E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	e200z6
Core Size	32-Bit Single-Core
Speed	80MHz
Connectivity	CANbus, EBI/EMI, Ethernet, SCI, SPI
Peripherals	DMA, POR, PWM, WDT
Number of I/O	256
Program Memory Size	3MB (3M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	128K x 8
Voltage - Supply (Vcc/Vdd)	1.35V ~ 1.65V
Data Converters	A/D 40x12b
Oscillator Type	External
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	416-BBGA
Supplier Device Package	416-PBGA (27x27)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/spc5566mzp80r

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Overview

The MPC5500 family of parts contains many new features coupled with high performance CMOS technology to provide significant performance improvement over the MPC565x.

The host processor core of the MPC5566 also includes an instruction set enhancement allowing variable length encoding (VLE). This allows optional encoding of mixed 16- and 32-bit instructions. With this enhancement, it is possible to significantly reduce the code size footprint.

The MPC5566 has two levels of memory hierarchy. The fastest accesses are to the 32-kilobytes (KB) unified cache. The next level in the hierarchy contains the 128-KB on-chip internal SRAM and three-megabytes (MB) internal flash memory. The internal SRAM and flash memory hold instructions and data. The external bus interface is designed to support most of the standard memories used with the MPC5*xx* family.

The complex input/output timer functions of the MPC5566 are performed by two enhanced time processor unit (eTPU) engines. Each eTPU engine controls 32 hardware channels, providing a total of 64 hardware channels. The eTPU has been enhanced over the TPU by providing: 24-bit timers, double-action hardware channels, variable number of parameters per channel, angle clock hardware, and additional control and arithmetic instructions. The eTPU is programmed using a high-level programming language.

The less complex timer functions of the MPC5566 are performed by the enhanced modular input/output system (eMIOS). The eMIOS' 24 hardware channels are capable of single-action, double-action, pulse-width modulation (PWM), and modulus-counter operations. Motor control capabilities include edge-aligned and center-aligned PWM.

Off-chip communication is performed by a suite of serial protocols including controller area networks (FlexCANs), enhanced deserial/serial peripheral interfaces (DSPIs), and enhanced serial communications interfaces (eSCIs). The DSPIs support pin reduction through hardware serialization and deserialization of timer channels and general-purpose input/output (GPIOs) signals.

The MCU has an on-chip enhanced queued dual analog-to-digital converter (eQADC).s 40-channels.

The system integration unit (SIU) performs several chip-wide configuration functions. Pad configuration and general-purpose input and output (GPIO) are controlled from the SIU. External interrupts and reset control are also determined by the SIU. The internal multiplexer submodule provides multiplexing of eQADC trigger sources, daisy chaining the DSPIs, and external interrupt signal multiplexing.

The Fast Ethernet (FEC) module is a RISC-based controller that supports both 10 and 100 Mbps Ethernet/IEEE® 802.3 networks and is compatible with three different standard MAC (media access controller) PHY (physical) interfaces to connect to an external Ethernet bus. The FEC supports the 10 or 100 Mbps MII (media independent interface), and the 10 Mbps-only with a seven-wire interface, which uses a subset of the MII signals. The upper 16-bits of the 32-bit external bus interface (EBI) are used to connect to an external Ethernet device. The FEC contains built-in transmit and receive message FIFOs and DMA support.

Ordering Information 2

Note: Not all options are available on all devices. Refer to Table 1.

Figure 1. MPC5500 Family Part Number Example

Unless noted in this data sheet, all specifications apply from T_{L} to T_{H} .

Table	1.	Orderable	Part	Numbers
-------	----	-----------	------	---------

Freescale Part Number ¹	Package Description	Spee	Speed (MHz)		Operating Temperature ²	
	i ackage bescription	Nominal	Max. ³ (f _{MAX})	Min. (T _L)	Max. (T _H)	
MPC5566MVR144		144	147			
MPC5566MVR132	MPC5566 416 package	132	135	–40° C	125° C	
MPC5566MVR112	Lead-free (PbFree)	112	114			
MPC5566MVR80		80	82			
MPC5566MZP144		144	147			
MPC5566MZP132	MPC5566 416 package	132	135	100 0	405% 0	
MPC5566MZP112 Leaded (SnPb)	112	114	-40 C	125 C		
MPC5566MZP80		80	82			

1 All devices are PPC5566, rather than MPC5566 or SPC5566, until product qualifications are complete. Not all configurations are available in the PPC parts.

2 The lowest ambient operating temperature is referenced by T_L; the highest ambient operating temperature is referenced by T_H.

3 Speed is the nominal maximum frequency. Max, speed is the maximum speed allowed including frequency modulation (FM). 82 MHz parts allow for 80 MHz system clock + 2% FM; 114 MHz parts allow for 112 MHz system clock + 2% FM; 135 MHz parts allow for 132 MHz system clock + 2% FM; and 147 MHz parts allow for 144 MHz system clock + 2% FM.

At a known board temperature, the junction temperature is estimated using the following equation:

 $T_{J} = T_{B} + (R_{\theta JB} \times P_{D})$

where:

 $T_J =$ junction temperature (°C)

 T_B = board temperature at the package perimeter (°C/W)

 $R_{\theta JB}$ = junction-to-board thermal resistance (°C/W) per JESD51-8

 P_D = power dissipation in the package (W)

When the heat loss from the package case to the air does not factor into the calculation, an acceptable value for the junction temperature is predictable. Ensure the application board is similar to the thermal test condition, with the component soldered to a board with internal planes.

The thermal resistance is expressed as the sum of a junction-to-case thermal resistance plus a case-to-ambient thermal resistance:

 $R_{\theta JA} = R_{\theta JC} + R_{\theta CA}$

where:

 $R_{\theta JA}$ = junction-to-ambient thermal resistance (°C/W)

 $R_{\theta JC}$ = junction-to-case thermal resistance (°C/W)

 $R_{\theta CA}$ = case-to-ambient thermal resistance (°C/W)

 $R_{\theta JC}$ is device related and is not affected by other factors. The thermal environment can be controlled to change the case-to-ambient thermal resistance, $R_{\theta CA}$. For example, change the air flow around the device, add a heat sink, change the mounting arrangement on the printed circuit board, or change the thermal dissipation on the printed circuit board surrounding the device. This description is most useful for packages with heat sinks where 90% of the heat flow is through the case to heat sink to ambient. For most packages, a better model is required.

A more accurate two-resistor thermal model can be constructed from the junction-to-board thermal resistance and the junction-to-case thermal resistance. The junction-to-case thermal resistance describes when using a heat sink or where a substantial amount of heat is dissipated from the top of the package. The junction-to-board thermal resistance describes the thermal performance when most of the heat is conducted to the printed circuit board. This model can be used to generate simple estimations and for computational fluid dynamics (CFD) thermal models.

To determine the junction temperature of the device in the application on a prototype board, use the thermal characterization parameter (Ψ_{JT}) to determine the junction temperature by measuring the temperature at the top center of the package case using the following equation:

 $T_{J} = T_{T} + (\Psi_{JT} \times P_{D})$ where: $T_{T} = \text{thermocouple temperature on top of the package (°C)}$ $\Psi_{JT} = \text{thermal characterization parameter (°C/W)}$ $P_{D} = \text{power dissipation in the package (W)}$

3.8 DC Electrical Specifications

Table 9. DC Electrical Specifications ($T_A = T_L$ to T_H)

Spec	Characteristic	Symbol	Min	Max.	Unit
1	Core supply voltage (average DC RMS voltage)	V _{DD}	1.35	1.65	V
2	Input/output supply voltage (fast input/output) ¹	V _{DDE}	1.62	3.6	V
3	Input/output supply voltage (slow and medium input/output)	V _{DDEH}	3.0	5.25	V
4	3.3 V input/output buffer voltage	V _{DD33}	3.0	3.6	V
5	Voltage regulator control input voltage	V _{RC33}	3.0	3.6	V
6	Analog supply voltage ²	V _{DDA}	4.5	5.25	V
8	Flash programming voltage ³	V _{PP}	4.5	5.25	V
9	Flash read voltage	V _{FLASH}	3.0	3.6	V
10	SRAM standby voltage ⁴	V _{STBY}	0.8	1.2	V
11	Clock synthesizer operating voltage	V _{DDSYN}	3.0	3.6	V
12	Fast I/O input high voltage	V _{IH_F}	$0.65 \times V_{DDE}$	V _{DDE} + 0.3	V
13	Fast I/O input low voltage	V _{IL_F}	V _{SS} – 0.3	$0.35 \times V_{DDE}$	V
14	Medium and slow I/O input high voltage	V _{IH_S}	$0.65 \times V_{DDEH}$	V _{DDEH} + 0.3	V
15	Medium and slow I/O input low voltage	V _{IL_S}	V _{SS} – 0.3	$0.35 \times V_{DDEH}$	V
16	Fast input hysteresis	V _{HYS_F}	$0.1 \times V_{DDE}$		V
17	Medium and slow I/O input hysteresis	V _{HYS_S}	$0.1 \times V_{DDEH}$		V
18	Analog input voltage	V _{INDC}	V _{SSA} – 0.3	V _{DDA} + 0.3	V
19	Fast output high voltage (I _{OH_F} = -2.0 mA)	V _{OH_F}	$0.8 \times V_{DDE}$	_	V
20	Slow and medium output high voltage $I_{OH_S} = -2.0 \text{ mA}$ $I_{OH_S} = -1.0 \text{ mA}$	V _{OH_S}	$0.80 \times V_{DDEH}$ $0.85 \times V_{DDEH}$	-	V
21	Fast output low voltage (I _{OL_F} = 2.0 mA)	V _{OL_F}	—	$0.2 \times V_{DDE}$	V
22	Slow and medium output low voltage $I_{OL_S} = 2.0 \text{ mA}$ $I_{OL_S} = 1.0 \text{ mA}$	V _{OL_S}	_	$0.20 \times V_{DDEH}$ $0.15 \times V_{DDEH}$	V
23	Load capacitance (fast I/O) ⁵ DSC (SIU_PCR[8:9]) = 0b00 = 0b01 = 0b10 = 0b11	CL	 	10 20 30 50	pF pF pF pF
24	Input capacitance (digital pins)	C _{IN}	_	7	pF
25	Input capacitance (analog pins)	C _{IN_A}	—	10	pF
26	Input capacitance: (Shared digital and analog pins AN[12]_MA[0]_SDS, AN[13]_MA[1]_SDO, AN[14]_MA[2]_SDI, and AN[15]_FCK)	C _{IN_M}	_	12	pF

Spec	Characteristic	Symbol	Min	Max.	Unit
28	Operating current 3.3 V supplies @ f _{MAX} MHz				
	V _{DD33} ¹³	I _{DD_33}	_	2 + (values derived from procedure of footnote ¹³)	mA
	V _{FLASH}	I _{VFLASH}	—	10	mA
	V _{DDSYN}	IDDSYN	—	15	mA
29	Operating current 5.0 V supplies (12 MHz ADCLK): V _{DDA} (V _{DDA0} + V _{DDA1}) Analog reference supply current (V _{RH} , V _{RL}) V _{PP}	I _{DD_A} I _{REF} I _{PP}	 	20.0 1.0 25.0	mA mA mA
30	$\begin{array}{c} \text{Operating current } V_{\text{DDE}} \text{ supplies: }^{14} \\ V_{\text{DDE1}} \\ V_{\text{DDE2}} \\ V_{\text{DDE3}} \\ V_{\text{DDE44}} \\ V_{\text{DDE5}} \\ V_{\text{DDE46}} \\ V_{\text{DDE7}} \\ V_{\text{DDE48}} \\ V_{\text{DDEH9}} \end{array}$	I _{DD1} I _{DD2} I _{DD3} I _{DD4} I _{DD5} I _{DD6} I _{DD7} I _{DD8} I _{DD8} I _{DD9}		Refer to footnote ¹⁴	mA mA mA mA mA mA mA
31	Fast I/O weak pullup current ¹⁵ 1.62–1.98 V 2.25–2.75 V 3.00–3.60 V		10 20 20	110 130 170	μΑ μΑ μΑ
	Fast I/O weak pulldown current ¹⁵ 1.62–1.98 V 2.25–2.75 V 3.00–3.60 V	- 'ACT_F	10 20 20	100 130 170	μΑ μΑ μΑ
32	Slow and medium I/O weak pullup/down current ¹⁵ 3.0–3.6 V 4.5–5.5 V	I _{ACT_S}	10 20	150 170	μA μA
33	I/O input leakage current ¹⁶	I _{INACT_D}	-2.5	2.5	μA
34	DC injection current (per pin)	I _{IC}	-2.0	2.0	mA
35	Analog input current, channel off ¹⁷	I _{INACT_A}	-150	150	nA
35a	Analog input current, shared analog / digital pins (AN[12], AN[13], AN[14], AN[15])	I _{INACT_AD}	-2.5	2.5	μA
36	V_{SS} to V_{SSA} differential voltage ¹⁸	$V_{SS} - V_{SSA}$	-100	100	mV
37	Analog reference low voltage	V _{RL}	V _{SSA} – 0.1	V _{SSA} + 0.1	V
38	V _{RL} differential voltage	V _{RL} – V _{SSA}	-100	100	mV
39	Analog reference high voltage	V _{RH}	V _{DDA} – 0.1	V _{DDA} + 0.1	V
40	V _{REF} differential voltage	V _{RH} – V _{RL}	4.5	5.25	V

Table 9. DC Electrical Specifications ($T_A = T_L \text{ to } T_H$) (continued)

Spec	Characteristic	Symbol	Min	Max.	Unit
41	V_{SSSYN} to V_{SS} differential voltage	$V_{\rm SSSYN} - V_{\rm SS}$	-50	50	mV
42	V_{RCVSS} to V_{SS} differential voltage	$V_{RCVSS} - V_{SS}$	-50	50	mV
43	V_{DDF} to V_{DD} differential voltage	$V_{DDF} - V_{DD}$	-100	100	mV
43a	V _{RC33} to V _{DDSYN} differential voltage	$V_{RC33} - V_{DDSYN}$	-0.1	0.1 ¹⁹	V
44	Analog input differential signal range (with common mode 2.5 V)	V _{IDIFF}	-2.5	2.5	V
45	Operating temperature range, ambient (packaged)	$T_A = (T_L \text{ to } T_H)$	ΤL	Т _Н	°C
46	Slew rate on power-supply pins			50	V/ms

Table 9. DC Electrical Specifications (T_A = T_L to T_H) (continued)

¹ V_{DDE2} and V_{DDE3} are limited to 2.25–3.6 V only if SIU_ECCR[EBTS] = 0; V_{DDE2} and V_{DDE3} have a range of 1.6–3.6 V if SIU_ECCR[EBTS] = 1.

- 2 | V_{DDA0} V_{DDA1} | must be < 0.1 V.
- 3 V_{PP} can drop to 3.0 V during read operations.
- ⁴ If standby operation is not required, connect V_{STBY} to ground.
- ⁵ Applies to CLKOUT, external bus pins, and Nexus pins.
- ⁶ Maximum average RMS DC current.
- ⁷ Eight-way cache enabled (L1CSR0[CORG] = 0b0).
- ⁸ Average current measured on automotive benchmark.
- ⁹ Peak currents can be higher on specialized code.
- ¹⁰ High use current measured while running optimized SPE assembly code with all code and data 100% locked in cache (0% miss rate) with all channels of the eMIOS and eTPU running autonomously, plus the eDMA transferring data continuously from SRAM to SRAM. Higher currents are possible if an 'idle' loop that crosses cache lines is run from cache. Write code to avoid this condition.
- ¹¹ Four-way cache enabled (L1CSR0[CORG] = 0b1) or (L1CSR0[CORG] = 0b0 with L1CSR0[WAM] = 0b1, L1CSR0[WID] = 0b1111, L1CSR0[AWID] = 0b1, and L1CSR0[AWDD] = 0b1).
- ¹² The current specification relates to average standby operation after SRAM has been loaded with data. For power up current see Section 3.7, "Power-Up/Down Sequencing", Figure 2.
- ¹³ Power requirements for the V_{DD33} supply depend on the frequency of operation, load of all I/O pins, and the voltages on the I/O segments. Refer to Table 11 for values to calculate the power dissipation for a specific operation.
- ¹⁴ Power requirements for each I/O segment are dependent on the frequency of operation and load of the I/O pins on a particular I/O segment, and the voltage of the I/O segment. Refer to Table 10 for values to calculate power dissipation for specific operation. The total power consumption of an I/O segment is the sum of the individual power consumptions for each pin on the segment.
- 15 Absolute value of current, measured at V_{IL} and V_{IH}.
- ¹⁶ Weak pullup/down inactive. Measured at V_{DDE} = 3.6 V and V_{DDEH} = 5.25 V. Applies to pad types: pad_fc, pad_sh, and pad_mh.
- ¹⁷ Maximum leakage occurs at maximum operating temperature. Leakage current decreases by approximately one-half for each 8 °C to 12 °C, in the ambient temperature range of 50 °C to 125 °C. Applies to pad types: pad_a and pad_ae.
- 18 V_{SSA} refers to both V_{SSA0} and V_{SSA1} \mid V_{SSA0} V_{SSA1} \mid must be < 0.1 V.
- ¹⁹ Up to 0.6 V during power up and power down.

Spec	Pad	SRC / DSC (binary)	Out Delay ^{2, 3, 4} (ns)	Rise / Fall ^{4, 5} (ns)	Load Drive (pF)
2		11	16	8	50
		11	43	30	200
	Medium high voltage (MH)	01	34	15	50
	wedium nigh voltage (win)	01	61	35	200
		00	192	100	50
			239	125	200
		00	2.1	2.7	10
3	Fact	01		2.5	20
5	rasi	10	5.1	2.4	30
		11		2.3	50
4	Pullup/down (3.6 V max)	—	_	7500	50
5	Pullup/down (5.5 V max)	—	_	9000	50

Table 17. Pad AC Specifications (V_{DDEH} = 5.0 V, V_{DDE} = 1.8 V) ¹ (continued)

¹ These are worst-case values that are estimated from simulation (not tested). The values in the table are simulated at:

 V_{DD} = 1.35–1.65 V; V_{DDE} = 1.62–1.98 V; V_{DDEH} = 4.5–5.25 V; V_{DD33} and V_{DDSYN} = 3.0–3.6 V; and T_A = T_L to T_H .

² This parameter is supplied for reference and is guaranteed by design (not tested).

³ The output delay is shown in Figure 4. To calculate the output delay with respect to the system clock, add a maximum of one system clock to the output delay.

⁴ The output delay and rise and fall are measured to 20% or 80% of the respective signal.

⁵ This parameter is guaranteed by characterization rather than 100% tested.

Table 18.	Derated Pad	AC Specifications	$(V_{DDEH} = 3.3 V_{e})$	$V_{\rm DDE} = 3.3 \text{ V}$
-----------	--------------------	-------------------	--------------------------	-------------------------------

Spec	Pad	SRC/DSC (binary)	Out Delay ^{2, 3, 4} (ns)	Rise / Fall ^{3, 5} (ns)	Load Drive (pF)
		11	39	23	50
1			120	87	200
	Slow high voltage (SH)	01	101	52	50
	Slow high voltage (SH)	01	188	111	200
		00	507	248	50
			597	312	200
		11	23	12	50
			64	44	200
2	Medium high voltage (MH)	01	50	22	50
2		01	90	50	200
		00	261	123	50
		00	305	156	200

Spec	Characteristic	Symbol	Min.	Max.	Unit
12	TCK falling-edge to output valid out of high impedance	t _{BSDVZ}		50	ns
13	TCK falling-edge to output high impedance (Hi-Z)	t _{BSDHZ}		50	ns
14	Boundary scan input valid to TCK rising-edge	t _{BSDST}	50	—	ns
15	TCK rising-edge to boundary scan input invalid	t _{BSDHT}	50	—	ns

Table 20. JTAG Pin AC Electrical Characteri	stics ¹ (continued)
---	--------------------------------

¹ These specifications apply to JTAG boundary scan only. JTAG timing specified at: $V_{DDE} = 3.0-3.6$ V and $T_A = T_L$ to T_H . Refer to Table 21 for Nexus specifications.

Figure 6. JTAG Test Clock Input Timing

Nexus Timing 3.13.3

Spec	Characteristic	Symbol	Min.	Max.	Unit
1	MCKO cycle time	t _{MCYC}	1 ²	8	t _{CYC}
2	MCKO duty cycle	t _{MDC}	40	60	%
3	MCKO low to MDO data valid ³	t _{MDOV}	-1.5	3.0	ns
4	MCKO low to MSEO data valid ³	t _{MSEOV}	-1.5	3.0	ns
5	MCKO low to EVTO data valid ³	t _{EVTOV}	-1.5	3.0	ns
6	EVTI pulse width	t _{EVTIPW}	4.0	—	t _{TCYC}
7	EVTO pulse width	t _{EVTOPW}	1	—	t _{MCYC}
8	TCK cycle time	t _{TCYC}	4 ⁴	—	t _{CYC}
9	TCK duty cycle	t _{TDC}	40	60	%
10	TDI, TMS data setup time	t _{NTDIS,} t _{NTMSS}	8	—	ns
11	TDI, TMS data hold time	t _{NTDIH,} t _{NTMSH}	5	—	ns
	TCK low to TDO data valid	t _{JOV}			
12	V _{DDE} = 2.25–3.0 V		0	12	ns
	V _{DDE} = 3.0–3.6 V		0	10	ns
13	RDY valid to MCKO ⁵	_	_	—	—

Table 21. Nexus Debug Port Timing ¹

1 JTAG specifications apply when used for debug functionality. All Nexus timing relative to MCKO is measured from 50% of MCKO and 50% of the respective signal. Nexus timing specified at V_{DD} = 1.35–1.65 V, V_{DDE} = 2.25–3.6 V,

 V_{DD33} and V_{DDSYN} = 3.0–3.6 V, T_A = T_L to T_H , and CL = 30 pF with DSC = 0b10.

- ² The Nexus AUX port runs up to 82 MHz. Set NPC_PCR[MCKO_DIV] to divide-by-two if the system frequency is greater than 82 MHz.
- ³ MDO, MSEO, and EVTO data is held valid until the next MCKO low cycle occurs.
- ⁴ Limit the maximum frequency to approximately 16 MHz (V_{DDE} = 2.25–3.0 V) or 20 MHz (V_{DDE} = 3.0–3.6 V) to meet the timing specification for t_{JOV} of [0.2 x t_{JCYC}] as outlined in the IEEE-ISTO 5001-2003 specification.
- ⁵ The RDY pin timing is asynchronous to MCKO and is guaranteed by design to function correctly.

Figure 10. Nexus Output Timing

3.13.4 External Bus Interface (EBI) Timing

Table 22 lists the timing information for the external bus interface (EBI).

	Characteristic			I	Externa							
Spec	and	Symbol	40 N	ЛНz	56 N	ЛНz	67	MHz	72	٨Hz	Unit	Notes
	Description		Min	Max	Min	Max	Min	Max	Min	Max		
1	CLKOUT period	Т _С	25.0	_	17.9	_	15.2	_	13.3		ns	Signals are measured at 50% V _{DDE} .
2	CLKOUT duty cycle	t _{CDC}	45%	55%	45%	55%	45%	55%	45%	55%	Т _С	
3	CLKOUT rise time	t _{CRT}		4		4	_	4		4	ns	
4	CLKOUT fall time	t _{CFT}	_	⁴	_	⁴		⁴	_	4	ns	
5	CLKOUT positive edge to output signal <i>invalid</i> or Hi-Z (hold time) External bus interface CS[0:3] ADDR[8:31] DATA[0:31] BDIP BG ⁵ BR ⁷ BB OE RD_WR TA TEA TS TSIZ[0:1] WE/BE[0:3]	t _{сон}	1.0 ⁶ 1.5		1.0 ⁶ 1.5		1.0 ⁶ 1.5		1.0 ⁶ 1.5		ns	EBTS = 0 EBTS = 1 Hold time selectable via SIU_ECCR [EBTS] bit.
	CLKOUT positive edge to output signal <i>invalid</i> or Hi-Z (hold time) Calibration bus interface CAL_CS[0:3] CAL_ADDR[9:30] CAL_DATA[0:15] CAL_OE CAL_RD_WR CAL_TS CAL_TS CAL_WE/BE[0:1]	t _{ссон}	1.0 ⁶ 1.5	_	1.0 ⁶ 1.5	_	1.0 ⁶ 1.5	_	1.0 ⁶ 1.5	_	ns	EBTS = 0 EBTS = 1 Hold time selectable via SIU_ECCR [EBTS] bit.

Table 22. Bus Operation Timing ¹

Figure 15. External Interrupt Timing

3.13.6 eTPU Timing

Table 24. eTPU Timing ¹

Spec	Characteristic	Symbol	Min.	Мах	Unit
1	eTPU input channel pulse width	t _{ICPW}	4	_	t _{CYC}
2	eTPU output channel pulse width	t _{OCPW}	2 ²		t _{CYC}

¹ eTPU timing specified at: V_{DDEH} = 3.0–5.25 V and T_A = T_L to T_H .

² This specification does not include the rise and fall times. When calculating the minimum eTPU pulse width, include the rise and fall times defined in the slew rate control fields (SRC) of the pad configuration registers (PCR).

Figure 16. eTPU Timing

3.13.7 eMIOS Timing

Spec	Characteristic	Symbol	Min.	Max.	Unit
1	eMIOS input pulse width	t _{MIPW}	4	_	t _{CYC}
2	eMIOS output pulse width	t _{MOPW}	1 ²	_	t _{CYC}

Table 25. eMIOS Timing ¹

¹ eMIOS timing specified at: V_{DDEH} = 3.0–5.25 V and T_A = T_L to T_H .

² This specification does not include the rise and fall times. When calculating the minimum eMIOS pulse width, include the rise and fall times defined in the slew rate control field (SRC) in the pad configuration register (PCR).

Figure 17. eMIOS Timing

3.13.8 DSPI Timing

Snec	Characteristic	Symbol	80 MHz		112	MHz	132	MHz	144	Unit	
Opec	Unaracteristic	Symbol	Min	Max	Min	Max	Min	Max	Min	Мах	onit
1	SCK cycle time ^{3, 4}	t _{SCK}	24.4 ns	2.9 ms	17.5 ns	2.1 ms	14.8 ns	1.8 ms	13.6 ns	1.6 ms	_
2	PCS to SCK delay ⁵	t _{CSC}	23	_	15	—	13	—	12	—	ns
3	After SCK delay ⁶	t _{ASC}	22	_	14	—	12	—	11	—	ns
4	SCK duty cycle	t _{SDC}	(t _{SCK} ÷ 2) - 2 ns	(t _{SCK} ÷ 2) + 2 ns	(t _{SCK} ÷ 2) – 2 ns	(t _{SCK} ÷ 2) + 2 ns	(t _{SCK} ÷ 2) – 2 ns	(t _{SCK} ÷ 2) + 2 ns	(t _{SCK} ÷ 2) – 2 ns	(t _{SCK} ÷ 2) + 2 ns	ns
5	Slave access time (SS active to SOUT driven)	t _A	_	25	_	25	_	25	_	25	ns
6	Slave SOUT disable time (SS inactive to SOUT Hi-Z, or invalid)	t _{DIS}	_	25	_	25	_	25	_	25	ns
7	PCSx to PCSS time	t _{PCSC}	4	—	4	—	4	—	4	—	ns

Table 26. MPC5566 DSPI Timing ^{1, 2}

Figure 18. DSPI Classic SPI Timing—Master, CPHA = 0

3.13.9 eQADC SSI Timing

Spec	Rating	Symbol	Minimum	Typical	Maximum	Unit
2	FCK period (t_{FCK} = 1 ÷ f_{FCK}) ^{1, 2}	t _{FCK}	2	—	17	$t_{\rm SYS_CLK}$
3	Clock (FCK) high time	t _{FCKHT}	t _{SYS_CLK} – 6.5	—	$9\times(t_{SYS_CLK}+6.5)$	ns
4	Clock (FCK) low time	t _{FCKLT}	t _{SYS_CLK} – 6.5	—	$8\times(t_{SYS_CLK}+6.5)$	ns
5	SDS lead / lag time	t _{SDS_LL}	-7.5	—	+7.5	ns
6	SDO lead / lag time	t _{SDO_LL}	-7.5	—	+7.5	ns
7	EQADC data setup time (inputs)	t _{EQ_SU}	22	—	_	ns
8	EQADC data hold time (inputs)	t _{EQ_HO}	1	—	—	ns

Table 27. EQADC SSI Timing Characteristics

¹ \overline{SS} timing specified at V_{DDEH} = 3.0–5.25 V, T_A = T_L to T_H, and CL = 25 pF with SRC = 0b11. Maximum operating frequency varies depending on track delays, master pad delays, and slave pad delays.

 2 FCK duty cycle is not 50% when it is generated through the division of the system clock by an odd number.

Figure 27. EQADC SSI Timing

3.14 Fast Ethernet AC Timing Specifications

Media Independent Interface (MII) Fast Ethernet Controller (FEC) signals use transistor-to-transistor logic (TTL) signal levels compatible with devices operating at 3.3 V. The timing specifications for the MII FEC signals are independent of the system clock frequency (part speed designation).

3.14.1 MII FEC Receive Signal Timing FEC_RXD[3:0], FEC_RX_DV, FEC_RX_ER, and FEC_RX_CLK

The receive functions correctly up to an FEC_RX_CLK maximum frequency of 25 MHz plus one percent. There is no minimum frequency requirement. The processor clock frequency must exceed four times the FEC_RX_CLK frequency.

Table 28 lists MII FEC receive channel timings.

Spec	Characteristic	Min.	Мах	Unit
1	FEC_RXD[3:0], FEC_RX_DV, FEC_RX_ER to FEC_RX_CLK setup	5	_	ns
2	FEC_RX_CLK to FEC_RXD[3:0], FEC_RX_DV, FEC_RX_ER hold	5	-	ns
3	FEC_RX_CLK pulse-width high	35%	65%	FEC_RX_CLK period
4	FEC_RX_CLK pulse-width low	35%	65%	FEC_RX_CLK period

Figure 28 shows MII FEC receive signal timings listed in Table 28.

Figure 28. MII FEC Receive Signal Timing Diagram

Figure 31. MII FEC Serial Management Channel Timing Diagram

4 Mechanicals

4.1 MPC5566 416 PBGA Pinout

Figure 32, Figure 33, and Figure 34 show the pinout for the MPC5566 416 PBGA package. The alternate Fast Ethernet Controller (FEC) signals are multiplexed with the data calibration bus signals.

NOTE

The MPC5500 devices are pin compatible for software portability and use the primary function names to label the pins in the BGA diagram. Although some devices do not support all the primary functions shown in the BGA diagram, the muxed and GPIO signals on those pins remain available. See the signals chapter in the device reference manual for the signal muxing.

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	
Α	VSS	VSTBY	AN37	AN11	VDDA1	AN16	AN1	AN5	VRH	AN23	AN27	AN28	AN35	VSSA0	AN15	ETRIG 1	ETPUB 18	ETPUB 20	ETPUB 24	ETPUB 27	GPIO 205	MDO11	MDO8	VDD	VDD33	VSS	A
в	VDD	VSS	AN36	AN39	AN19	AN20	AN0	AN4	REF BYPC	AN22	AN26	AN31	AN32	VSSA0	AN14	ETRIG 0	ETPUB 21	ETPUB 25	ETPUB 28	ETPUB 31	MDO10	MDO7	MDO4	MDO0	VSS	VDDE7	в
С	VDD33	VDD	VSS	AN8	AN17	VSSA1	AN21	AN3	AN7	VRL	AN25	AN30	AN33	VDDA0	AN13	ETPUB 19	ETPUB 22	ETPUB 26	ETPUB 30	MDO9	MDO6	MDO3	MDO1	VSS	VDDE7	VDD	с
D	ETPUA 30	ETPUA 31	VDD	VSS	AN38	AN9	AN10	AN18	AN2	AN6	AN24	AN29	AN34	VDDEH 9	AN12	ETPUB 16	ETPUB 17	ETPUB 23	ETPUB 29	MDO5	MDO2	VDDEH 8	VSS	VDDE7	TCK	TDI	D
Е	ETPUA 28	ETPUA 29	VDDEH 1	VDD																			VDDE7	TMS	TDO	TEST	Е
F	ETPUA 24	ETPUA 27	ETPUA 26	VDDEH 1																			MSEO0	JCOMP	EVTI	EVTO	F
G	ETPUA 23	ETPUA 22	ETPUA 25	ETPUA 21																			MSEO1	мско	GPIO 204	ETPUB 15	G
н	ETPUA 20	ETPUA 19	ETPUA 18	ETPUA 17																			RDY	GPIO 203	ETPUB 14	ETPUB 13	н
J	ETPUA 16	ETPUA 15	ETPUA 14	ETPUA 13																			VDDEH 6	ETPUB 12	ETPUB 11	ETPUB 9	J
к	ETPUA 12	ETPUA 11	ETPUA 10	ETPUA 9						VSS	VSS	VSS	VSS	VDDE7	VDDE7	VDDE7	VDDE7						ETPUB 10	ETPUB 8	ETPUB 7	ETPUB 5	к
L	ETPUA 8	ETPUA 7	ETPUA 6	ETPUA 5						VSS	VSS	VSS	VSS	VSS	VSS	VSS	VDDE7						ETPUB 6	ETPUB	ETPUB 3	ETPUB 2	L
м	ETPUA 4	ETPUA 3	ETPUA 2	ETPUA 1						VDDE2	VDDE2	VSS	VSS	VSS	VSS	VSS	VDDE7						TCRCLK B	ETPUB 1	ETPUB 0	SINB	м
N	BDIP	TEA	ETPUA 0	TCRCLK						VDDE2	VDDE2	VSS	VSS	VSS	VSS	VSS	VDDE7						SOUTB	PCSB3	PCSB0	PCSB1	N
Ρ	CS3	CS2	CS1	CS0						VDDE2	VDDE2	VSS	VSS	VSS	VSS	VSS	VSS						PCSA3	PCSB4	SCKB	PCSB2	Р
R	WE3	WE2	WE1	WE0						VDDE2	VDDE2	VSS	VSS	VSS	VSS	VSS	VSS						PCSB5	SOUTA	SINA	SCKA	R
т	VDDE2	TSIZ0	RD_WR	VDDE2						VDDE2	VSS	VDDE2	VDDE2	VDDE2	VDDE2	VSS	VSS						PCSA1	PCSA0	PCSA2	VPP	т
U	ADDR	TSIZ1	TA	VDD33						VSS	VDDE2	VDDE2	VDDE2	VDDE2	VDDE2	VSS	VSS						PCSA4	TXDA	PCSA5	VFLASH	U
v	ADDR	ADDR	TS	ADDR																			CNTXC	RXDA	RSTOUT	RST	v
w	ADDR	ADDR	ADDR	ADDR																			RXDB	CNRXC	TXDB	RESET	w
Y	ADDR	ADDR	ADDR	VDDE2					N	ote:	NC	No d	connec	ct. AC2	22 & A	D23 r	eserve	ed					WKP	BOOT CEG1	VRC	VSS	Y
AA	ADDR	ADDR	ADDR	ADDR																			VDDEH	PLL	BOOT	EXTAL	AA
AB	VDDE2	ADDR	ADDR	ADDR																			VDD	VRC	PLL	XTAL	AB
AC	ADDR	ADDR	ADDR	VSS	VDD	DATA	DATA	VDDE2	DATA	DATA	DATA	DATA	VDDE2	DATA	DATA	EMIOS	EMIOS	EMIOS	EMIOS	VDDEH	VDDE5	NC	VSS	VDD	VRC33	VDD	AC
AD	ADDR	ADDR	VSS	VDD	DATA	DATA	DATA	DATA	VDD33	GPIO	DATA	DATA	DATA	DATA	EMIOS	EMIOS	EMIOS	EMIOS	EMIOS	EMIOS	CNTXA	VDDE5	NC	VSS	VDD	VDD33	AD
AE	ADDR	VSS	VDD	DATA	DATA	DATA	DATA	DATA	DATA	DATA	DATA	OE	BR	BG	EMIOS	EMIOS	EMIOS	EMIOS	EMIOS	EMIOS	EMIOS	CNRXA	VDDE5	CLKOUT	VSS	VDD	AF
AF	VSS	VDD	DATA	DATA	VDDF2	DATA	DATA	GPIO	DATA	4 DATA	b VDDE2	DATA	DATA	BB	EMIOS	EMIOS	EMIOS	EMIOS	EMIOS	EMIOS	EMIOS	CNTXB	CNRXB	VDDE5	ENG	VSS	AF
	1	2	16 3	18	5	20 6	7	206 8	1 9	3 10	11	5 12	13	14	0 15	4 16	17	11 18	14 19	18 20	20	22	23	24	25	26	

Figure 32. MPC5566 416 Package

4.2 MPC5566 416-Pin Package Dimensions

The package drawings of the MPC5566 416 pin TEPBGA package are shown in Figure 36.

© FREE	SCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICA	L OUTLINE	PRINT VERSION NO	T TO SCALE
TITLE:	416 I/O, PBGA		DOCUMENT NO): 98ARE10523D	REV: A
	27 X 27 PKG,		CASE NUMBER	₹: 1494–01	13 JUL 2005
	1 MM PITCH (OMPAC)	STANDARD: JE	DEC MS-034 AAL-1	

Mechanicals

4

NOTES:

1. ALL DIMENSIONS IN MILLIMETERS.

2. DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994.

3. MAXIMUM SOLDER BALL DIAMETER MEASURED PARALLEL TO DATUM A.

DATUM A, THE SEATING PLANE, IS DETERMINED BY THE SPHERICAL CROWNS OF THE SOLDER BALLS.

© FREESCALE ALL F	SEMICONDUCTOR, INC. RIGHTS RESERVED.	MECHANICA	L OUTLINE	PRINT VERSION NO	T TO SCALE
TITLE:	416 I/O. PBGA		DOCUMENT NO): 98ARE10523D	REV: A
	27 X 27 PKG,		CASE NUMBER	2: 1494–01	13 JUL 2005
	1 MM PITCH (OMPA	C)	STANDARD: JE	DEC MS-034 AAL-1	

Figure 36. MPC5566 416 TEPBGA Package (continued)

Revision History for the MPC5566 Data Sheet

Table 35. Table and Figure Changes Between Rev. 0.0 and Rev. 1.0 (continued)

Table 15, Flash EEPROM Module Life: Replaced (Full Temperature Range) with (T_A = T_L - T_H) in the table title. Spec 1b, Min. column value changed from 10,000 to 1,000. Table 16, FLASH BIU Settings vs. Frequency of Operations: Added footnote 1 to the end of the table title, The footnote reads: 'Illegal combinations exist. Use entries for the same are now in this table.' Added fourth row '147 MHz' after the '135 MHz' row and before the 'Default setting after reset': Columns DPEFN, IPER, PFL, PL, M, and BFEN are the same as the 135 MHz column. New values for the following columns: APC = 0b011, RWSC = 0b10, WWSC = 0b01. Moved footnote 2: For maximum flash performance, set to 0b1' to the 'DPFEN' column header. Deleted the x-refs in the 'DPFEN' column for the rows. Created a x-ref for footnole 2 and inserted in the 'IPEEN' column header. Deleted the x-refs in the 'IPFEN' column for the rows. Moved footnote 4: For maximum flash performance, set to 0b1' to the 'BFEN' column header. Deleted the x-refs in the 'BFEN' column for the rows. Changed footnote4: 1, 5 or maximum flash performance, set to 0b1' to the 'BFEN' column header. Deleted the x-refs in the 'BFEN' column for the rows. Changed footnote4: 1, 5 and 6 to become footnotes 5, 6, and 7. Added footnote 8. Changed footnote4: 1, 5 and 6 to become footnotes 4: 2% FM. footnote 7: 135 MHz parts allow for 100 MHz system clock + 2% FM. footnote 7: 135 MHz parts allow for 100 MHz system clock + 2% FM. <	Location	Description of Changes
Replaced (Full Temperature Range) with (T _A = T _L – T _H) in the table title. Spec 1b, Min. column value changed from 10,000 to 1,000. Table 16, FLASH BIU Settings vs. Frequency of Operations: 'Added footnote 1 to the end of the table title, The footnote reads: 'Illegal combinations exist. Use entries fit the same row in this table.' Added fourth row '147 MHz' after the '135 MHz' row and before the 'Default setting after reset': Columns DPFEN, IPFEN, PFLIM, and BFEN are the same as the '135 MHz' column. New values for the following columns: APC = 0b011, RWSC = 0b10, WWSC = 0b01. Moved footnote 2: 'For maximum flash performance, set to 0b11' to the 'DPFEN' column header. Deleted the x-refs in the 'DPFEN' column for the rows. Created a x-ref for footnote 2 and inserted in the 'IPFEN' column header. Deleted the x-refs in the 'IPFLIM' column for the rows. Moved footnote 3: 'For maximum flash performance, set to 0b110' to the 'PFLIM' column header. Deleted the x-refs in the 'IPFLIM' column for the rows. Moved footnote 4: 'For maximum flash performance, set to 0b110' to the 'PFLIM' column header. Deleted the x-refs in the 'IPFLIM' column for the rows. Changed footnotes 1, 5, and 6 to become footnotes 5, 6, and 7. Added footnote 8. - footnote 5 and the zapts allow for 100 MHz system clock + 2% FM. - footnote 6 102 MHz parts allow for 103 MHz system clock + 2% FM. - footnote 6 112 MHz parts allow for 103 MHz system clock + 2% FM. - footnote 6 1147 MHz parts allow for 132 MHz system clock + 2% FM. - footnote 6 1147 MHz parts allow for 132 MHz system clock + 2% FM. - footnote 1, deleted 'F _{SYS} = 132 MHz' Footnote 1, deleted 'F _{SYS} = 132 MHz' Footnote 3, changed from 'Ut delay' to The output delay', Changed from 'Ut delay.'' to 'The output delay', Changed from 'Ut delay.'' to 'The output delay to get the output delay with respet th	Table 15, F	lash EEPROM Module Life:
 Table 16, FLASH BIU Settings vs. Frequency of Operations: 'Added footnote 1 to the end of the table title, The footnote reads: 'Illegal combinations exist. Use entries fi the same row in this table.' Added footnot now '147 MHz' after the '135 MHz' row and before the 'Default setting after reset': Columns DPFEN, IPFEN, PFLIM, and BFEN are the same as the 135 MHz column. New values for the following columns: APC = 0b011, RWSC = 0b100, WWSC = 0b01. Moved footnote 2: For maximum flash performance, set to 0b11' to the 'DPFEN' column header. Deleted the x-refs in the 'DPFEN' column for the rows. Created a x-ref for footnote 2 and inserted in the 'IPFEN' column header. Deleted the x-refs in the 'IPFEN' column for the rows. Moved footnote 3: For maximum flash performance, set to 0b11' to the 'BFEN' column header. Deleted the x-refs in the 'IPFEN' column for the rows. Moved footnote 4: for maximum flash performance, set to 0b1' to the 'BFEN' column header. Deleted the x-refs in the 'BFEN' column for the rows. Changed footnote 4: 3. For maximum flash performance, set to 0b1' to the 'BFEN' column header. Deleted the x-refs in the 'BFEN' column for the rows. Changed footnote 5: 1.5, and 6 to become footnotes 5.6, and 7. Added footnote 8. footnote 5: 1.82 MHz parts allow for 132 MHz system clock + 2% frequency modulation (FM). footnote 6: 102 MHz parts allow for 132 MHz system clock + 2% FM. footnote 8: 147 MHz parts allow for 132 MHz system clock + 2% FM. footnote 8: 147 MHz parts allow for 132 MHz system clock + 2% FM. Footnote 9: added to the end of the 1st column for the 147 MHz row that reads: Preliminary setting. Final setting pending characterization. Table 17, Pad AC Specifications and Table 18, Derated Pad AC Specifications: Footnote 3, changed from 'Out delay' to 'The output delay', Changed fr		 Replaced (Full Temperature Range) with (T_A = T_L - T_H) in the table title. Spec 1b, Min. column value changed from 10,000 to 1,000.
 'Added footnote 1 to the end of the table title, The footnote reads: 'Illegal combinations exist. Use entries fi the same row in this table.' Added footnot row '147 MHz' after the '135 MHz' row and before the 'Default setting after reset': Columns DPFEN, IPFEN, PFLIM, and BFEN are the same as the 135 MHz column. New values for the following columns: APC = 0b011, RWSC = 0b100, WWSC = 0b01. Moved footnote 2:' For maximum flash performance, set to 0b11' to the 'DPFEN' column header. Deleted the x-refs in the 'DPFEN' column for the rows. Created a x-ref for footnote 2 and inserted in the 'IPFEN' column header. Deleted the x-refs in the 'IPFEN' column for the rows. Moved footnote 3:' For maximum flash performance, set to 0b11' to the 'BFEN' column header. Deleted the x-refs in the 'IPFEN' column for the rows. Moved footnote 4: for maximum flash performance, set to 0b1' to the 'BFEN' column header. Deleted the x-refs in the 'BFEN' column for the rows. Changed footnotes 1, 5, and 6 to become footnotes 5, 6, and 7. Added footnote 8. footnote 6 100 MHz parts allow for 100 MHz system clock + 2% FM. footnote 6 102 MHz parts allow for 100 MHz system clock + 2% FM. footnote 7 135 MHz parts allow for 132 MHz system clock + 2% FM. footnote 8 147 MHz parts allow for 132 MHz system clock + 2% FM. footnote 8 147 MHz parts allow for 132 MHz system clock + 2% FM. footnote 8 147 MHz parts allow for 14 MHz system clock + 2% FM. footnote 8 147 MHz parts allow for 14 MHz system clock + 2% FM. footnote 8 147 MHz parts allow for 14 MHz system clock + 2% FM. footnote 8 148 from 'table 18, Derated Pad AC Specifications: 	Table 16, F	LASH BIU Settings vs. Frequency of Operations:
 Table 17, Pad AC Specifications and Table 18, Derated Pad AC Specifications: Footnote 1, deleted 'F_{SYS} = 132 MHz.' Footnote 2, changed from 'tested' to '(not tested).' Footnote 3, changed from 'Out delay' to 'The output delay', Changed from ' Add a maximum of one system clock to the output delay to get the output delay with respect the system clock' to 'To calculate the output delay with respect to the system clock, add a maximum of one system clock to the output delay.' Footnote 4: changed 'Delay' to 'The output delay.' Footnote 5: deleted 'before qualification.' Changed from 'This parameter is supplied for reference and is not guaranteed by design and not tested' to 'parameter is supplied for reference and is guaranteed by design and tested.' Table 19, Reset and Configuration Pin Timing:		 'Added footnote 1 to the end of the table title, The footnote reads: 'Illegal combinations exist. Use entries from the same row in this table.' Added fourth row '147 MHz' after the '135 MHz' row and before the 'Default setting after reset': Columns DPFEN, IPFEN, PFLIM, and BFEN are the same as the 135 MHz column. New values for the following columns: APC = 0b011, RWSC = 0b100, WWSC = 0b01. Moved footnote 2:' For maximum flash performance, set to 0b11' to the 'DPFEN' column header. Deleted the x-refs in the 'DPFEN' column for the rows. Created a x-ref for footnote 2 and inserted in the 'IPFEN' column header. Deleted the x-refs in the 'IPFEN' column for the rows. Moved footnote 3:' For maximum flash performance, set to 0b110' to the 'PFLIM' column header. Deleted the x-refs in the 'PFLIM' column for the rows. Moved footnote 4:' For maximum flash performance, set to 0b11' to the 'BFEN' column header. Deleted the x-refs in the 'BFEN' column for the rows. Moved footnote 4:' For maximum flash performance, set to 0b1' to the 'BFEN' column header. Deleted the x-refs in the 'BFEN' column for the rows. Changed footnotes 1, 5, and 6 to become footnotes 5, 6, and 7. Added footnote 8. footnote 5 82 MHz parts allow for 80 MHz system clock + 2% frequency modulation (FM). footnote 6 102 MHz parts allow for 100 MHz system clock + 2% FM. footnote 7 135 MHz parts allow for 132 MHz system clock + 2% FM. footnote 8 147 MHz parts allow for 144 MHz system clock + 2% FM. footnote 9: added to the end of the 1st column for the 147 MHz row that reads: Preliminary setting. Final setting pending characterization.
 Footnote 1, deleted 'F_{SYS} = 132 MHz.' Footnote 2, changed from 'tested' to '(not tested).' Footnote 3, changed from 'Out delay' to 'The output delay', Changed from ' Add a maximum of one system clock to the output delay to get the output delay with respet the system clock' to 'To calculate the output delay with respect to the system clock, add a maximum of one system clock to the output delay.' Footnote 4: changed 'Delay' to 'The output delay.' Footnote 5: deleted 'before qualification.' Changed from 'This parameter is supplied for reference and is not guaranteed by design and not tested' to 'parameter is supplied for reference and is guaranteed by design and tested.' Table 19, Reset and Configuration Pin Timing:	Table 17, F	ad AC Specifications and Table 18, Derated Pad AC Specifications:
Table 19, Reset and Configuration Pin Timing: Exectants 1, deleted 'E		 Footnote 1, deleted 'F_{SYS} = 132 MHz.' Footnote 2, changed from 'tested' to '(not tested).' Footnote 3, changed from 'Out delay' to 'The output delay', Changed from ' Add a maximum of one system clock to the output delay to get the output delay with respect to the system clock to 'To calculate the output delay with respect to the system clock, add a maximum of one system clock to the output delay.' Footnote 4: changed 'Delay' to 'The output delay.' Footnote 5: deleted 'before qualification.' Changed from 'This parameter is supplied for reference and is not guaranteed by design and not tested' to 'This parameter is supplied for reference and is guaranteed.'
Example 1 deleted (E $= 122$ MHz ³	Table 19, F	Reset and Configuration Pin Timing:
Fourious 1, deleted F_{SYS} = 152 MHz.		Footnote 1, deleted 'F _{SYS} = 132 MHz.'
Table 20, JTAG Pin AC Electrical Characteristics:	Table 20, J	TAG Pin AC Electrical Characteristics:
 Footnote 1, deleted: ', and CL = 30 pF with DSC = 0b10, SRC = 0b11' Footnote 1, changed 'functional' to 'Nexus.' 		 Footnote 1, deleted: ', and CL = 30 pF with DSC = 0b10, SRC = 0b11' Footnote 1, changed 'functional' to 'Nexus.'

Changed Spec 12, TCK Low to TDO Data Valid: Changed 'VDDE = 3.0 to 3.6 volts' maximum value in column 4 from 9 to 10. Now reads ' V_{DDE} = 3.0–3.6 V' with a max value of 10.