

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Not For New Designs
Core Processor	8051
Core Size	8-Bit
Speed	25MHz
Connectivity	SMBus (2-Wire/I ² C), SPI, UART/USART
Peripherals	POR, PWM, Temp Sensor, WDT
Number of I/O	25
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1.25K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 3.6V
Data Converters	A/D 17x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VFQFN Exposed Pad
Supplier Device Package	28-QFN (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/c8051f311-gmr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

NOTES:

15.UART0
Table 15.1. Timer Settings for Standard Baud Rates
Using the Internal Oscillator
Table 15.2. Timer Settings for Standard Baud Rates
Using an External 25 MHz Oscillator 170
Table 15.3. Timer Settings for Standard Baud Rates
Using an External 22.1184 MHz Oscillator
Table 15.4. Timer Settings for Standard Baud Rates
Using an External 18.432 MHz Oscillator
Table 15.5. Timer Settings for Standard Baud Rates
Using an External 11.0592 MHz Oscillator 172
Table 15.6. Timer Settings for Standard Baud Rates
Using an External 3.6864 MHz Oscillator 172
16. Enhanced Serial Peripheral Interface (SPI0)
Table 16.1. SPI Slave Timing Parameters 185
17. Timers
18. Programmable Counter Array
Table 18.1. PCA Timebase Input Options 204
Table 18.2. PCA0CPM Register Settings for PCA Capture/Compare Modules 205
Table 18.3. Watchdog Timer Timeout Intervals 214
19. Revision Specific Behavior
20. C2 Interface

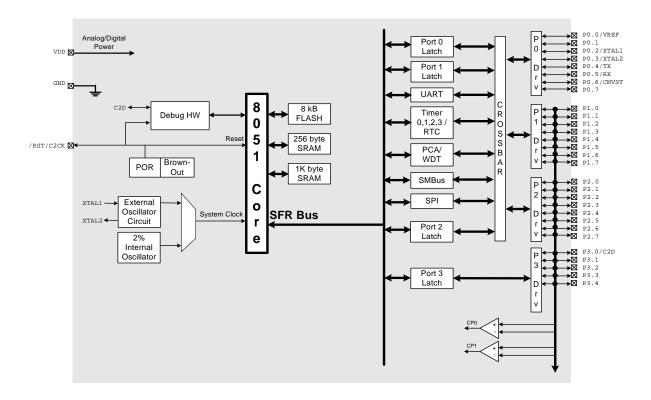


Figure 1.5. C8051F314 Block Diagram

Inputs are measured from '0' to VREF * 1023/1024. Example codes are shown below for both right-justified and left-justified data. Unused bits in the ADC0H and ADC0L registers are set to '0'.

Input Voltage	Right-Justified ADC0H:ADC0L (AD0LJST = 0)	Left-Justified ADC0H:ADC0L (AD0LJST = 1)
VREF x 1023/1024	0x03FF	0xFFC0
VREF x 512/1024	0x0200	0x8000
VREF x 256/1024	0x0100	0x4000
0	0x0000	0x0000

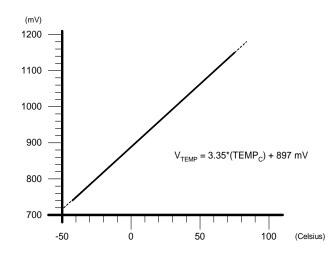
When in Differential Mode, conversion codes are represented as 10-bit signed 2's complement numbers. Inputs are measured from -VREF to VREF * 511/512. Example codes are shown below for both right-justified and left-justified data. For right-justified data, the unused MSBs of ADC0H are a sign-extension of the data word. For left-justified data, the unused LSBs in the ADC0L register are set to '0'.

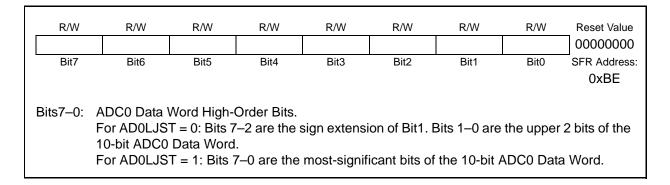
Input Voltage	Right-Justified ADC0H:ADC0L (AD0LJST = 0)	Left-Justified ADC0H:ADC0L (AD0LJST = 1)
VREF x 511/512	0x01FF	0x7FC0
VREF x 256/512	0x0100	0x4000
0	0x0000	0x0000
–VREF x 256/512	0xFF00	0xC000
–VREF	0xFE00	0x8000

Important Note About ADC0 Input Configuration: Port pins selected as ADC0 inputs should be configured as analog inputs, and should be skipped by the Digital Crossbar. To configure a Port pin for analog input, set to '0' the corresponding bit in register PnMDIN (for n = 0,1,2,3). To force the Crossbar to skip a Port pin, set to '1' the corresponding bit in register PnSKIP (for n = 0,1,2). See **Section "13. Port Input/Output" on page 129** for more Port I/O configuration details.

5.2. Temperature Sensor

The typical temperature sensor transfer function is shown in Figure 5.2. The output voltage (V_{TEMP}) is the positive ADC input when the temperature sensor is selected by bits AMX0P4-0 in register AMX0P.




Figure 5.2. Typical Temperature Sensor Transfer Function

SFR Definition 5.3. ADC0CF: ADC0 Configuration	า
--	---

R/W	R/W 4 AD0SC3	R/W AD0SC2	R/W AD0SC1	R/W AD0SC0	R/W AD0LJST	R/W -	R/W	Reset Value
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address: 0xBC
Bits7–3:	AD0SC4–0: SAR Conver <i>AD0SC</i> refer ments are gi <i>AD0SC</i> =	rsion clock i rs to the 5-b ven in Table	s derived fr bit value hel e 5.1.	om system	clock by the	•		
Bit2: Bits1–0:	AD0LJST: A 0: Data in A 1: Data in A UNUSED. R	DC0H:ADC0 DC0H:ADC0	OL registers OL registers	are right-ju are left-jus				

SFR Definition 5.4. ADC0H: ADC0 Data Word MSB

SFR Definition 5.5. ADC0L: ADC0 Data Word LSB

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:
								0xBD
	ADC0 Data V For AD0LJST For AD0LJST read '0'.	Γ = 0: Bits	7–0 are the) will always

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
				REFSL	TEMPE	BIASE		00000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:
								0xD1
Bits7–4: Bit3:	UNUSED. R REFSL: Volt This bit selec	age Refere cts the sour	nce Select. ce for the ir	nternal volta	ge referenc	æ.		
	0: VREF inp 1: V _{DD} used	•	•	reference.				
Bit2:	TEMPE: Ten 0: Internal Te 1: Internal Te	emperature	Sensor off.					
Bit1:	BIASE: Inter 0: Internal B 1: Internal B	ias Generat	or off.	rator Enable	Bit. (Must I	be '1' if usin	g ADC).	
Bit0:	UNUSED. R	ead = 0b. V	Vrite = don'	t care.				

Table 6.1. External Voltage Reference Circuit Electrical Characteristics

 V_{DD} = 3.0 V; -40 to +85 °C unless otherwise specified

Parameter	Conditions	Min	Тур	Max	Units
Input Voltage Range		0		V _{DD}	V
Input Current	Sample Rate = 200 ksps; VREF = 3.0 V		12		μA

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
-	-	CP0RIE	CP0FIE	-	-	CP0MD1	CP0MD0	0000001
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Addres
								0x9D
3its7–6:	UNUSED. F	Read = $00b$.	Write = dor	i't care.				
Bit5:	CP0RIE: Co	omparator R	ising-Edge	Interrupt En	able.			
	0: Compara							
	1: Compara	•	• •					
Bit4:	CP0FIE: Co	•	• •		able.			
	0: Compara	•						
	1: Compara	•	•					
Bits1–0:	1: Compara CP0MD1–C	tor falling-ed	dge interrup	t enabled.	t			
Bits1–0:	CP0MD1-C	tor falling-eo P0MD0: Co	dge interrup mparator0 l	t enabled. Mode Selec				
Bits1–0:		tor falling-eo P0MD0: Co	dge interrup mparator0 l	t enabled. Mode Selec				
Bits1–0:	CP0MD1-C	tor falling-eo P0MD0: Co	dge interrup mparator0 l	t enabled. Mode Selec e for Compa		ne (TYP)	٦	
Bits1–0:	CP0MD1–C These bits s	tor falling-ed POMD0: Co select the re	dge interrup omparator0 l sponse time	t enabled. Mode Selec ofor Compa CP0 Res	rator0.	. ,	-	
Bits1–0:	CP0MD1–C These bits s	tor falling-ed POMD0: Co select the re CP0MD1	dge interrup omparator0 l sponse time CP0MD0	t enabled. Mode Selec ofor Compa CP0 Res	rator0. sponse Tir	. ,]	
Bits1–0:	CP0MD1–C These bits s Mode	tor falling-ed POMD0: Co select the re CPOMD1 0	dge interrup omparator0 l sponse time CP0MD0 0	t enabled. Mode Selec ofor Compa CP0 Res	rator0. sponse Tir	. ,		

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value				
-	-	CP1RIE	CP1FIE	-	-	CP1MD1	CP1MD0	00000010				
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:				
						0x9C						
Bits7–6: Bit5: Bit4: Bits1–0:	0: Comparator rising-edge interrupt disabled 1: Comparator rising-edge interrupt enabled. CP1FIE: Comparator Falling-Edge Interrupt Enable. 0: Comparator falling-edge interrupt disabled. 1: Comparator falling-edge interrupt enabled.											
	Mode	CP1MD1	CP1MD0	CP1 Re	sponse Til	ne (TYP)						
	0	0	0		st Respons	<u>, ,</u>						
	2	1	0		—		1					
	3	1	1	Lowest	Power Con	sumption	7					

CIP-51 Instruction Set Summary, which includes the mnemonic, number of bytes, and number of clock cycles for each instruction.

8.1.2. MOVX Instruction and Program Memory

The MOVX instruction is typically used to access external data memory (Note: the C8051F31x does not support external data or program memory). In the CIP-51, the MOVX write instruction is used to accesses external RAM and the on-chip program memory space implemented as re-programmable Flash memory. The Flash access feature provides a mechanism for the CIP-51 to update program code and use the program memory space for non-volatile data storage. Refer to **Section "10. Flash Memory" on page 111** for further details.

Mnemonic	Description	Bytes	Clock Cycles				
	Arithmetic Operations	•					
ADD A, Rn	Add register to A	1	1				
ADD A, direct	Add direct byte to A	2	2				
ADD A, @Ri	1	2					
ADD A, #data							
ADDC A, Rn	Add register to A with carry	1	1				
ADDC A, direct	Add direct byte to A with carry	2	2				
ADDC A, @Ri	Add indirect RAM to A with carry	1	2				
ADDC A, #data	Add immediate to A with carry	2	2				
SUBB A, Rn	Subtract register from A with borrow	1	1				
SUBB A, direct	Subtract direct byte from A with borrow	2	2				
SUBB A, @Ri	Subtract indirect RAM from A with borrow	1	2				
SUBB A, #data	Subtract immediate from A with borrow	2	2				
INC A	Increment A	1	1				
INC Rn	Increment register	1	1				
INC direct	Increment direct byte	2	2				
INC @Ri	Increment indirect RAM	1	2				
DEC A	Decrement A	1	1				
DEC Rn	Decrement register	1	1				
DEC direct	Decrement direct byte	2	2				
DEC @Ri	Decrement indirect RAM	1	2				
INC DPTR	Increment Data Pointer	1	1				
MUL AB	Multiply A and B	1	4				
DIV AB	Divide A by B	1	8				
DA A	Decimal adjust A	1	1				
	Logical Operations						
ANL A, Rn	AND Register to A	1	1				
ANL A, direct	AND direct byte to A	2	2				
ANL A, @Ri	AND indirect RAM to A	1	2				
ANL A, #data	AND immediate to A	2	2				
ANL direct, A	AND A to direct byte	2	2				
ANL direct, #data	AND immediate to direct byte	3	3				
ORL A, Rn	OR Register to A	1	1				

Table 8.1. CIP-51 Instruction Set Summary

instruction, a new interrupt request will be generated immediately and the CPU will re-enter the ISR after the completion of the next instruction.

8.3.1. MCU Interrupt Sources and Vectors

The MCUs support 14 interrupt sources. Software can simulate an interrupt by setting any interrupt-pending flag to logic 1. If interrupts are enabled for the flag, an interrupt request will be generated and the CPU will vector to the ISR address associated with the interrupt-pending flag. MCU interrupt sources, associated vector addresses, priority order and control bits are summarized in Table 8.4 on page 96. Refer to the datasheet section associated with a particular on-chip peripheral for information regarding valid interrupt conditions for the peripheral and the behavior of its interrupt-pending flag(s).

12. Oscillators

C8051F31x devices include a programmable internal oscillator and an external oscillator drive circuit. The internal oscillator can be enabled/disabled and calibrated using the OSCICN and OSCICL registers, as shown in Figure 12.1. The system clock can be sourced by the external oscillator circuit, the internal oscillator, or a scaled version of the internal oscillator. The internal oscillator's electrical specifications are given in Table 12.1 on page 123.

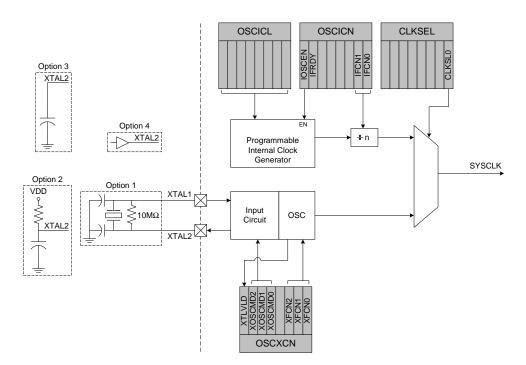


Figure 12.1. Oscillator Diagram

12.1. Programmable Internal Oscillator

All C8051F31x devices include a programmable internal oscillator that defaults as the system clock after a system reset. The internal oscillator period can be programmed via the OSCICL register as defined by SFR Definition 12.1 OSCICL is factor calibrated to obtain a 24.5 MHz frequency.

Electrical specifications for the precision internal oscillator are given in Table 12.1 on page 123. Note that the system clock may be derived from the programmed internal oscillator divided by 1, 2, 4, or 8, as defined by the IFCN bits in register OSCICN. The divide value defaults to 8 following a reset.

12.2. External Oscillator Drive Circuit

The external oscillator circuit may drive an external crystal, ceramic resonator, capacitor, or RC network. A CMOS clock may also provide a clock input. For a crystal or ceramic resonator configuration, the crystal/resonator must be wired across the XTAL1 and XTAL2 pins as shown in Option 1 of Figure 12.1. A 10 M Ω resistor also must be wired across the XTAL2 and XTAL1 pins for the crystal/resonator configuration. In RC, capacitor, or CMOS clock configuration, the clock source should be wired to the XTAL2 pin as shown in Option 2, 3, or 4 of Figure 12.1. The type of external oscillator must be selected in the OSCXCN register, and the frequency control bits (XFCN) must be selected appropriately (see SFR Definition 12.4).

Important Note on External Oscillator Usage: Port pins must be configured when using the external oscillator circuit. When the external oscillator drive circuit is enabled in crystal/resonator mode, Port pins P0.2 and P0.3 are used as XTAL1 and XTAL2 respectively. When the external oscillator drive circuit is enabled in capacitor, RC, or CMOS clock mode, Port pin P0.3 is used as XTAL2. The Port I/O Crossbar should be configured to skip the Port pins used by the oscillator circuit; see **Section "13.1. Priority Crossbar Decoder" on page 131** for Crossbar configuration. Additionally, when using the external oscillator circuit in crystal/resonator, capacitor, or RC mode, the associated Port pins should be configured as **analog inputs**. In CMOS clock mode, the associated pin should be configured as a **digital input**. See **Section "13.2. Port I/O Initialization" on page 133** for details on Port input mode selection.

12.3. System Clock Selection

The CLKSL0 bit in register CLKSEL selects which oscillator is used as the system clock. CLKSL0 must be set to '1' for the system clock to run from the external oscillator; however the external oscillator may still clock certain peripherals (timers, PCA) when the internal oscillator is selected as the system clock. The system clock may be switched on-the-fly between the internal and external oscillator, so long as the selected oscillator is enabled and has settled. The internal oscillator requires little start-up time and may be selected as the system clock immediately following the OSCICN write that enables the internal oscillator. External crystals and ceramic resonators typically require a start-up time before they are settled and ready for use as the system clock. The Crystal Valid Flag (XTLVLD in register OSCXCN) is set to '1' by hardware when the external oscillator is settled. **To avoid reading a false XTLVLD, in crystal mode software should delay at least 1 ms between enabling the external oscillator and checking XTLVLD.** RC and C modes typically require no startup time.

12.4. External Crystal Example

If a crystal or ceramic resonator is used as an external oscillator source for the MCU, the circuit should be configured as shown in Figure 12.1, Option 1. The External Oscillator Frequency Control value (XFCN) should be chosen from the Crystal column of the table in SFR Definition 12.4. For example, an 11.0592 MHz crystal requires an XFCN setting of 111b.

When the crystal oscillator is first enabled, the oscillator amplitude detection circuit requires a settling time to achieve proper bias. Introducing a delay of 1 ms between enabling the oscillator and checking the XTLVLD bit will prevent a premature switch to the external oscillator as the system clock. Switching to the external oscillator before the crystal oscillator has stabilized can result in unpredictable behavior. The recommended procedure is:

- Step 1. Force the XTAL1 and XTAL2 pins low by writing 0s to the port latch.
- Step 2. Configure XTAL1 and XTAL2 as analog inputs.
- Step 3. Enable the external oscillator.
- Step 4. Wait at least 1 ms.
- Step 5. Poll for XTLVLD => '1'.
- Step 6. Switch the system clock to the external oscillator.

Note: Tuning-fork crystals may require additional settling time before XTLVLD returns a valid result.

The capacitors shown in the external crystal configuration provide the load capacitance required by the crystal for correct oscillation. These capacitors are "in series" as seen by the crystal and "in parallel" with the stray capacitance of the XTAL1 and XTAL2 pins.

Note: The load capacitance depends upon the crystal and the manufacturer. Please refer to the crystal data sheet when completing these calculations.

For example, a tuning-fork crystal of 32.768 kHz with a recommended load capacitance of 12.5 pF should use the configuration shown in Figure 12.1, Option 1. The total value of the capacitors and the stray capacitance of the XTAL pins should equal 25 pF. With a stray capacitance of 3 pF per pin, the 22 pF capacitors yield an equivalent capacitance of 12.5 pF across the crystal, as shown in Figure 12.2.

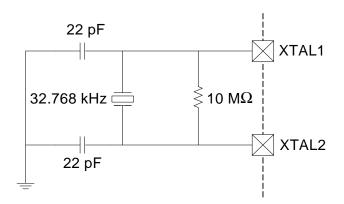


Figure 12.2. 32.768 kHz External Crystal Example

Important Note on External Crystals: Crystal oscillator circuits are quite sensitive to PCB layout. The crystal should be placed as close as possible to the XTAL pins on the device. The traces should be as short as possible and shielded with ground plane from any other traces which could introduce noise or interference.

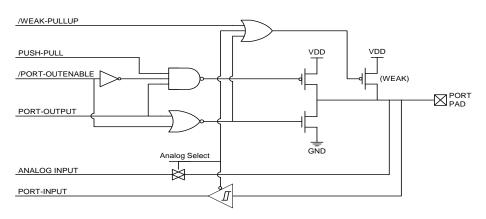


Figure 13.2. Port I/O Cell Block Diagram

	P0							P1					P2											
PIN I/O	0	1	2	3	4	5	6	7	0	1	2	3	4	5	6	7	0	1	2	3	4	5	6	
ТХО																								
RX0																								
SCK																								
MISO																								
MOSI																								
NSS*																								
SDA																								
SCL																								
CP0																								
CP0A																						e de la come		
CP1																						lable		
CP1A																						Signals Unavailable		
SYSCLK																						ň		
CEX0																						nals		
CEX1																						Sig		
CEX2																								
CEX3																								
CEX4			1																		1			
ECI			1]		
то			1																					
T1]
	0 0 <u>1 1</u> 0 0 0 0 P0SKIP[0:7]					0	0 0 0 0 0 0 0 0 P1SKIP[0:7]					0	0 0 0 0 P2SKIP[0:3]											

SF Signals Special Function Signals are not assigned by the Crossbar. When these signals are enabled, the Crossbar must be manually configured to skip their corresponding port pins.

*Note: NSS is only pinned out in 4-wire SPI mode.

Note: P1.6,P1.7,P2.6,P2.7 only available on the C8051F310/1/2/3/4/5; P1SKIP[7:6] should always be set to 11b for the C8051F316/7 devices.

Figure 13.4. Crossbar Priority Decoder with Crystal Pins Skipped

Registers XBR0 and XBR1 are used to assign the digital I/O resources to the physical I/O Port pins. Note that when the SMBus is selected, the Crossbar assigns both pins associated with the SMBus (SDA and SCL); when the UART is selected, the Crossbar assigns both pins associated with the UART (TX and RX). UART0 pin assignments are fixed for bootloading purposes: UART TX0 is always assigned to P0.4; UART RX0 is always assigned to P0.5. Standard Port I/Os appear contiguously after the prioritized functions have been assigned.

Important Note: The SPI can be operated in either 3-wire or 4-wire modes, pending the state of the NSS-MD1-NSSMD0 bits in register SPI0CN. According to the SPI mode, the NSS signal may or may not be routed to a Port pin.

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
CP1AE	-	CP0AE	CP0E	SYSCKE	SMB0E	SPI0E	URTOE	00000000
Bit7	Bit6	Bit4	Bit1	SFR Address:				
Ditt	Bito	Bit5	BRI	Bit0	0xE1			
Bit7:	CP1AE: Cor	nparator1 A	synchrono	us Output F	nable			
	0: Asynchroi	•						
	1: Asynchroi							
Bit6:	CP1E: Com							
	0: CP1 unav		•					
	1: CP1 route							
Bit5:	CP0AE: Cor	nparator0 [.] A	synchrono	us Output E	nable			
	0: Asynchro	nous CP0 u	navailable	at Port pin.				
	1: Asynchroi							
Bit4:	CP0E: Com	parator0 Ou	tput Enable	e				
	0: CP0 unav	ailable at P	ort pin.					
	1: CP0 route	ed to Port pi	n.					
Bit3:	SYSCKE: /S	YSCLK Ou	tput Enable	e				
	0: /SYSCLK	unavailable	e at Port pir	า.				
	1: /SYSCLK			oin.				
Bit2:	SMB0E: SM							
	0: SMBus I/0			oins.				
	1: SMBus I/0		Port pins.					
Bit1:	SPI0E: SPI I							
	0: SPI I/O ur		•					
	1: SPI I/O ro							
Bit0:	URT0E: UA							
	0: UART I/O							
	1: UART TX	0, RX0 rout	ed to Port p	oins P0.4 an	d P0.5.			

SFR Definition 13.1. XBR0: Port I/O Crossbar Register 0

14.3.2. Clock Low Extension

SMBus provides a clock synchronization mechanism, similar to I2C, which allows devices with different speed capabilities to coexist on the bus. A clock-low extension is used during a transfer in order to allow slower slave devices to communicate with faster masters. The slave may temporarily hold the SCL line LOW to extend the clock low period, effectively decreasing the serial clock frequency.

14.3.3. SCL Low Timeout

If the SCL line is held low by a slave device on the bus, no further communication is possible. Furthermore, the master cannot force the SCL line high to correct the error condition. To solve this problem, the SMBus protocol specifies that devices participating in a transfer must detect any clock cycle held low longer than 25 ms as a "timeout" condition. Devices that have detected the timeout condition must reset the communication no later than 10 ms after detecting the timeout condition.

When the SMBTOE bit in SMB0CF is set, Timer 3 is used to detect SCL low timeouts. Timer 3 is forced to reload when SCL is high, and allowed to count when SCL is low. With Timer 3 enabled and configured to overflow after 25 ms (and SMBTOE set), the Timer 3 interrupt service routine can be used to reset (disable and re-enable) the SMBus in the event of an SCL low timeout.

14.3.4. SCL High (SMBus Free) Timeout

The SMBus specification stipulates that if the SCL and SDA lines remain high for more that 50 μ s, the bus is designated as free. When the SMBFTE bit in SMB0CF is set, the bus will be considered free if SCL and SDA remain high for more than 10 SMBus clock source periods. If the SMBus is waiting to generate a Master START, the START will be generated following this timeout. Note that a clock source is required for free timeout detection, even in a slave-only implementation.

14.5. SMBus Transfer Modes

The SMBus interface may be configured to operate as master and/or slave. At any particular time, it will be operating in one of the following four modes: Master Transmitter, Master Receiver, Slave Transmitter, or Slave Receiver. The SMBus interface enters Master Mode any time a START is generated, and remains in Master Mode until it loses an arbitration or generates a STOP. An SMBus interrupt is generated at the end of all SMBus byte frames; however, note that the interrupt is generated before the ACK cycle when operating as a receiver, and after the ACK cycle when operating as a transmitter.

14.5.1. Master Transmitter Mode

Serial data is transmitted on SDA while the serial clock is output on SCL. The SMBus interface generates the START condition and transmits the first byte containing the address of the target slave and the data direction bit. In this case the data direction bit (R/W) will be logic 0 (WRITE). The master then transmits one or more bytes of serial data. After each byte is transmitted, an acknowledge bit is generated by the slave. The transfer is ended when the STO bit is set and a STOP is generated. Note that the interface will switch to Master Receiver Mode if SMB0DAT is not written following a Master Transmitter interrupt. Figure 14.5 shows a typical Master Transmitter sequence. Two transmit data bytes are shown, though any number of bytes may be transmitted. Notice that the 'data byte transferred' interrupts occur **after** the ACK cycle in this mode.

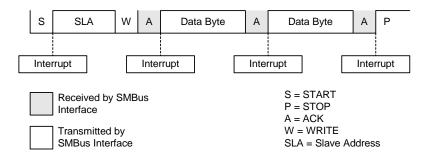


Figure 14.5. Typical Master Transmitter Sequence

18. Programmable Counter Array

The Programmable Counter Array (PCA0) provides enhanced timer functionality while requiring less CPU intervention than the standard 8051 counter/timers. The PCA consists of a dedicated 16-bit counter/timer and five 16-bit capture/compare modules. Each capture/compare module has its own associated I/O line (CEXn) which is routed through the Crossbar to Port I/O when enabled (See Section "13.1. Priority Crossbar Decoder" on page 131 for details on configuring the Crossbar). The counter/timer is driven by a programmable timebase that can select between six sources: system clock, system clock divided by four, system clock signal on the ECI input pin. Each capture/compare module may be configured to operate independently in one of six modes: Edge-Triggered Capture, Software Timer, High-Speed Output, Frequency Output, 8-Bit PWM, or 16-Bit PWM (each mode is described in Section "18.2. Capture/Compare Modules" on page 205). The external oscillator clock option is ideal for real-time clock (RTC) functionality, allowing the PCA to be clocked by a precision external oscillator while the internal oscillator drives the system clock. The PCA is configured and controlled through the system controller's Special Function Registers. The PCA block diagram is shown in Figure 18.1

Important Note: The PCA Module 4 may be used as a watchdog timer (WDT), and is enabled in this mode following a system reset. Access to certain PCA registers is restricted while WDT mode is enabled. See **Section 18.3** for details.

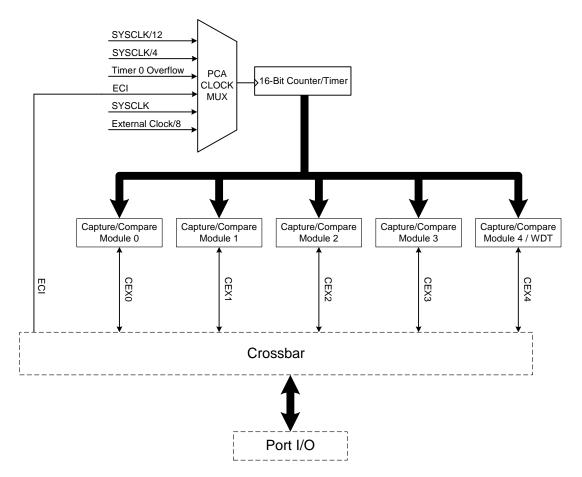
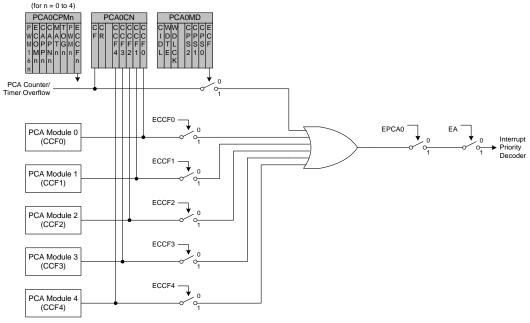


Figure 18.1. PCA Block Diagram


18.2. Capture/Compare Modules

Each module can be configured to operate independently in one of six operation modes: Edge-triggered Capture, Software Timer, High Speed Output, Frequency Output, 8-Bit Pulse Width Modulator, or 16-Bit Pulse Width Modulator. Each module has Special Function Registers (SFRs) associated with it in the CIP-51 system controller. These registers are used to exchange data with a module and configure the module's mode of operation.

Table 18.2 summarizes the bit settings in the PCA0CPMn registers used to select the PCA capture/compare module's operating modes. Setting the ECCFn bit in a PCA0CPMn register enables the module's CCFn interrupt. Note: PCA0 interrupts must be globally enabled before individual CCFn interrupts are recognized. PCA0 interrupts are globally enabled by setting the EA bit and the EPCA0 bit to logic 1. See Figure 18.3 for details on the PCA interrupt configuration.

PWM16	ECOM	CAPP	CAPN	MAT	TOG	PWM	ECCF	Operation Mode
Х	Х	1	0	0	0	0	Х	Capture triggered by positive edge on CEXn
Х	Х	0	1	0	0	0	Х	Capture triggered by negative edge on CEXn
Х	Х	1	1	0	0	0	Х	Capture triggered by transition on CEXn
Х	1	0	0	1	0	0	Х	Software Timer
Х	1	0	0	1	1	0	Х	High Speed Output
Х	1	0	0	Х	1	1	Х	Frequency Output
0	1	0	0	Х	0	1	Х	8-Bit Pulse Width Modulator
1	1	0	0	Х	0	1	Х	16-Bit Pulse Width Modulator
X = Don'	t Care							

Table 18.2. PCA0CPM Register Settings for PCA Capture/Compare Modules

