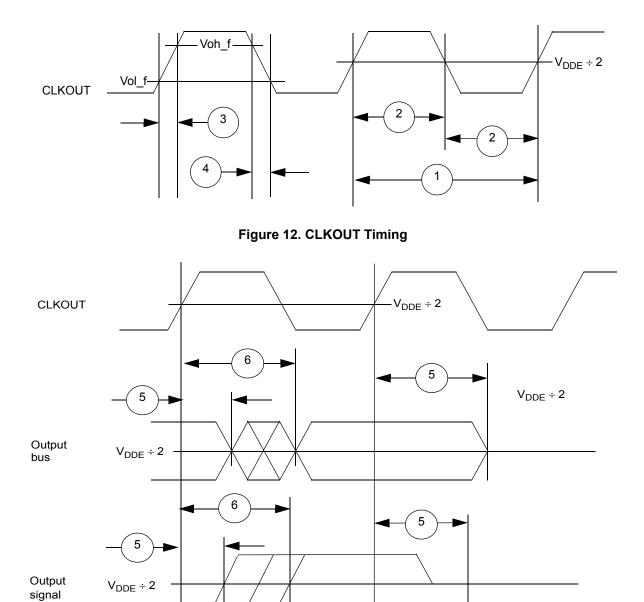
⁴ Actual hardware programming times. This does not include software overhead.

⁵ Page size is 256 bits (8 words).

⁶ The read frequency of the flash can range up to the maximum operating frequency. There is no minimum read frequency condition.

Spec	Characteristic	Symbol	Min.	Typical ¹	Unit
1a	Number of program/erase cycles per block for 16 KB, 48 KB, and 64 KB blocks over the operating temperature range (T_J)	P/E	100,000	—	cycles
1b	Number of program/erase cycles per block for 128 KB blocks over the operating temperature range (T $_{\rm J}$)	P/E	1000	100,000	cycles
2	Data retention Blocks with 0–1,000 P/E cycles Blocks with 1,001–100,000 P/E cycles	Retention	20 5	_	years

Table 15. Flash EEPROM Module Life ($T_A = T_L$ to T_H)


Typical endurance is evaluated at 25^o C. Product qualification is performed to the minimum specification. For additional information on the Freescale definition of typical endurance, refer to engineering bulletin EB619 Typical Endurance for Nonvolatile Memory.

	Characteristic		External Bus Frequency ^{2, 3}									
Spec	and	Symbol	40	MHz	56 I	٨Hz	67 I	MHz	72	72 MHz		Notes
	Description		Min Ma		Min	Max	Min	Max	Min	Мах		
6	CLKOUT positive edge to output signal <i>valid</i> (output delay) External bus interface CS[0:3] ADDR[8:31] DATA[0:31] BDIP BG ⁵ BR ⁷ BB OE RD_WR TA TEA TS TSIZ[0:1] WE/BE[0:3]	tcov	_	10.0 ⁶ 11.0	_	7.5 ⁶ 8.5		6.0 ⁶ 7.0		5.0 ⁶ 6.0	ns	EBTS = 0 EBTS = 1 Output valid time selectable via SIU_ECCR [EBTS] bit.
6a	CLKOUT positive edge to output signal valid (output delay) Calibration bus interface CAL_CS[0:3] CAL_ADDR[9:30] CAL_DATA[0:15] CAL_OE CAL_OE CAL_RD_WR CAL_TS CAL_TS CAL_WE/BE[0:1]	^t ccov	_	11.0 ⁶ 12.0	_	8.5 ⁶ 9.5		7.0 ⁶ 8.0		6.0 ⁶ 7.0	ns	EBTS = 0 EBTS = 1 Output valid time selectable via SIU_ECCR [EBTS] bit.
7	Input signal valid to CLKOUT positive edge (setup time) External bus interface ADDR[8:31] DATA[0:31] BG ⁷ BR ⁵ BB RD_WR TA TEA TS TSIZ[0:1]	t _{CIS}	10.0		7.0		5.0		4.0		ns	

Table 22. Bus Operation Timing ¹

6

MPC5566 Microcontroller Data Sheet, Rev. 3

 $V_{DDE} \div 2$

Output

signal

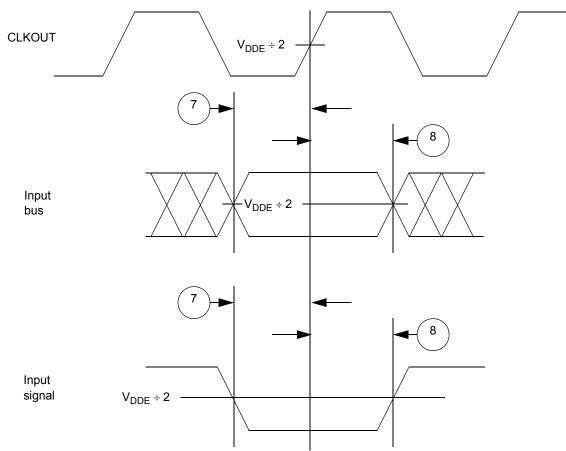


Figure 14. Synchronous Input Timing

3.13.5 **External Interrupt Timing (IRQ Signals)**

Table 23. External Interrupt Timing ¹

Spec	Characteristic	Symbol	Min.	Max.	Unit
1	IRQ pulse-width low	t _{IPWL}	3	_	t _{CYC}
2	IRQ pulse-width high	T _{IPWH}	3	_	t _{CYC}
3	IRQ edge-to-edge time ²	t _{ICYC}	6		t _{CYC}

¹ IRQ timing specified at: $V_{DDEH} = 3.0-5.25$ V and $T_A = T_L$ to T_H . ² Applies when IRQ signals are configured for rising-edge or falling-edge events, but not both.

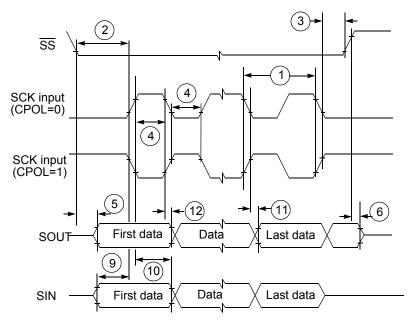


Figure 20. DSPI Classic SPI Timing—Slave, CPHA = 0

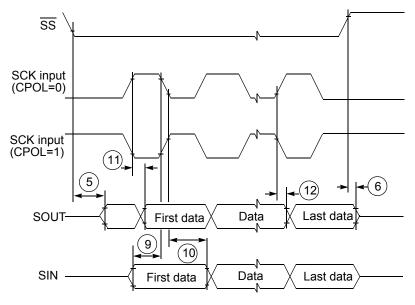


Figure 21. DSPI Classic SPI Timing—Slave, CPHA = 1

Figure 22. DSPI Modified Transfer Format Timing—Master, CPHA = 0

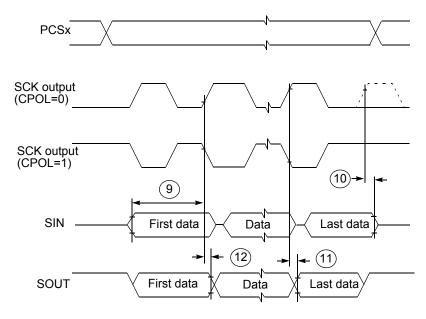


Figure 23. DSPI Modified Transfer Format Timing—Master, CPHA = 1

3.14.2 MII FEC Transmit Signal Timing FEC_TXD[3:0], FEC_TX_EN, FEC_TX_ER, FEC_TX_CLK

The transmitter functions correctly up to the FEC_TX_CLK maximum frequency of 25 MHz plus one percent. There is no minimum frequency requirement. In addition, the processor clock frequency must exceed twice the FEC_TX_CLK frequency.

The transmit outputs (FEC_TXD[3:0], FEC_TX_EN, FEC_TX_ER) can be programmed to transition from either the rising- or falling-edge of TX_CLK, and the timing is the same in either case. These options allow the use of non-compliant MII PHYs.

Refer to the Fast Ethernet Controller (FEC) chapter of the device reference manual for details of this option and how to enable it.

Table 29 lists MII FEC transmit channel timings.

Spec	Characteristic	Min.	Max	Unit
5	FEC_TX_CLK to FEC_TXD[3:0], FEC_TX_EN, FEC_TX_ER invalid	5	—	ns
6	FEC_TX_CLK to FEC_TXD[3:0], FEC_TX_EN, FEC_TX_ER valid	_	25	ns
7	FEC_TX_CLK pulse-width high	35%	65%	FEC_TX_CLK period
8	FEC_TX_CLK pulse-width low	35%	65%	FEC_TX_CLK period

Table 29. MII FEC Transmit Signal Timing

Figure 29 shows MII FEC transmit signal timings listed in Table 29.

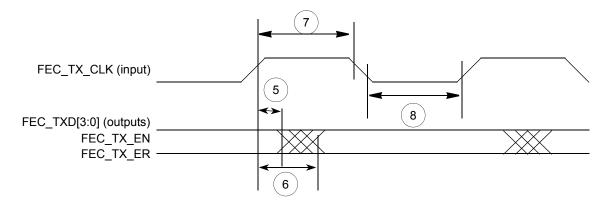


Figure 29. MII FEC Transmit Signal Timing Diagram

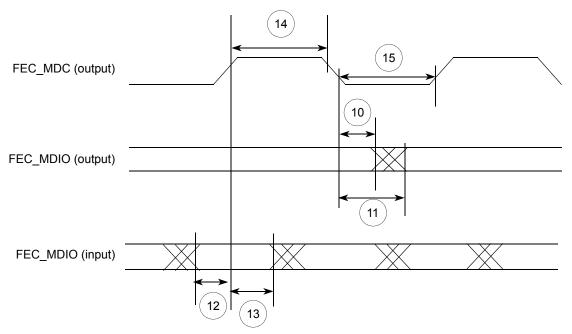


Figure 31. MII FEC Serial Management Channel Timing Diagram

4 Mechanicals

4.1 MPC5566 416 PBGA Pinout

Figure 32, Figure 33, and Figure 34 show the pinout for the MPC5566 416 PBGA package. The alternate Fast Ethernet Controller (FEC) signals are multiplexed with the data calibration bus signals.

NOTE

The MPC5500 devices are pin compatible for software portability and use the primary function names to label the pins in the BGA diagram. Although some devices do not support all the primary functions shown in the BGA diagram, the muxed and GPIO signals on those pins remain available. See the signals chapter in the device reference manual for the signal muxing.

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	
Α	VSS	VSTBY	AN37	AN11	VDDA1	AN16	AN1	AN5	VRH	AN23	AN27	AN28	AN35	VSSA0	AN15	ETRIG 1	ETPUB 18	ETPUB 20	ETPUB 24	ETPUB 27	GPIO 205	MDO11	MDO8	VDD	VDD33	VSS	A
В	VDD	VSS	AN36	AN39	AN19	AN20	AN0	AN4	REF BYPC	AN22	AN26	AN31	AN32	VSSA0	AN14	ETRIG 0	ETPUB 21	ETPUB 25	ETPUB 28	ETPUB 31	MDO10	MDO7	MDO4	MDO0	VSS	VDDE7	в
С	VDD33	VDD	VSS	AN8	AN17	VSSA1	AN21	AN3	AN7	VRL	AN25	AN30	AN33	VDDA0	AN13	ETPUB 19	ETPUB 22	ETPUB 26	ETPUB 30	MDO9	MDO6	MDO3	MDO1	VSS	VDDE7	VDD	с
D	ETPUA 30	ETPUA 31	VDD	VSS	AN38	AN9	AN10	AN18	AN2	AN6	AN24	AN29	AN34	VDDEH 9	AN12	ETPUB 16	ETPUB 17	ETPUB 23	ETPUB 29	MDO5	MDO2	VDDEH	VSS	VDDE7	тск	TDI	D
E	ETPUA 28	ETPUA 29	VDDEH	VDD																			VDDE7	TMS	TDO	TEST	Е
F	ETPUA 24	ETPUA 27	ETPUA 26	VDDEH																			MSEO0	JCOMP	EVTI	EVTO	F
G	ETPUA 23	ETPUA 22	ETPUA 25	ETPUA 21																			MSEO1	мско	GPIO 204	ETPUB 15	G
н	ETPUA 20	ETPUA 19	ETPUA 18																				RDY	GPIO 203	ETPUB 14	ETPUB 13	н
J	ETPUA 16	ETPUA 15		ETPUA 13																			VDDEH		ETPUB	ETPUB 9	J
к	ETPUA 12		ETPUA 10							VSS	VSS	VSS	VSS	VDDE7	VDDE7	VDDE7	VDDE7								ETPUB 7	ETPUB 5	к
L			ETPUA 6							VSS	VSS	VSS	VSS	VSS	VSS	VSS	VDDE7							ETPUB 4		ETPUB	L
м	-	ETPUA		ETPUA 1						VDDE2	VDDE2	VSS	VSS	VSS	VSS	VSS	VDDE7						-		ETPUB 0	SINB	м
N	BDIP	TEA	ETPUA 0							VDDE2	VDDE2	VSS	VSS	VSS	VSS	VSS	VDDE7								PCSB0	PCSB1	N
Р	CS3	CS2	CS1	CS0						VDDE2	VDDE2	VSS	VSS	VSS	VSS	VSS	VSS						PCSA3	PCSB4	SCKB	PCSB2	Р
R	WE3	WE2	WE1	WE0						VDDE2	VDDE2	VSS	VSS	VSS	VSS	VSS	VSS						PCSB5	SOUTA	SINA	SCKA	R
т	VDDE2	TSIZ0	RD_WR	VDDE2						VDDE2	VSS	VDDE2	VDDE2	VDDE2	VDDE2	VSS	VSS						PCSA1	PCSA0	PCSA2	VPP	т
U	ADDR 16	TSIZ1	TA	VDD33						VSS	VDDE2	VDDE2	VDDE2	VDDE2	VDDE2	VSS	VSS						PCSA4	TXDA	PCSA5	VFLASH	U
v	ADDR 18	ADDR	TS	ADDR																			CNTXC	RXDA	RSTOUT	RST CFG	v
w	ADDR 20	ADDR 19	ADDR 9	ADDR 10																			RXDB	CNRXC	TXDB	RESET	w
Y	ADDR 22	ADDR	ADDR	VDDE2					N	ote:	NC	No d	conne	ct. AC2	22 & A	AD23 r	eserve	ed					WKP CFG	BOOT CFG1	VRC VSS	VSS SYN	Y
AA	ADDR 24	21 ADDR	11 ADDR	ADDR																			VDDEH	PLL	BOOT CFG0	EXTAL	AA
AB	Z4 VDDE2	23 ADDR	13 ADDR	12 ADDR																			6 VDD	CFG1 VRC CTL	PLL CFG0	XTAL	AB
AC	ADDR	25 ADDR	15 ADDR	14 VSS	VDD	DATA	DATA	VDDE2	DATA	DATA	DATA	DATA	VDDE2	DATA	DATA	EMIOS					VDDE5	NC	VSS	VDD	VRC33	VDD	AC
AD	26 ADDR	27 ADDR	31 VSS	VDD	DATA	26 DATA	28 DATA	DATA	30 VDD33	31 GPIO	8 DATA	10 DATA	DATA	12 DATA			8 EMIOS				CNTXA	VDDE5	NC	VSS	VDD	SYN VDD33	
AE	28 ADDR	30 VSS	VDD	DATA	24 DATA	25 DATA	27 DATA	29 DATA	DATA	207 DATA	9 DATA	11 OE	13 BR	15 BG	3 EMIOS	6 EMIOS					EMIOS		VDDE5		VSS	VDD	AE
AF	29 VSS	VDD	DATA	17 DATA	19 VDDE2	21 DATA	23 DATA	0 GPIO	2 DATA	4 DATA	6 VDDE2	DATA	DATA	BB	1 EMIOS		9 EMIOS				23 EMIOS			VDDE5	ENG	VSS	AF
<i>1</i> 1	1	2	16 3	18 4	5	20 6	22 7	206 8	1 9	3 10	11	5 12	7 13	14	0 15	4 16	7 17	11 18	14 19	18 20	20 21	22	23	24	CLK 25	26	1

Figure 32. MPC5566 416 Package

MPC5566 Microcontroller Data Sheet, Rev. 3

Revision History for the MPC5566 Data Sheet

Location	Description of Changes						
Section 3.7.1, "Input Value of Pins During POR Dependent on VDD33:"							
	Added the following text directly before this section and after Table 8 Pin Status for Medium / Slow Pads During the Power-on Sequence: 'The values in Table 7 and Table 8 do not include the effect of the weak pull devices on the output pins during power up.						
	Before exiting the internal POR state, the voltage on the pins goes to high-impedance until POR negates. When the internal POR negates, the functional state of the signal during reset applies and the weak pull devices (up or down) are enabled as defined in the device <i>Reference Manual</i> . If V _{DD} is too low to correctly propagate the logic signals, the weak-pull devices can pull the signals to V _{DDE} and V _{DDEH} .						
	To avoid this condition, minimize the ramp time of the V _{DD} supply to a time period less than the time required to enable the external circuitry connected to the device outputs.'						
Section 3.7	7.3, "Power-Down Sequence (VRC33 Grounded)" Deleted the underscore in ORed POR to become ORed POR.						

Table 34. Global and Text Changes Between Rev. 0.0 and 1.0 (continued)

The following table lists the information that changed in the figures or tables between Rev. 0.0 and 1.0.

 Table 35. Table and Figure Changes Between Rev. 0.0 and Rev. 1.0

Location	Description of Changes						
Figure 1, M	IPC5500 Family Part Numbers:						
	 Removed the 2 in the tape and reel designator in both the graphic and in the Tape and Reel Status text. Changed Qualification Status by adding ', general market flow' to the M designator, and added an 'S' designator with the description of 'Fully spec. qualified, automotive flow. 						
Table 1, Or	rderable Part Numbers:						
	 Added a 144 MHz system frequency option for: MPC5566MVR144, Pb-Free (lead free), nominal 144, maximum 147 MPC5566MZP144, SnPb (leaded), nominal 144, maximum 147 Changed the 132 MHz maximum operating frequency to 135 MHz. 						

- Reordered rows to group devices by lead-free package types in descending frequency order, and leaded package types.
- Footnote 1 added that reads: All devices are PPC5566, rather than MPC5566 or SPC5566, until product qualifications are complete. Not all configurations are available in the PPC parts.
- Footnote 2 added that reads: The lowest ambient operating temperature is referenced by T_L; the highest ambient operating temperature is referenced by T_H.
- Changed footnote 3 from '132 MHz allows only 128 MHz + 2% FM' to '135 MHz parts allow for 132 MHz systems clock + 2% FM'; and added '147 MHz parts allow for 144 MHz systems clock + 2% FM.

Revision History for the MPC5566 Data Sheet

Table 35. Table and Figure Changes Between Rev. 0.0 and Rev. 1.0 (continued)

	Table 35. Table and Figure Changes Between Rev. 0.0 and Rev. 1.0 (continued)
Location	Description of Changes
Table 22, I	Bus Operation Timing:
	 Added a column to the table for 72 MHz minimum and maximum bus frequencies. Spec 1: 72 MHz Min. column = 13.3. Specs 5 and 6: <i>CLKOUT positive edge to output signals invalid of high</i>: Corrected format to show the bus timing values for various frequencies with EBTS bit = 0 and EBTS bit = 1. Specs 5, and 6: Added the BB signal for arbitration. Added the following calibration signals: CAL_ADDR[9:30], CAL_CS[0:3], CAL_DATA[0:15], CAL_OE, CAL_RD_WR, CAL_TS, CAL_WE/BE[0:1]. Spec 5: EBI and Calibration sections, 72 MHz Min column, EBTS = 0 is 1.0, EBTS = 1 is 1.5. Spec 6: EBI section, 72 MHz Max column, EBTS = 0 is 5.0, EBTS = 1 is 6.0. Spec 6a: Calibration section, 72 MHz Max column, Added the following calibration signals: CAL_ADDR[9:30], CAL_DATA[0:15], CAL_RD_WR, CAL_TS.
Table 23, I	External Interrupt Timing:
	 Footnote 1: Deleted ' F_{SYS} = 132 MHz', 'V_{DD33} and V_{DDSYN} = 3.0–3.6 V' and '.and CL = 200 pF with SRC = 0b11.' Deleted second figure after table 'External Interrupt Setup Timing.'
Table 24, e	eTPU Timing
	 Footnote 1: Deleted 'F_{SYS} = 132 MHz', 'V_{DD33} and V_{DDSYN} = 3.0–3.6 V' and 'and CL = 200 pF with SRC = 0b11.' Deleted second figure, '<i>eTPU Input/Output Timing</i>' after this table. Added Footnote 2: 'This specification does not include the rise and fall times. When calculating the minimum eTPU pulse width, include the rise and fall times defined in the slew rate control fields (SRC) of the pad configuration registers (PCR).'
Table 25, e	eMIOS Timing:
	 Deleted (MTS) from the heading, table, and footnotes. Footnote 1: Deleted 'F_{SYS} = 132 MHz, 'V_{DD33} and V_{DDSYN} = 3.0–3.6 V' and 'and CL = 200 pF with SRC = 0b11.' Added Footnote 2: 'This specification does not include the rise and fall times. When calculating the minimum eMIOS pulse width, include the rise and fall times defined in the slew rate control fields (SRC) of the pad configuration registers (PCR).'
Figure 17,	eMIOS Timing: Added figure.
Table 26, I	DSPI Timing:
	 Added 144 MHz column to the table. Spec1:SCK Cycle Time: changes to values: 80 MHz, min. = 24.4; 112 MHz, min. = 17.5, max = 2.1; 132 MHz, min. = 14.8, max = 1.8; 144 MHz, min. = 13.6, max = 1.6. Spec1:SCK Cycle Time: Added footnote 4 to the 144 MHz min. and max values that reads: Preliminary. Specification pending final characterization Spec 2, PCS to SCK delay, 144 MHz, min. TBD Spec 3, After SCK delay, 144 MHz, min. TBD Spec 9, Master (MTFE = 1, CPHA = 0), 144 MHz, min. TBD Spec 10, Master (MTFE = 1, CPHA = 0), 144 MHz, min. TBD Spec 11, Master (MTFE = 1, CPHA = 0), 144 MHz, min. TBD Spec 12, Master (MTFE = 1, CPHA = 0), 144 MHz, min. TBD Added to beginning of footnote 1 'All DSPI timing specifications use the fastest slew rate (SRC = 0b11) on pad type M or MH. DSPI signals using pad types of S or SH have an additional delay based on the slew rate.' Footnote 1: Deleted 'V_{DD} = 1.35–1.65 V' and 'V_{DD33} and V_{DDSYN} = 3.0–3.6 V.

How to Reach Us:

Home Page: www.freescale.com

Web Support: http://www.freescale.com/support

USA/Europe or Locations Not Listed:

Freescale Semiconductor, Inc. Technical Information Center, EL516 2100 East Elliot Road Tempe, Arizona 85284 +1-800-521-6274 or +1-480-768-2130 www.freescale.com/support

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support

Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor China Ltd. Exchange Building 23F No. 118 Jianguo Road Chaoyang District Beijing 100022 China +86 10 5879 8000 support.asia@freescale.com

For Literature Requests Only: Freescale Semiconductor Literature Distribution Center 1-800-441-2447 or 303-675-2140 Fax: 303-675-2150 LDCForFreescaleSemiconductor@hibbertgroup.com

Document Number: MPC5566 Rev. 3 9/2012 Power

Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals", must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

Freescale[™] and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners.

© Freescale Semiconductor, Inc. 2008,2012. All rights reserved.

RoHS-compliant and/or Pb-free versions of Freescale products have the functionality and electrical characteristics as their non-RoHS-compliant and/or non-Pb-free counterparts. For further information, see http://www.freescale.com or contact your Freescale sales representative.

For information on Freescale's Environmental Products program, go to http://www.freescale.com/epp.

