

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Obsolete
Core Processor	H8/300H
Core Size	16-Bit
Speed	25MHz
Connectivity	SCI, SmartCard
Peripherals	DMA, PWM, WDT
Number of I/O	70
Program Memory Size	384KB (384K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K × 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	A/D 8x10b; D/A 2x8b
Oscillator Type	Internal
Operating Temperature	-20°C ~ 75°C (TA)
Mounting Type	Surface Mount
Package / Case	100-BFQFP
Supplier Device Package	100-QFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/df3068fbl25v

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

		Pin No.	_	
Туре	Symbol	FP-100B TFP-100B	I/O	Name and Function
I/O ports	P67 to P60	61, 72 to 69, 60 to 58	Input/ output	Port 6: Eight input/output pins. The direction of each pin can be selected in the port 6 data direction register (P6DDR).
	P7 ₇ to P7 ₀	85 to 78	Input	Port 7: Eight input pins
	P8 ₄ to P8 ₀	91 to 87	Input/ output	Port 8: Five input/output pins. The direction of each pin can be selected in the port 8 data direction register (P8DDR).
	P9 ₅ to P9 ₀	17 to 12	Input/ output	Port 9: Six input/output pins. The direction of each pin can be selected in the port 9 data direction register (P9DDR).
	PA ₇ to PA ₀	100 to 93	Input/ output	Port A: Eight input/output pins. The direction of each pin can be selected in the port A data direction register (PADDR).
	PB ₇ to PB ₀	9 to 2	Input/ output	Port B: Eight input/output pins. The direction of each pin can be selected in the port B data direction register (PBDDR).

Section 5 Interrupt Controller

		Vector	Vector A			
Interrupt Source	Origin	Number	Advanced Mode	Normal Mode	IPR	Priority
IMIA2 (compare match/ input capture A2)	16-bit timer channel 2	32	H'0080 to H'0083	H'0040 to H'0041	IPRA0	High
IMIB2 (compare match/ input capture B2)		33	H'0084 to H'0087	H'0042 to H'0043		
OVI2 (overflow 2)		34	H'0088 to H'008B	H'0044 to H'0045	_	
Reserved	_	35	H'008C to H'008F	H'0046 to H'0047		
CMIA0 (compare match A0)	8-bit timer channel 0/1	36	H'0090 to H'0093	H'0048 to H'0049	IPRB7	
CMIB0 (compare match B0)		37	H'0094 to H'0097	H'004A to H'004B		
CMIA1/CMIB1 (compare match A1/B1)		38	H'0098 to H'009B	H'004C to H'004D		
TOVI0/TOVI1 (overflow 0/1)		39	H'009C to H'009F	H'004E to H'004F		_
CMIA2 (compare match A2)	8-bit timer channel 2/3	40	H'00A0 to H'00A3	H'0050 to H'0051	IPRB6	
CMIB2 (compare match B2)		41	H'00A4 to H'00A7	H'0052 to H'0053		
CMIA3/CMIB3 (compare match A3/B3)		42	H'00A8 to H'00AB	H'0054 to H'0055		
TOVI2/TOVI3 (overflow 2/3)		43	H'00AC to H'00AF	H'0056 to H'0057		_
DEND0A	DMAC	44			IPRB5	
DEND0B DEND1A		45 46		H'005A to H'005B H'005C to H'005D		
DEND1B		40 47	H'00BC to H'00BF			
Reserved	_	48	H'00C0 to H'00C3	H'0060 to H'0061	_	-
		49	H'00C4 to H'00C7			
		50	H'00C8 to H'00CB			Y
		51	H'00CC to H'00CF	H'0066 to H'0067		Low

Note: * Lower 16 bits of the address.

Rev. 3.00 Sep 14, 2005 page 102 of 910 REJ09B0258-0300

6.2.2 Access State Control Register (ASTCR)

ASTCR is an 8-bit readable/writable register that selects whether each area is accessed in two states or three states.

Bit	7	6	5	4	3	2	1	0
	AST7	AST6	AST5	AST4	AST3	AST2	AST1	AST0
Initial value	1	1	1	1	1	1	1	1
Read/Write	R/W							

Bits selecting number of states for access to each area

ASTCR is initialized to H'FF by a reset and in hardware standby mode. It is not initialized in software standby mode.

Bits 7 to 0—Area 7 to 0 Access State Control (AST7 to AST0): These bits select whether the corresponding area is accessed in two or three states.

Bits 7 to 0 AST7 to AST0	Description	
0	Areas 7 to 0 are accessed in two states	
1	Areas 7 to 0 are accessed in three states	(Initial value)

ASTCR specifies the number of states in which external areas are accessed. On-chip memory and registers are accessed in a fixed number of states that does not depend on ASTCR settings. These settings are therefore meaningless in the single-chip modes (modes 6 and 7).

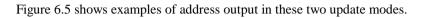
When the corresponding area is designated as DRAM space by bits DRAS2 to DRAS0 in DRAM control register A (DRCRA), the number of access states does not depend on the AST bit setting. When an AST bit is cleared to 0, programmable wait insertion is not performed.

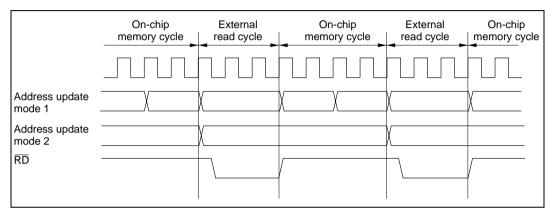
ABWCR	ASTCR	WCRH/\	CRH/WCRL Bus Specifications (Basic Bus Interface)			Bus Specifications (Basic Bus Interface)			
ABWn	ASTn	Wn1	Wn0	Bus Width	Access States	Program Wait States			
0	0	_	_	16	2	0			
	1	0	0		3	0			
			1			1			
		1	0			2			
			1			3			
1	0	_	_	8	2	0			
	1	0	0		3	0			
			1			1			
		1	0			2			
			1			3			

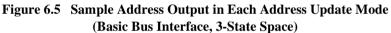
Table 6.3	Bus Specifications for Each Area (Basic Bus Interface)	
-----------	--	--

Note: n = 7 to 0

6.3.3 Memory Interfaces


The H8/3068F memory interfaces comprise a basic bus interface that allows direct connection of ROM, SRAM, and so on; a DRAM interface that allows direct connection of DRAM; and a burst ROM interface that allows direct connection of burst ROM. The interface can be selected independently for each area.


An area for which the basic bus interface is designated functions as normal space, an area for which the DRAM interface is designated functions as DRAM space, and area 0 for which the burst ROM interface is designated functions as burst ROM space.



6.3.5 Address Output Method

The H8/3068F provides a choice of two address update methods: either the same method as in the previous H8/300H Series (address update mode 1), or a method in which address update is restricted to external space accesses or self-refresh cycles (address update mode 2).

Address Update Mode 1: Address update mode 1 is compatible with the previous H8/300H Series. Addresses are always updated between bus cycles.

Address Update Mode 2: In address update mode 2, address updating is performed only in external space accesses or self-refresh cycles. In this mode, the address can be retained between an external space read cycle and an instruction fetch cycle (on-chip memory) by placing the program in on-chip memory. Address update mode 2 is therefore useful when connecting a device that requires address hold time with respect to the rise of the \overline{RD} strobe.

Switching between address update modes 1 and 2 is performed by means of the ADRCTL bit in ADRCR. The initial value of ADRCR is the address update mode 1 setting, providing compatibility with the previous H8/300H Series.

8.2 Port 1

8.2.1 Overview

Port 1 is an 8-bit input/output port also used for address output, with the pin configuration shown in figure 8.1. The pin functions differ between the expanded modes with on-chip ROM disabled, expanded modes with on-chip ROM enabled, and single-chip mode. In modes 1 to 4 (expanded modes with on-chip ROM disabled), they are address bus output pins (A_7 to A_0).

In modes 5 (expanded modes with on-chip ROM enabled), settings in the port 1 data direction register (P1DDR) can designate pins for address bus output (A_7 to A_0) or generic input. In mode 6 and 7 (single-chip mode), port 1 is a generic input/output port.

When DRAM is connected to area 2, 3, 4, 5, A_7 to A_0 output row and column addresses in read and write cycles. For details see section 6.5, DRAM Interface.

Pins in port 1 can drive one TTL load and a 90-pF capacitive load. They can also drive an LED or a darlington transistor pair.

	Port 1 pins	Modes 1 to 4	Modes 5	Mode 6 and 7
		A ₇ (output) A ₆ (output)	P1 ₇ (input)/A ₇ (output) P1 ₆ (input)/A ₆ (output)	P1 ₇ (input/output) P1 ₆ (input/output)
Derit 4	← P1 ₅ /A ₅	A ₅ (output)	P1 ₅ (input)/A ₅ (output)	P1 ₅ (input/output)
	► P1 ₄ /A ₄	A ₄ (output)	P1 ₄ (input)/A ₄ (output)	P1 ₄ (input/output)
Port 1	► P1 ₃ /A ₃	A ₃ (output)	P1 ₃ (input)/A ₃ (output)	P1 ₃ (input/output)
	► P1 ₂ /A ₂	A ₂ (output)	P1 ₂ (input)/A ₂ (output)	P1 ₂ (input/output)
	► P1 ₁ /A ₁	A ₁ (output)	P1 ₁ (input)/A ₁ (output)	P1 ₁ (input/output)
	← P1 ₀ /A ₀	A ₀ (output)	P1 ₀ (input)/A ₀ (output)	P1 ₀ (input/output)

9.5.3 Interrupt Sources

Each 16-bit timer channel can generate a compare match/input capture A interrupt, a compare match/input capture B interrupt, and an overflow interrupt. In total there are nine interrupt sources of three kinds, all independently vectored. An interrupt is requested when the interrupt request flag are set to 1.

The priority order of the channels can be modified in interrupt priority registers A (IPRA). For details see section 5, Interrupt Controller.

Table 9.6 lists the interrupt sources.

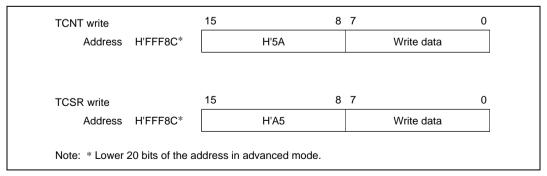
Table 9.6	16-bit timer Interrupt Sources
-----------	---------------------------------------

Channel	Interrupt Source	Description	Priority*
0	IMIA0 IMIB0 OVI0	Compare match/input capture A0 Compare match/input capture B0 Overflow 0	High
1	IMIA1 IMIB1 OVI1	Compare match/input capture A1 Compare match/input capture B1 Overflow 1	
2	IMIA2 IMIB2 OVI2	Compare match/input capture A2 Compare match/input capture B2 Overflow 2	↓ Low

Note: * The priority immediately after a reset is indicated. Inter-channel priorities can be changed by settings in IPRA.

Bit 7—Watchdog Timer Reset (WRST): During watchdog timer operation, this bit indicates that TCNT has overflowed and generated a reset signal. This reset signal resets the entire H8/3068F chip internally.

Bit 7 WRST	Description	
0	[Clearing condition] Reset signal at RES pin. Read WRST when WRST =1, then write 0 in WRST.	(Initial value)
1	[Setting condition] Set when TCNT overflow generates a reset signal during watchdog timer o	peration


Bit 6—Reserved

Bits 5 to 0—Reserved: These bits cannot be modified and are always read as 1.

12.2.4 Notes on Register Access

The watchdog timer's TCNT, TCSR, and RSTCSR registers differ from other registers in being more difficult to write. The procedures for writing and reading these registers are given below.

Writing to TCNT and TCSR: These registers must be written by a word transfer instruction. They cannot be written by byte instructions. Figure 12.2 shows the format of data written to TCNT and TCSR. TCNT and TCSR both have the same write address. The write data must be contained in the lower byte of the written word. The upper byte must contain H'5A (password for TCNT) or H'A5 (password for TCSR). This transfers the write data from the lower byte to TCNT or TCSR.

Figure 12.2 Format of Data Written to TCNT and TCSR

Synchronous mode

Serial data communication is synchronized with a clock signal. The SCI can communicate with other chips having a synchronous communication function.

There is a single serial data communication format.

- Data length: 8 bits
- Receive error detection: overrun errors
- Full-duplex communication

The transmitting and receiving sections are independent, so the SCI can transmit and receive simultaneously. The transmitting and receiving sections are both double-buffered, so serial data can be transmitted and received continuously.

- The following settings can be made for the serial data to be transferred:
 - LSB-first or MSB-first transfer
 - Inversion of data logic level
- Built-in baud rate generator with selectable bit rates
- Selectable transmit/receive clock sources: internal clock from baud rate generator, or external clock from the SCK pin
- Four types of interrupts

Transmit-data-empty, transmit-end, receive-data-full, and receive-error interrupts are requested independently. The transmit-data-empty and receive-data-full interrupts from SCI0 can activate the DMA controller (DMAC) to transfer data.

Features of the smart card interface are listed below.

- Asynchronous communication
 - Data length: 8 bits
 - Parity bits generated and checked
 - Error signal output in receive mode (parity error)
 - Error signal detect and automatic data retransmit in transmit mode
 - Supports both direct convention and inverse convention
- Built-in baud rate generator with selectable bit rates
- Three types of interrupts

Transmit-data-empty, receive-data-full, and transmit/receive-error interrupts are requested independently. The transmit-data-empty and receive-data-full interrupts can activate the DMA controller (DMAC) to transfer data.

Figure 13.7 Sample Flowchart for Receiving Serial Data (2)

• Transmitting Serial Data (Synchronous Mode): Figure 13.16 shows a sample flowchart for transmitting serial data and indicates the procedure to follow.

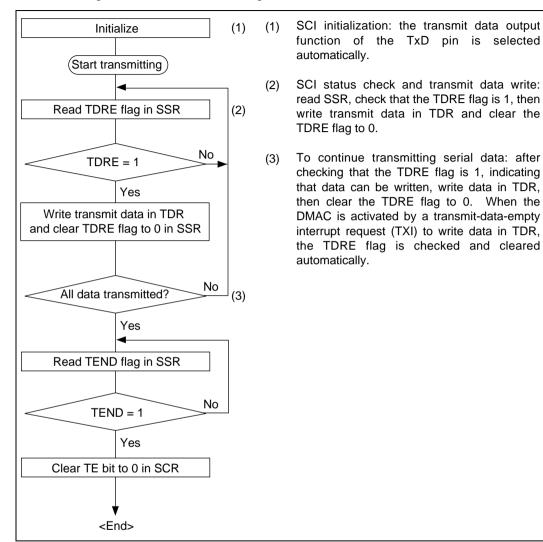
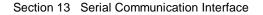



Figure 13.16 Sample Flowchart for Serial Transmitting

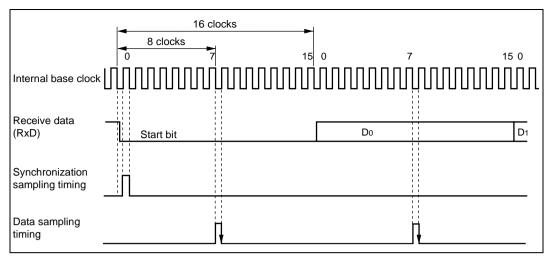


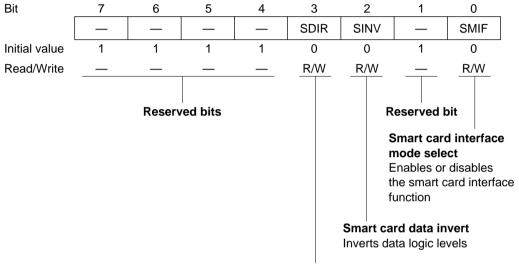
Figure 13.21 Receive Data Sampling Timing in Asynchronous Mode

The receive margin in asynchronous mode can therefore be expressed as shown in equation (1).

$$M = \left| (0.5 - \frac{1}{2N}) - (L - 0.5) F - \frac{|D - 0.5|}{N} (1 + F) \right| \times 100\%$$
.....(1)

- M: Receive margin (%)
- N: Ratio of clock frequency to bit rate (N = 16)
- D: Clock duty cycle (L = 0 to 1.0)
- L: Frame length (L = 9 to 12)
- F: Absolute deviation of clock frequency

From equation (1), if F = 0 and D = 0.5, the receive margin is 46.875%, as given by equation (2).


This is a theoretical value. A reasonable margin to allow in system designs is 20% to 30%.

14.2 Register Descriptions

This section describes the new or modified registers and bit functions in the smart card interface.

14.2.1 Smart Card Mode Register (SCMR)

SCMR is an 8-bit readable/writable register that selects smart card interface functions.

Smart card data transfer direction Selects the serial/parallel conversion format

SCMR is initialized to H'F2 by a reset and in standby mode.

Bits 7 to 4—Reserved: Read-only bits, always read as 1.

Bit 3—Smart Card Data Transfer Direction (SDIR): Selects the serial/parallel conversion format.*¹

Bit 3 SDIR	Description	
0	TDR contents are transmitted LSB-first	(Initial value)
	Receive data is stored LSB-first in RDR	
1	TDR contents are transmitted MSB-first	
	Receive data is stored MSB-first in RDR	

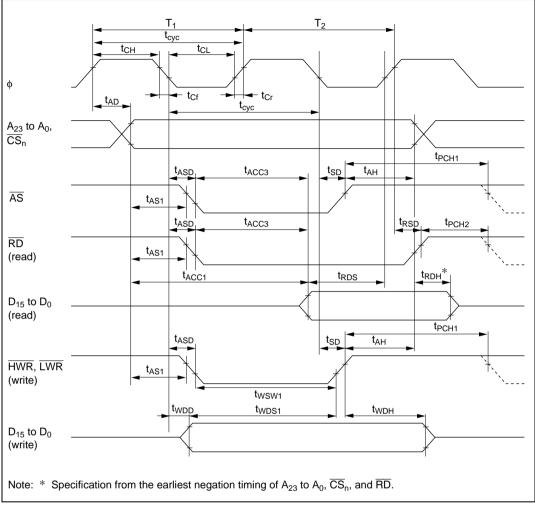
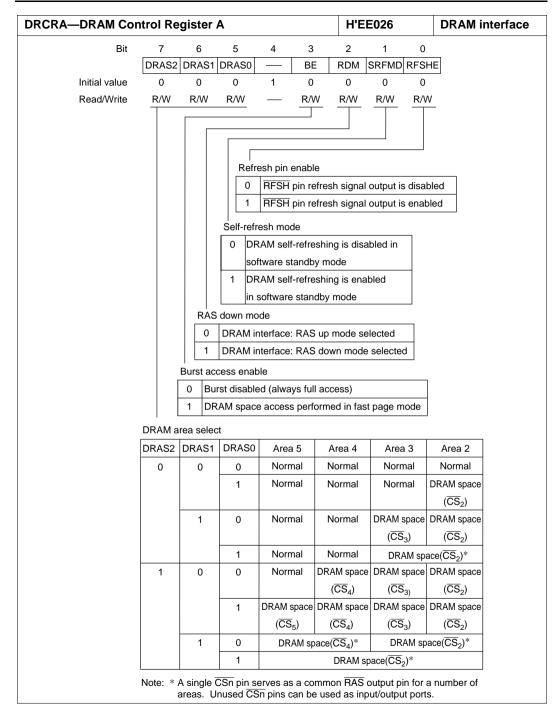
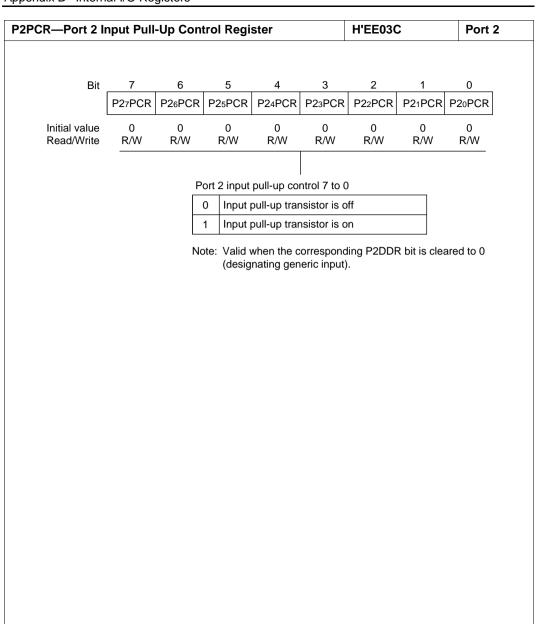




Figure 21.8 Basic Bus Cycle: Two-State Access

ISRA—Timer Int	errup	t Sta	tus Register A	H'FFF64	16-bit timer (all channels)	
	Bit: Initial va Read/W		— IMIEA2 IMIEA1 IMI 1 0 0	4 3 2 1 EA0 — IMFA2 IMF 0 1 0 0 W — <u>R/(W)*</u> <u>R/(</u>	A1 IMFA0 0	
			DMAC activated by II [Setting conditions] TCNT0=GRA0 when	/IFA0=1, then write 0 in IM VIA0 interrupt. GRA0 functions as an ou	Itput compare register.	
	1 TCNT0 value is transferred to GRA0 by an input capture signal when GRA0 functions as an input capture register. Input capture/compare match flag A1					
	[Clearing conditions] (Initial value) 0 Read IMFA1 when IMFA1=1, then write 0 in IMFA1 DMAC activated by IMIA1 interrupt.					
		1	[Setting conditions] TCNT1=GRA1 when GRA TCNT1 value is transferre functions as an input capt	d to GRA1 by an input ca		
	Input capture/compare match flag A2 [Clearing conditions] (Initial value) 0 Read IMFA2 when IMFA2=1, then write 0 in IMFA2 DMAC activated by IMIA2 interrupt.					
	1 [Setting conditions] TCNT2=GRA2 when GRA2 functions as an output compare register. 1 TCNT2 value is transferred to GRA2 by an input capture signal when GRA2 functions as an input capture register.					
	0 IMIA 1 IMIA capture/co	∖0 inter ∖0 inter ompare	npare match interrupt enable rrupt requested by IMFA0 fla rrupt requested by IMFA0 is e match interrupt enable A1 requested by IMFA1 flag is	ag is disabled enabled	(Initial value)	
Input captur 0 IMIA:	IMIA1 int re/compar 2 interrup	terrupt re mat ot requ	requested by IMFA1 is enal ch interrupt enable A2 ested by IMFA2 flag is disab ested by IMFA2 is enabled	bled		
			ested by INIFA2 is enabled]	

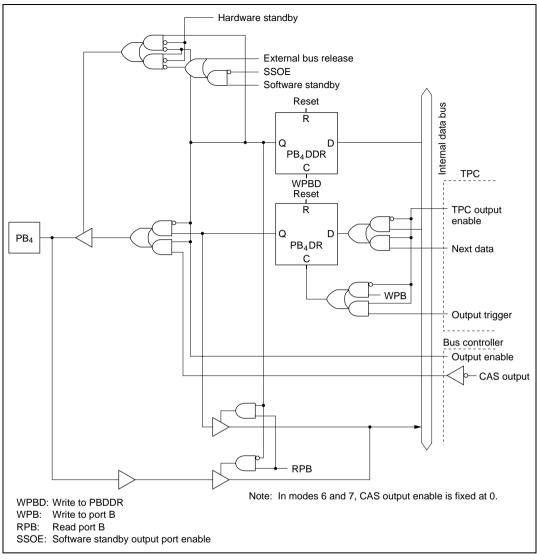


Figure C.11 (e) Port B Block Diagram (Pin PB₄)

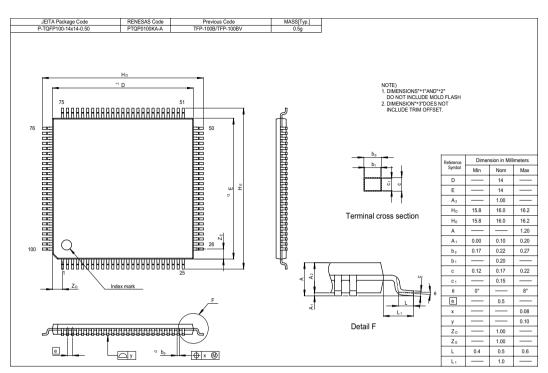


Figure G.2 Package Dimensions (TFP-100B)

