### Silicon Labs - C8051F312 Datasheet





Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

| Product Status             | Obsolete                                                    |
|----------------------------|-------------------------------------------------------------|
| Core Processor             | 8051                                                        |
| Core Size                  | 8-Bit                                                       |
| Speed                      | 25MHz                                                       |
| Connectivity               | SMBus (2-Wire/I²C), SPI, UART/USART                         |
| Peripherals                | POR, PWM, Temp Sensor, WDT                                  |
| Number of I/O              | 29                                                          |
| Program Memory Size        | 8KB (8K x 8)                                                |
| Program Memory Type        | FLASH                                                       |
| EEPROM Size                | -                                                           |
| RAM Size                   | 1.25К х 8                                                   |
| Voltage - Supply (Vcc/Vdd) | 2.7V ~ 3.6V                                                 |
| Data Converters            | A/D 21x10b                                                  |
| Oscillator Type            | Internal                                                    |
| Operating Temperature      | -40°C ~ 85°C (TA)                                           |
| Mounting Type              | Surface Mount                                               |
| Package / Case             | 32-LQFP                                                     |
| Supplier Device Package    | 32-LQFP (7x7)                                               |
| Purchase URL               | https://www.e-xfl.com/product-detail/silicon-labs/c8051f312 |
|                            |                                                             |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

| 18.2.3.High-Speed Output Mode                  | 208 |
|------------------------------------------------|-----|
| 18.2.4. Frequency Output Mode                  | 209 |
| 18.2.5.8-Bit Pulse Width Modulator Mode        |     |
| 18.2.6.16-Bit Pulse Width Modulator Mode       | 211 |
| 18.3.Watchdog Timer Mode                       | 212 |
| 18.3.1.Watchdog Timer Operation                |     |
| 18.3.2.Watchdog Timer Usage                    | 213 |
| 18.4.Register Descriptions for PCA             |     |
| 19. Revision Specific Behavior                 |     |
| 19.1.Revision Identification                   |     |
| 19.2.Reset Behavior                            | 221 |
| 19.2.1.Weak Pullups on GPI <u>O P</u> ins      | 221 |
| 19.2.2.V <sub>DD</sub> Monitor and the RST Pin |     |
| 19.3.PCA Counter                               |     |
| 20. C2 Interface                               |     |
| 20.1.C2 Interface Registers                    |     |
| -                                              | 225 |
| -                                              | 226 |
|                                                | 228 |
|                                                |     |



NOTES:



### 1. System Overview

C8051F31x devices are fully integrated mixed-signal System-on-a-Chip MCUs. Highlighted features are listed below. Refer to Table 1.1 for specific product feature selection.

- High-speed pipelined 8051-compatible microcontroller core (up to 25 MIPS)
- In-system, full-speed, non-intrusive debug interface (on-chip)
- True 10-bit 200 ksps 25-channel single-ended/differential ADC with analog multiplexer (C8051F310/1/2/3/6)
- Precision programmable 25 MHz internal oscillator
- 16 kB (C8051F310/1/6/7) or 8 kB (C8051F312/3/4/5) of on-chip Flash memory
- 1280 bytes of on-chip RAM
- SMBus/I2C, Enhanced UART, and Enhanced SPI serial interfaces implemented in hardware
- Four general-purpose 16-bit timers
- Programmable Counter/Timer Array (PCA) with five capture/compare modules and Watchdog Timer function
- On-chip Power-On Reset, V<sub>DD</sub> Monitor, and Temperature Sensor
- On-chip Voltage Comparators (2)
- 29/25/21 Port I/O (5 V tolerant)

With on-chip Power-On Reset,  $V_{DD}$  monitor, Watchdog Timer, and clock oscillator, the C8051F31x devices are truly stand-alone System-on-a-Chip solutions. The Flash memory can be reprogrammed even in-circuit, providing non-volatile data storage, and also allowing field upgrades of the 8051 firmware. User software has complete control of all peripherals, and may individually shut down any or all peripherals for power savings.

The on-chip Silicon Labs 2-Wire (C2) Development Interface allows non-intrusive (uses no on-chip resources), full speed, in-circuit debugging using the production MCU installed in the final application. This debug logic supports inspection and modification of memory and registers, setting breakpoints, single stepping, run and halt commands. All analog and digital peripherals are fully functional while debugging using C2. The two C2 interface pins can be shared with user functions, allowing in-system programming and debugging without occupying package pins.

Each device is specified for 2.7-to-3.6 V operation over the industrial temperature range (–45 to +85 °C). The Port I/O and RST pins are tolerant of input signals up to 5 V. The C8051F31x are available in 32-pin LQFP, 28-pin QFN, and 24-pin QFN packages. See Table 1.1 for ordering part numbers. Note: QFN packages are also referred to as MLP or MLF packages.



Inputs are measured from '0' to VREF \* 1023/1024. Example codes are shown below for both right-justified and left-justified data. Unused bits in the ADC0H and ADC0L registers are set to '0'.

| Input Voltage    | Right-Justified ADC0H:ADC0L<br>(AD0LJST = 0) | Left-Justified ADC0H:ADC0L<br>(AD0LJST = 1) |
|------------------|----------------------------------------------|---------------------------------------------|
| VREF x 1023/1024 | 0x03FF                                       | 0xFFC0                                      |
| VREF x 512/1024  | 0x0200                                       | 0x8000                                      |
| VREF x 256/1024  | 0x0100                                       | 0x4000                                      |
| 0                | 0x0000                                       | 0x0000                                      |

When in Differential Mode, conversion codes are represented as 10-bit signed 2's complement numbers. Inputs are measured from -VREF to VREF \* 511/512. Example codes are shown below for both right-justified and left-justified data. For right-justified data, the unused MSBs of ADC0H are a sign-extension of the data word. For left-justified data, the unused LSBs in the ADC0L register are set to '0'.

| Input Voltage   | Right-Justified ADC0H:ADC0L<br>(AD0LJST = 0) | Left-Justified ADC0H:ADC0L<br>(AD0LJST = 1) |
|-----------------|----------------------------------------------|---------------------------------------------|
| VREF x 511/512  | 0x01FF                                       | 0x7FC0                                      |
| VREF x 256/512  | 0x0100                                       | 0x4000                                      |
| 0               | 0x0000                                       | 0x0000                                      |
| –VREF x 256/512 | 0xFF00                                       | 0xC000                                      |
| –VREF           | 0xFE00                                       | 0x8000                                      |

**Important Note About ADC0 Input Configuration:** Port pins selected as ADC0 inputs should be configured as analog inputs, and should be skipped by the Digital Crossbar. To configure a Port pin for analog input, set to '0' the corresponding bit in register PnMDIN (for n = 0,1,2,3). To force the Crossbar to skip a Port pin, set to '1' the corresponding bit in register PnSKIP (for n = 0,1,2). See **Section "13. Port Input/Output" on page 129** for more Port I/O configuration details.

### 5.2. Temperature Sensor

The typical temperature sensor transfer function is shown in Figure 5.2. The output voltage ( $V_{TEMP}$ ) is the positive ADC input when the temperature sensor is selected by bits AMX0P4-0 in register AMX0P.

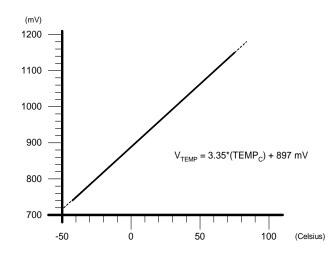



Figure 5.2. Typical Temperature Sensor Transfer Function



NOTES:



#### Performance

The CIP-51 employs a pipelined architecture that greatly increases its instruction throughput over the standard 8051 architecture. In a standard 8051, all instructions except for MUL and DIV take 12 or 24 system clock cycles to execute, and usually have a maximum system clock of 12 MHz. By contrast, the CIP-51 core executes 70% of its instructions in one or two system clock cycles, with no instructions taking more than eight system clock cycles.

With the CIP-51's maximum system clock at 25 MHz, it has a peak throughput of 25 MIPS. The CIP-51 has a total of 109 instructions. The table below shows the total number of instructions that require each execution time.

| Clocks to Execute      | 1  | 2  | 2/3 | 3  | 3/4 | 4 | 4/5 | 5 | 8 |
|------------------------|----|----|-----|----|-----|---|-----|---|---|
| Number of Instructions | 26 | 50 | 5   | 14 | 7   | 3 | 1   | 2 | 1 |

#### **Programming and Debugging Support**

In-system programming of the Flash program memory and communication with on-chip debug support logic is accomplished via the Silicon Labs 2-Wire Development Interface (C2). The re-programmable Flash can also be read and changed a single byte at a time by the application software using the MOVC and MOVX instructions. This feature allows program memory to be used for non-volatile data storage as well as updating program code under software control.

The on-chip debug support logic facilitates full speed in-circuit debugging, allowing the setting of hardware breakpoints, starting, stopping and single stepping through program execution (including interrupt service routines), examination of the program's call stack, and reading/writing the contents of registers and memory. This method of on-chip debugging is completely non-intrusive, requiring no RAM, Stack, timers, or other on-chip resources. C2 details can be found in **Section "20. C2 Interface" on page 223**.

The CIP-51 is supported by development tools from Silicon Labs and third party vendors. Silicon Labs provides an integrated development environment (IDE) including an editor, evaluation compiler, assembler, debugger and programmer. The IDE's debugger and programmer interface to the CIP-51 via the C2 interface to provide fast and efficient in-system device programming and debugging. Third party macro assemblers and C compilers are also available.

### 8.1. Instruction Set

The instruction set of the CIP-51 System Controller is fully compatible with the standard MCS-51<sup>™</sup> instruction set. Standard 8051 development tools can be used to develop software for the CIP-51. All CIP-51 instructions are the binary and functional equivalent of their MCS-51<sup>™</sup> counterparts, including opcodes, addressing modes and effect on PSW flags. However, instruction timing is different than that of the standard 8051.

#### 8.1.1. Instruction and CPU Timing

In many 8051 implementations, a distinction is made between machine cycles and clock cycles, with machine cycles varying from 2 to 12 clock cycles in length. However, the CIP-51 implementation is based solely on clock cycle timing. All instruction timings are specified in terms of clock cycles.

Due to the pipelined architecture of the CIP-51, most instructions execute in the same number of clock cycles as there are program bytes in the instruction. Conditional branch instructions take one less clock cycle to complete when the branch is not taken as opposed to when the branch is taken. Table 8.1 is the



| R/W            | R/W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | R/W                                                                                                                                                | R/W                                                                                                                                | R/W                                                                                                                             | R/W                                                                                                                  | R/W                                                                         | R                                                                     | Reset Value               |
|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-----------------------------------------------------------------------|---------------------------|
| CY             | AC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | F0                                                                                                                                                 | RS1                                                                                                                                | RS0                                                                                                                             | OV                                                                                                                   | F1                                                                          | PARITY                                                                | 00000000                  |
| Bit7           | Bit6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Bit5                                                                                                                                               | Bit4                                                                                                                               | Bit3                                                                                                                            | Bit2                                                                                                                 | Bit1                                                                        | Bit0                                                                  | SFR Address               |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                    |                                                                                                                                    |                                                                                                                                 |                                                                                                                      | (bi                                                                         | t addressable)                                                        | 0xD0                      |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                    |                                                                                                                                    |                                                                                                                                 |                                                                                                                      |                                                                             |                                                                       |                           |
| Bit7:          | CY: Carry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Flag.                                                                                                                                              |                                                                                                                                    |                                                                                                                                 |                                                                                                                      |                                                                             |                                                                       |                           |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                    | he last arithmet                                                                                                                   |                                                                                                                                 |                                                                                                                      |                                                                             |                                                                       | a borrow                  |
|                | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ,                                                                                                                                                  | eared to logic 0 l                                                                                                                 | by all other                                                                                                                    | arithmetic                                                                                                           | operations                                                                  |                                                                       |                           |
| Bit6:          | AC: Auxilia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                    | •                                                                                                                                  |                                                                                                                                 |                                                                                                                      |                                                                             |                                                                       |                           |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                    | ne last arithmeti                                                                                                                  | •                                                                                                                               |                                                                                                                      |                                                                             | ```                                                                   |                           |
|                | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | raction) the                                                                                                                                       | e high order nib                                                                                                                   | ble. It is cle                                                                                                                  | eared to log                                                                                                         | gic 0 by all o                                                              | other arithm                                                          | etic opera-               |
| D:46.          | tions.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                    |                                                                                                                                    |                                                                                                                                 |                                                                                                                      |                                                                             |                                                                       |                           |
| Bit5:          | F0: User F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                                                                  | oble general p                                                                                                                     | urnaaa flag                                                                                                                     | forupaup                                                                                                             | dor ooftwor                                                                 | o control                                                             |                           |
| Bits4–3:       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                    | able, general pu<br>Bank Select.                                                                                                   | irpose nag                                                                                                                      | tor use un                                                                                                           | der soltware                                                                | e control.                                                            |                           |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                    |                                                                                                                                    |                                                                                                                                 |                                                                                                                      |                                                                             |                                                                       |                           |
| DII54-5.       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | •                                                                                                                                                  |                                                                                                                                    | k is used d                                                                                                                     | uring rogic                                                                                                          | tor accore                                                                  |                                                                       |                           |
| DII54-5.       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | •                                                                                                                                                  | ich register ban                                                                                                                   | k is used d                                                                                                                     | luring regis                                                                                                         | ter accesse                                                                 | es.                                                                   |                           |
| DII34-3.       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | •                                                                                                                                                  |                                                                                                                                    | _                                                                                                                               |                                                                                                                      | ter accesse                                                                 | es.                                                                   |                           |
| DII34-3.       | These bits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | select wh                                                                                                                                          | ich register ban                                                                                                                   | _                                                                                                                               | ess                                                                                                                  | ter accesse                                                                 | es.                                                                   |                           |
| DII34-3.       | These bits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | select wh                                                                                                                                          | ich register ban<br>Register Bank                                                                                                  | Addr                                                                                                                            | <b>ess</b><br>0x07                                                                                                   | ter accesse                                                                 | es.                                                                   |                           |
| DII34-3.       | These bits RS1 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | select wh                                                                                                                                          | ich register ban<br>Register Bank<br>0                                                                                             | Addr<br>0x00-                                                                                                                   | <b>ess</b><br>0x07<br>0x0F                                                                                           | ter accesse                                                                 | 95.                                                                   |                           |
| Ы134—3.        | These bits          RS1         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | select wh<br>RS0<br>0<br>1                                                                                                                         | ich register ban<br>Register Bank<br>0<br>1                                                                                        | Addr<br>0x00-<br>0x08-                                                                                                          | ess<br>0x07<br>0x0F<br>0x17                                                                                          | ter accesse                                                                 | 95.                                                                   |                           |
|                | RS1         0         0         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1 <th1< th="">         1         <th1< th=""> <th1< th=""></th1<></th1<></th1<> | select wh<br><b>RS0</b><br>0<br>1<br>0<br>1                                                                                                        | ich register ban<br>Register Bank<br>0<br>1<br>2                                                                                   | Addr<br>0x00-<br>0x08-<br>0x10-                                                                                                 | ess<br>0x07<br>0x0F<br>0x17                                                                                          | ter accesse                                                                 | es.                                                                   |                           |
|                | These bits          RS1         0         1         1         OV: Overfit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | select wh<br>RS0<br>0<br>1<br>0<br>1<br>ow Flag.                                                                                                   | ich register ban<br>Register Bank<br>0<br>1<br>2<br>3                                                                              | Addr           0x00-           0x08-           0x10-           0x18-                                                            | ess<br>0x07<br>0x0F<br>0x17<br>0x1F                                                                                  |                                                                             |                                                                       |                           |
|                | These bits          RS1         0         1         1         OV: Overfi         This bit is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | select wh<br>RS0<br>0<br>1<br>0<br>1<br>ow Flag.<br>set to 1 un                                                                                    | ich register ban<br>Register Bank<br>0<br>1<br>2<br>3<br>der the followin                                                          | Addr           0x00-           0x08-           0x10-           0x18-           g circumsta                                      | ess<br>0x07<br>0x0F<br>0x17<br>0x1F<br>ances: an /                                                                   | ADD, ADDC                                                                   | C, or SUBB i                                                          |                           |
| Bit2:          | These bitsRS10011OV: OverfiThis bit iscauses a s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | select wh<br>RS0<br>0<br>1<br>0<br>1<br>ow Flag.<br>set to 1 un<br>sign-chang                                                                      | ich register ban<br>Register Bank<br>0<br>1<br>2<br>3<br>ider the followin<br>je overflow, a M                                     | Addr<br>0x00–<br>0x08–<br>0x10–<br>0x18–<br>g circumsta                                                                         | ess<br>0x07<br>0x0F<br>0x17<br>0x1F<br>ances: an <i>I</i><br>cion results                                            | ADD, ADDC                                                                   | C, or SUBB i<br>low (result is                                        | s greater                 |
|                | These bitsRS10011OV: OverfiThis bit iscauses a sthan 255),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | select wh<br>RS0<br>0<br>1<br>0<br>1<br>ow Flag.<br>set to 1 un<br>sign-chang<br>or a DIV in                                                       | Register Bank<br>0<br>1<br>2<br>3<br>der the followin<br>e overflow, a M<br>nstruction cause                                       | Addr<br>0x00–<br>0x08–<br>0x10–<br>0x18–<br>g circumsta<br>UL instruct<br>es a divide                                           | ess<br>0x07<br>0x0F<br>0x17<br>0x1F<br>ances: an /<br>tion results<br>-by-zero co                                    | ADD, ADDC<br>in an overfl<br>indition. The                                  | C, or SUBB i<br>low (result is<br>e OV bit is c                       | s greater                 |
| Bit2:          | These bitsRS10011OV: OverfiThis bit iscauses a sthan 255),by the ADI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | select wh<br>RS0<br>0<br>1<br>0<br>1<br>ow Flag.<br>set to 1 un<br>sign-chang<br>or a DIV in<br>D, ADDC,                                           | ich register ban<br>Register Bank<br>0<br>1<br>2<br>3<br>ider the followin<br>je overflow, a M                                     | Addr<br>0x00–<br>0x08–<br>0x10–<br>0x18–<br>g circumsta<br>UL instruct<br>es a divide                                           | ess<br>0x07<br>0x0F<br>0x17<br>0x1F<br>ances: an /<br>tion results<br>-by-zero co                                    | ADD, ADDC<br>in an overfl<br>indition. The                                  | C, or SUBB i<br>low (result is<br>e OV bit is c                       | s greater                 |
| Bit2:          | These bitsRS10011OV: OverfiThis bit iscauses a sthan 255),by the ADIF1: User F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | select wh<br>RS0<br>0<br>1<br>0<br>1<br>ow Flag.<br>set to 1 un<br>sign-chang<br>or a DIV in<br>D, ADDC,<br>flag 1.                                | ich register ban<br>Register Bank<br>0<br>1<br>2<br>3<br>der the followin<br>le overflow, a M<br>nstruction cause<br>SUBB, MUL, ar | Addr       0x00–       0x08–       0x10–       0x18–       g circumsta       UL instructed       a divided       DIV instructed | ess<br>0x07<br>0x0F<br>0x17<br>0x1F<br>ances: an A<br>cion results<br>-by-zero co<br>ructions in                     | ADD, ADDC<br>in an overfl<br>andition. The<br>all other cas                 | C, or SUBB i<br>low (result is<br>e OV bit is c<br>ses.               | s greater                 |
| Bit2:<br>Bit1: | These bitsRS100110V: OverfiThis bit iscauses a sthan 255),by the ADIF1: User FThis is a b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | select wh<br>RS0<br>0<br>1<br>0<br>1<br>ow Flag.<br>set to 1 un<br>sign-chang<br>or a DIV in<br>D, ADDC,<br>Tlag 1.<br>it-addressa                 | Register Bank<br>0<br>1<br>2<br>3<br>der the followin<br>e overflow, a M<br>nstruction cause<br>SUBB, MUL, ar<br>able, general pu  | Addr       0x00–       0x08–       0x10–       0x18–       g circumsta       UL instructed       a divided       DIV instructed | ess<br>0x07<br>0x0F<br>0x17<br>0x1F<br>ances: an A<br>cion results<br>-by-zero co<br>ructions in                     | ADD, ADDC<br>in an overfl<br>andition. The<br>all other cas                 | C, or SUBB i<br>low (result is<br>e OV bit is c<br>ses.               | s greater                 |
|                | These bitsRS10011OV: OverfiThis bit iscauses a sthan 255),by the ADIF1: User FThis is a bPARITY: F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | select wh<br>RS0<br>0<br>1<br>0<br>1<br>ow Flag.<br>set to 1 un<br>sign-chang<br>or a DIV in<br>D, ADDC,<br>flag 1.<br>it-addressa<br>'arity Flag. | Register Bank<br>0<br>1<br>2<br>3<br>der the followin<br>e overflow, a M<br>nstruction cause<br>SUBB, MUL, ar<br>able, general pu  | g circumsta<br>UL instruct<br>a divide-<br>d DIV instruct<br>urpose flag                                                        | ess<br>0x07<br>0x0F<br>0x17<br>0x1F<br>ances: an <i>I</i><br>ion results<br>-by-zero co<br>ructions in<br>for use un | ADD, ADDC<br>in an overfl<br>andition. The<br>all other cas<br>der software | C, or SUBB i<br>low (result is<br>e OV bit is c<br>ses.<br>e control. | s greater<br>cleared to ( |

### SFR Definition 8.4. PSW: Program Status Word

## SFR Definition 8.5. ACC: Accumulator

| R/W<br>ACC.7 | R/W<br>ACC.6                | R/W<br>ACC.5 | R/W<br>ACC.4 | R/W<br>ACC.3 | R/W<br>ACC.2 | R/W<br>ACC.1 | R/W<br>ACC.0   | Reset Value  |
|--------------|-----------------------------|--------------|--------------|--------------|--------------|--------------|----------------|--------------|
| Bit7         | Bit6                        | Bit5         | Bit4         | Bit3         | Bit2         | Bit1         | Bit0           | SFR Address: |
| Bitt         | Eno                         | 2.10         | Ditt         | 2.10         | BILL         |              | t addressable) |              |
|              | ACC: Accum<br>This register |              | mulator for  | arithmetic o | operations.  |              |                |              |



| SFR Definition | n 8.9. EIE1: | Extended | Interrupt | Enable 1 |
|----------------|--------------|----------|-----------|----------|
|----------------|--------------|----------|-----------|----------|

| R/W   | R/W                            | R/W         | R/W         | R/W           | R/W        | R/W           | R/W       | Reset Value  |
|-------|--------------------------------|-------------|-------------|---------------|------------|---------------|-----------|--------------|
| ET3   | ECP1                           | ECP0        | EPCA0       | EADC0         | EWADC0     | Reserved      | ESMB0     | 00000000     |
| Bit7  | Bit6                           | Bit5        | Bit4        | Bit3          | Bit2       | Bit1          | Bit0      | SFR Address: |
|       |                                |             |             |               |            |               |           | 0xE6         |
| Bit7: | ET3: Enable                    | Timer 3 Int | errupt.     |               |            |               |           |              |
|       | This bit sets                  |             |             | ner 3 interru | pt.        |               |           |              |
|       | 0: Disable Ti                  |             | •           |               | 1          |               |           |              |
|       | 1: Enable int                  | errupt requ | ests genera | ated by the   | TF3L or TF | 3H flags.     |           |              |
| Bit6: | ECP1: Enab                     | le Compara  | ator1 (CP1) | Interrupt.    |            | -             |           |              |
|       | This bit sets                  | the maskin  | g of the CP | 1 interrupt.  |            |               |           |              |
|       | 0: Disable C                   |             |             |               |            |               |           |              |
|       | 1: Enable int                  |             | •           | •             | CP1RIF or  | CP1FIF flag   | S.        |              |
| Bit5: | ECP0: Enab                     |             |             |               |            |               |           |              |
|       | This bit sets                  |             | •           | 0 interrupt.  |            |               |           |              |
|       | 0: Disable C                   |             |             |               |            |               |           |              |
| D'14  | 1: Enable int                  |             |             |               |            |               | S.        |              |
| Bit4: | EPCA0: Ena                     | •           |             |               | ` '        | errupt.       |           |              |
|       | This bit sets<br>0: Disable al |             | •           | AU Interrup   | IS.        |               |           |              |
|       | 1: Enable int                  |             | •           | ated by PC/   | 0          |               |           |              |
| Bit3: | EADC0: Ena                     |             | •           | •             |            |               |           |              |
| Dito. | This bit sets                  |             |             |               |            | ete interrunt |           |              |
|       | 0: Disable A                   |             |             |               |            |               |           |              |
|       | 1: Enable int                  |             |             |               | •          | J.            |           |              |
| Bit2: | EWADC0: E                      |             | •           |               |            | 5             |           |              |
|       | This bit sets                  |             |             |               | •          | terrupt.      |           |              |
|       | 0: Disable A                   |             | •           |               |            | •             |           |              |
|       | 1: Enable int                  | errupt requ | ests genera | ated by AD    | C0 Window  | Compare fla   | ig (AD0WI | NT).         |
| Bit1: | RESERVED                       | . Read = 0. | Must Write  | e 0.          |            |               | -         |              |
| Bit0: | ESMB0: Ena                     | able SMBus  | s (SMB0) In | terrupt.      |            |               |           |              |
|       | This bit sets                  |             |             | 1B0 interrup  | t.         |               |           |              |
|       | 0: Disable al                  |             |             |               |            |               |           |              |
|       | 1: Enable int                  | errupt requ | ests genera | ated by SMI   | 30.        |               |           |              |

### 9.4. Missing Clock Detector Reset

The Missing Clock Detector (MCD) is a one-shot circuit that is triggered by the system clock. If the system clock remains high or low for more than 100  $\mu$ s, the one-shot will time out and generate a reset. After a MCD reset, the MCDRSF flag (RSTSRC.2) will read '1', signifying the MCD as the reset source; otherwise, this bit reads '0'. Writing a '1' to the MCDRSF bit enables the Missing Clock Detector; writing a '0' disables it. The state of the RST pin is unaffected by this reset.

### 9.5. Comparator0 Reset

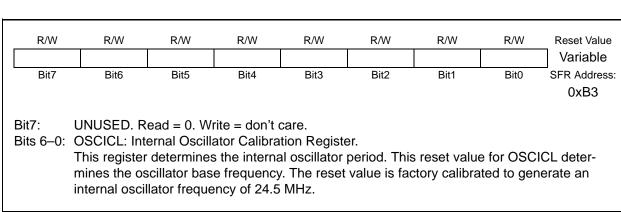
Comparator0 can be configured as a reset source by writing a '1' to the CORSEF flag (RSTSRC.5). Comparator0 should be enabled and allowed to settle prior to writing to CORSEF to prevent any turn-on chatter on the output from generating an unwanted reset. The Comparator0 reset is active-low: if the non-inverting input voltage (on CP0+) is less than the inverting input voltage (on CP0-), the device is put into the reset state. After a Comparator0 reset, the CORSEF flag (RSTSRC.5) will read '1' signifying Comparator0 as the reset source; otherwise, this bit reads '0'. The state of the RST pin is unaffected by this reset.

### 9.6. PCA Watchdog Timer Reset

The programmable Watchdog Timer (WDT) function of the Programmable Counter Array (PCA) can be used to prevent software from running out of control during a system malfunction. The PCA WDT function can be enabled or disabled by software as described in **Section "18.3. Watchdog Timer Mode" on page 212**; the WDT is enabled and clocked by SYSCLK / 12 following any reset. If a system malfunction prevents user software from updating the WDT, a reset is generated and the WDTRSF bit (RSTSRC.5) is set to '1'. The state of the RST pin is unaffected by this reset.

### 9.7. Flash Error Reset

If a Flash read/write/erase or program read targets an illegal address, a system reset is generated. This may occur due to any of the following:


- A Flash write or erase is attempted above user code space. This occurs when PSWE is set to '1' and a MOVX write operation targets an address above address 0x3DFF for C8051F310/1 or 0x1FFF for C8051F312/3/4/5.
- A Flash read is attempted above user code space. This occurs when a MOVC operation targets an address above address 0x3DFF for C8051F310/1 or 0x1FFF for C8051F312/3/4/5.
- A Program read is attempted above user code space. This occurs when user code attempts to branch to an address above 0x3DFF for C8051F310/1 or 0x1FFF for C8051F312/3/4/5.
- A Flash read, write or erase attempt is restricted due to a Flash security setting (see Section "10.3. Security Options" on page 113).

The FERROR bit (RSTSRC.6) is set following a Flash error reset. The state of the  $\overrightarrow{RST}$  pin is unaffected by this reset.

### 9.8. Software Reset

Software may force a reset by writing a '1' to the SWRSF bit (RSTSRC.4). The SWRSF bit will read '1' following a software forced reset. The state of the RST pin is unaffected by this reset.

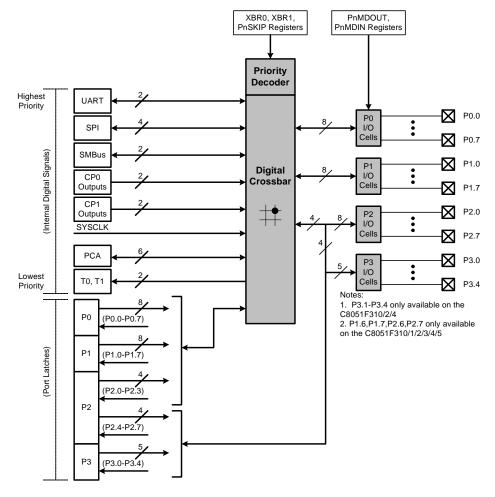




### SFR Definition 12.1. OSCICL: Internal Oscillator Calibration

### SFR Definition 12.2. OSCICN: Internal Oscillator Control

|    | R/W                  | R                                                                                                                                                                                      | R/W                                                                                                                                                              | R/W                                                                                                                                    | R/W                                                                                                           | R/W                                                | R/W   | R/W   | Reset Value |  |
|----|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|----------------------------------------------------|-------|-------|-------------|--|
| IO | SCEN                 | IFRDY                                                                                                                                                                                  |                                                                                                                                                                  |                                                                                                                                        |                                                                                                               |                                                    | IFCN1 | IFCN0 | 11000000    |  |
|    | Bit7                 | Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0                                                                                                                                                     |                                                                                                                                                                  |                                                                                                                                        |                                                                                                               |                                                    |       |       |             |  |
|    |                      |                                                                                                                                                                                        |                                                                                                                                                                  |                                                                                                                                        |                                                                                                               |                                                    |       |       | 0xB2        |  |
|    | 6:<br>55–2:<br>51–0: | IOSCEN: Int<br>0: Internal O<br>1: Internal O<br>IFRDY: Inter<br>0: Internal O<br>1: Internal O<br>UNUSED. R<br>IFCN1-0: Inter<br>00: SYSCLK<br>01: SYSCLK<br>10: SYSCLK<br>11: SYSCLK | scillator Dis<br>scillator Ena<br>nal Oscillator<br>scillator is r<br>scillator is r<br>ead = 0000<br>ernal Oscilla<br>derived fro<br>derived fro<br>derived fro | abled.<br>abled.<br>or Frequence<br>ot running<br>unning at p<br>b, Write = c<br>ator Freque<br>m Internal<br>m Internal<br>m Internal | cy Ready Fl<br>at programmed<br>lon't care.<br>ncy Control<br>Oscillator di<br>Oscillator di<br>Oscillator di | Bits.<br>vided by 8.<br>vided by 4.<br>vided by 2. |       |       |             |  |




# 13. Port Input/Output

Digital and analog resources are available through 29 I/O pins (C8051F310/2/4), or 25 I/O pins (C8051F311/3/5), or 21 I/O pins (C8051F316/7). Port pins are organized as three byte-wide Ports and one 5-bit-wide (C8051F310/2/4) or 1-bit-wide (C8051F311/3/5) Port. In the C8051F316/7, the port pins are organized as one byte-wide Port, two 6-bit-wide Ports and one 1-bit-wide Port. Each of the Port pins can be defined as general-purpose I/O (GPIO) or analog input; Port pins P0.0-P2.3 can be assigned to one of the internal digital resources as shown in Figure 13.3. The designer has complete control over which functions are assigned, limited only by the number of physical I/O pins. This resource assignment flexibility is achieved through the use of a Priority Crossbar Decoder. The state of a Port I/O pin can always be read in the corresponding Port latch, regardless of the Crossbar settings.

The Crossbar assigns the selected internal digital resources to the I/O pins based on the Priority Decoder (Figure 13.3 and Figure 13.4). The registers XBR0 and XBR1, defined in SFR Definition 13.1 and SFR Definition 13.2, are used to select internal digital functions.

All Port I/Os are 5 V tolerant (refer to Figure 13.2 for the Port cell circuit). The Port I/O cells are configured as either push-pull or open-drain in the Port Output Mode registers (PnMDOUT, where n = 0,1,2,3). Complete Electrical Specifications for Port I/O are given in Table 13.1 on page 143.







NOTES:



|                |                              | Frequency: 24.5 MHz  |                                  |                       |                                     |      |                                  |  |  |  |  |  |
|----------------|------------------------------|----------------------|----------------------------------|-----------------------|-------------------------------------|------|----------------------------------|--|--|--|--|--|
|                | Target<br>Baud Rate<br>(bps) | Baud Rate<br>% Error | Oscilla-<br>tor Divide<br>Factor | Timer Clock<br>Source | SCA1-SCA0<br>(pre-scale<br>select)* | T1M* | Timer 1<br>Reload Value<br>(hex) |  |  |  |  |  |
|                | 230400                       | -0.32%               | 106                              | SYSCLK                | XX                                  | 1    | 0xCB                             |  |  |  |  |  |
|                | 115200                       | -0.32%               | 212                              | SYSCLK                | XX                                  | 1    | 0x96                             |  |  |  |  |  |
|                | 57600                        | 0.15%                | 426                              | SYSCLK                | XX                                  | 1    | 0x2B                             |  |  |  |  |  |
| from<br>Ssc.   | 28800                        | -0.32%               | 848                              | SYSCLK / 4            | 01                                  | 0    | 0x96                             |  |  |  |  |  |
| < froi<br>Osc. | 14400                        | 0.15%                | 1704                             | SYSCLK / 12           | 00                                  | 0    | 0xB9                             |  |  |  |  |  |
|                | 9600                         | -0.32%               | 2544                             | SYSCLK / 12           | 00                                  | 0    | 0x96                             |  |  |  |  |  |
| SYSCL          | 2400                         | -0.32%               | 10176                            | SYSCLK / 48           | 10                                  | 0    | 0x96                             |  |  |  |  |  |
| SY<br>Int      | 1200                         | 0.15%                | 20448                            | SYSCLK / 48           | 10                                  | 0    | 0x2B                             |  |  |  |  |  |

# Table 15.1. Timer Settings for Standard Baud RatesUsing the Internal Oscillator

X = Don't care

\*Note: SCA1–SCA0 and T1M bit definitions can be found in **Section 17.1**.

# Table 15.2. Timer Settings for Standard Baud RatesUsing an External 25 MHz Oscillator

|                      |                              |                      | Fre                              | quency: 25.0 M        | lHz                                 |      |                                  |
|----------------------|------------------------------|----------------------|----------------------------------|-----------------------|-------------------------------------|------|----------------------------------|
|                      | Target<br>Baud Rate<br>(bps) | Baud Rate<br>% Error | Oscilla-<br>tor Divide<br>Factor | Timer Clock<br>Source | SCA1-SCA0<br>(pre-scale<br>select)* | T1M* | Timer 1<br>Reload Value<br>(hex) |
|                      | 230400                       | -0.47%               | 108                              | SYSCLK                | XX                                  | 1    | 0xCA                             |
|                      | 115200                       | 0.45%                | 218                              | SYSCLK                | XX                                  | 1    | 0x93                             |
|                      | 57600                        | -0.01%               | 434                              | SYSCLK                | XX                                  | 1    | 0x27                             |
| from<br>Osc.         | 28800                        | 0.45%                | 872                              | SYSCLK / 4            | 01                                  | 0    | 0x93                             |
|                      | 14400                        | -0.01%               | 1736                             | SYSCLK / 4            | 01                                  | 0    | 0x27                             |
| XLK<br>Jal           | 9600                         | 0.15%                | 2608                             | EXTCLK / 8            | 11                                  | 0    | 0x5D                             |
| SYSCLK<br>External   | 2400                         | 0.45%                | 10464                            | SYSCLK / 48           | 10                                  | 0    | 0x93                             |
| S ≺                  | 1200                         | -0.01%               | 20832                            | SYSCLK / 48           | 10                                  | 0    | 0x27                             |
| ε.                   | 57600                        | -0.47%               | 432                              | EXTCLK / 8            | 11                                  | 0    | 0xE5                             |
| < from<br>Osc.       | 28800                        | -0.47%               | 864                              | EXTCLK / 8            | 11                                  | 0    | 0xCA                             |
|                      | 14400                        | 0.45%                | 1744                             | EXTCLK / 8            | 11                                  | 0    | 0x93                             |
| SYSCLK<br>Internal C | 9600                         | 0.15%                | 2608                             | EXTCLK / 8            | 11                                  | 0    | 0x5D                             |

X = Don't care

\*Note: SCA1–SCA0 and T1M bit definitions can be found in Section 17.1.



| SFR Definition | 17.1. | TCON: | Timer | Control |
|----------------|-------|-------|-------|---------|
|----------------|-------|-------|-------|---------|

| R/W   | R/W                          | R/W          | R/W          | R/W          | R/W            | R/W          | R/W           | Reset Valu   |
|-------|------------------------------|--------------|--------------|--------------|----------------|--------------|---------------|--------------|
| TF1   | TR1                          | TF0          | TR0          | IE1          | IT1            | IE0          | IT0           | 0000000      |
| Bit7  | Bit6                         | Bit5         | Bit4         | Bit3         | Bit2           | Bit1         | Bit0          | SFR Addre    |
|       |                              |              |              |              |                | (bi          | t addressable | e) 0x88      |
|       |                              |              |              |              |                |              |               |              |
| Sit7: | TF1: Timer 1                 |              | -            |              | flan ann ba    |              |               | h            |
|       | Set by hardw                 |              |              |              |                |              |               |              |
|       | matically clea               |              |              | ctors to the | i imer i int   | errupt servi | ce routine    | •            |
|       | 0: No Timer<br>1: Timer 1 ha |              |              |              |                |              |               |              |
| Bit6: | TR1: Timer 1                 |              |              |              |                |              |               |              |
| nio.  | 0: Timer 1 di                |              | 101.         |              |                |              |               |              |
|       | 1: Timer 1 er                |              |              |              |                |              |               |              |
| Bit5: | TF0: Timer 0                 |              | Flag         |              |                |              |               |              |
|       | Set by hardw                 |              | -            | rflows. This | s flag can be  | e cleared by | / software    | but is auto  |
|       | matically clea               |              |              |              |                |              |               |              |
|       | 0: No Timer (                |              |              |              |                |              |               |              |
|       | 1: Timer 0 ha                | as overflow  | ed.          |              |                |              |               |              |
| Bit4: | TR0: Timer C                 | Run Conti    | rol.         |              |                |              |               |              |
|       | 0: Timer 0 di                | sabled.      |              |              |                |              |               |              |
|       | 1: Timer 0 er                | nabled.      |              |              |                |              |               |              |
| Bit3: | IE1: External                | •            |              |              |                |              |               |              |
|       | This flag is s               |              |              |              |                |              |               |              |
|       | cleared by so                |              |              |              |                |              |               |              |
|       | rupt 1 service               |              |              |              | -              |              | nen /INT1     | is active as |
|       | defined by bi                |              | -            | 1CF (see S   | FR Definitio   | on 8.11).    |               |              |
| Bit2: | IT1: Interrupt               |              |              |              |                |              |               |              |
|       | This bit select              |              |              |              |                |              |               |              |
|       | is configured 8.11).         | active low   | or high by t |              |                | ICF registe  | el (See SF    |              |
|       | 0: /INT1 is le               | vel triggere | hd           |              |                |              |               |              |
|       | 1: /INT1 is ed               |              |              |              |                |              |               |              |
| Bit1: | IE0: External                | 0 00         |              |              |                |              |               |              |
|       | This flag is se              | •            |              | n edae/leve  | el of type de  | fined by IT( | ) is detecte  | ed. It can b |
|       | cleared by so                |              |              |              |                |              |               |              |
|       | rupt 0 service               |              |              |              |                |              |               |              |
|       | defined by bi                |              |              |              |                |              |               |              |
| BitO: | IT0: Interrupt               | t 0 Type Se  | lect.        |              |                |              |               |              |
|       | This bit selec               |              |              |              |                |              |               |              |
|       | is configured                | active low   | or high by t | he IN0PL b   | oit in registe | r IT01CF (s  | ee SFR D      | efinition    |
|       | 8.11).                       |              |              |              |                |              |               |              |
|       | 0: /INT0 is le               |              |              |              |                |              |               |              |
|       | 1: /INT0 is ed               |              |              |              |                |              |               |              |
|       |                              | dge triggere | ea.          |              |                |              |               |              |

### SFR Definition 17.8. TMR2CN: Timer 2 Control

| R/W      | R/W                                                                                                                                         | R/W           | R/W          | R/W            | R/W            | R/W                                                               | R/W            | Reset Value  |  |  |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------|---------------|--------------|----------------|----------------|-------------------------------------------------------------------|----------------|--------------|--|--|
| TF2H     | TF2L                                                                                                                                        | TF2LEN        | -            | T2SPLIT        | TR2            | -                                                                 | T2XCLK         | 00000000     |  |  |
| Bit7     | Bit6                                                                                                                                        | Bit5          | Bit4         | Bit3           | Bit2           | Bit1                                                              | Bit0           | SFR Address: |  |  |
|          |                                                                                                                                             |               |              |                |                | (bi                                                               | t addressable) | 0xC8         |  |  |
|          |                                                                                                                                             |               |              |                |                |                                                                   |                |              |  |  |
| Bit7:    | TF2H: Timer                                                                                                                                 |               |              |                |                |                                                                   |                |              |  |  |
|          | Set by hardware when the Timer 2 high byte overflows from 0xFF to 0x00. In 16 bit mode,                                                     |               |              |                |                |                                                                   |                |              |  |  |
|          | this will occu                                                                                                                              |               |              |                |                |                                                                   |                |              |  |  |
|          | enabled, set                                                                                                                                |               |              |                |                |                                                                   |                |              |  |  |
| <b>.</b> | TF2H is not                                                                                                                                 |               | •            | •              | and must I     | be cleared l                                                      | by software    |              |  |  |
| Bit6:    | TF2L: Timer                                                                                                                                 |               |              | •              |                |                                                                   | 00 14/1        | 4.1.1.1.1.1. |  |  |
|          | Set by hardv                                                                                                                                |               |              |                |                |                                                                   |                |              |  |  |
|          | set, an interr                                                                                                                              |               |              |                |                |                                                                   |                |              |  |  |
|          | will set when<br>ically cleared                                                                                                             | •             |              | s regardless   | or the rim     | er z mode.                                                        | This bit is n  | iot automat- |  |  |
| Bit5:    | TF2LEN: Tin                                                                                                                                 |               |              | nt Enable      |                |                                                                   |                |              |  |  |
| Dito.    |                                                                                                                                             |               |              |                | errupts If T   | F2I FN is s                                                       | et and Time    | ar 2 inter-  |  |  |
|          |                                                                                                                                             |               |              |                |                | F2LEN is set and Timer 2 inter-<br>low byte of Timer 2 overflows. |                |              |  |  |
|          | This bit shou                                                                                                                               |               | •            | •              |                |                                                                   |                |              |  |  |
|          | 0: Timer 2 Lo                                                                                                                               |               |              | •              |                |                                                                   |                |              |  |  |
|          | 1: Timer 2 Lo                                                                                                                               |               |              |                |                |                                                                   |                |              |  |  |
| Bit4:    | UNUSED. Read = 0b. Write = don't care.                                                                                                      |               |              |                |                |                                                                   |                |              |  |  |
| Bit3:    | T2SPLIT: Tir                                                                                                                                | ner 2 Split N | lode Enab    | le.            |                |                                                                   |                |              |  |  |
|          | When this bit is set, Timer 2 operates as two 8-bit timers with auto-reload.                                                                |               |              |                |                |                                                                   |                |              |  |  |
|          | 0: Timer 2 operates in 16-bit auto-reload mode.                                                                                             |               |              |                |                |                                                                   |                |              |  |  |
|          | 1: Timer 2 op                                                                                                                               |               |              | ito-reload tin | ners.          |                                                                   |                |              |  |  |
| Bit2:    | TR2: Timer 2                                                                                                                                |               |              |                |                |                                                                   |                |              |  |  |
|          | This bit enab                                                                                                                               |               |              |                | e, this bit er | nables/disa                                                       | bles TMR2      | H only;      |  |  |
|          | TMR2L is alv<br>0: Timer 2 di                                                                                                               |               | ed in this m | iode.          |                |                                                                   |                |              |  |  |
|          | 1: Timer 2 di                                                                                                                               |               |              |                |                |                                                                   |                |              |  |  |
| Bit1:    |                                                                                                                                             |               | /rito - don' | t care         |                |                                                                   |                |              |  |  |
| Bit0:    | UNUSED. Read = 0b. Write = don't care.<br>T2XCLK: Timer 2 External Clock Select.                                                            |               |              |                |                |                                                                   |                |              |  |  |
| Dito.    | This bit sele                                                                                                                               |               |              |                | ner 2 lf Tir   | mer 2 is in 8                                                     | 8-hit mode     | this bit     |  |  |
|          | selects the e                                                                                                                               |               |              |                |                |                                                                   |                |              |  |  |
|          |                                                                                                                                             |               |              |                |                |                                                                   |                |              |  |  |
|          | Select bits (T2MH and T2ML in register CKCON) may still be used to select between the external clock and the system clock for either timer. |               |              |                |                |                                                                   |                |              |  |  |
|          | 0: Timer 2 ex                                                                                                                               |               |              |                |                | ided by 12.                                                       |                |              |  |  |
|          | 1: Timer 2 ex                                                                                                                               | xternal clock | selection    | is the extern  | al clock div   | vided by 8.                                                       | Note that th   | e external   |  |  |
|          |                                                                                                                                             |               |              |                |                | ,                                                                 |                |              |  |  |



## 18. Programmable Counter Array

The Programmable Counter Array (PCA0) provides enhanced timer functionality while requiring less CPU intervention than the standard 8051 counter/timers. The PCA consists of a dedicated 16-bit counter/timer and five 16-bit capture/compare modules. Each capture/compare module has its own associated I/O line (CEXn) which is routed through the Crossbar to Port I/O when enabled (See Section "13.1. Priority Crossbar Decoder" on page 131 for details on configuring the Crossbar). The counter/timer is driven by a programmable timebase that can select between six sources: system clock, system clock divided by four, system clock signal on the ECI input pin. Each capture/compare module may be configured to operate independently in one of six modes: Edge-Triggered Capture, Software Timer, High-Speed Output, Frequency Output, 8-Bit PWM, or 16-Bit PWM (each mode is described in Section "18.2. Capture/Compare Modules" on page 205). The external oscillator clock option is ideal for real-time clock (RTC) functionality, allowing the PCA to be clocked by a precision external oscillator while the internal oscillator drives the system clock. The PCA is configured and controlled through the system controller's Special Function Registers. The PCA block diagram is shown in Figure 18.1

**Important Note:** The PCA Module 4 may be used as a watchdog timer (WDT), and is enabled in this mode following a system reset. Access to certain PCA registers is restricted while WDT mode is enabled. See **Section 18.3** for details.

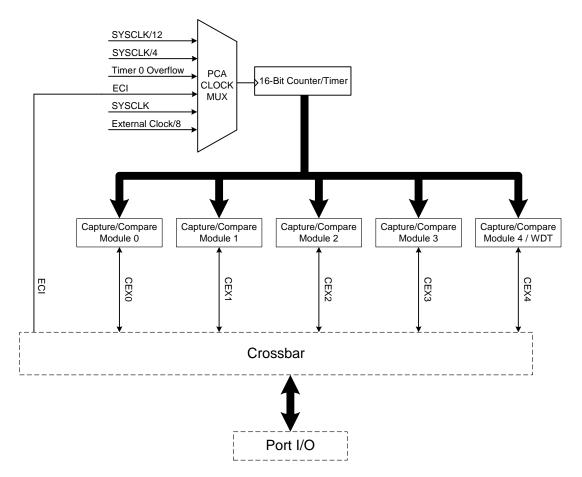



Figure 18.1. PCA Block Diagram



### 18.2.4. Frequency Output Mode

Frequency Output Mode produces a programmable-frequency square wave on the module's associated CEXn pin. The capture/compare module high byte holds the number of PCA clocks to count before the output is toggled. The frequency of the square wave is then defined by Equation 18.1, where  $F_{PCA}$  is the frequency of the clock selected by the CPS2-0 bits in the PCA mode register, PCA0MD.

### **Equation 18.1. Square Wave Frequency Output**

$$F_{CEXn} = \frac{F_{PCA}}{2 \times PCA0CPHn}$$

Note: A value of 0x00 in the PCA0CPHn register is equal to 256 for this equation.

The lower byte of the capture/compare module is compared to the PCA counter low byte; on a match, CEXn is toggled and the offset held in the high byte is added to the matched value in PCA0CPLn. Frequency Output Mode is enabled by setting the ECOMn, TOGn, and PWMn bits in the PCA0CPMn register.

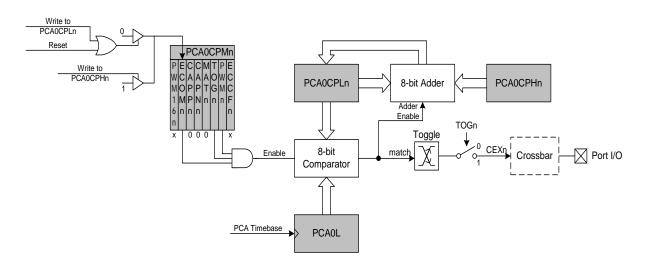



Figure 18.7. PCA Frequency Output Mode



### 18.2.6. 16-Bit Pulse Width Modulator Mode

A PCA module may also be operated in 16-Bit PWM mode. In this mode, the 16-bit capture/compare module defines the number of PCA clocks for the low time of the PWM signal. When the PCA counter matches the module contents, the output on CEXn is asserted high; when the counter overflows, CEXn is asserted low. To output a varying duty cycle, new value writes should be synchronized with PCA CCFn match interrupts. 16-Bit PWM Mode is enabled by setting the ECOMn, PWMn, and PWM16n bits in the PCA0CPMn register. For a varying duty cycle, match interrupts should be enabled (ECCFn = 1 AND MATn = 1) to help synchronize the capture/compare register writes. The duty cycle for 16-Bit PWM Mode is given by Equation 18.3.

**Important Note About Capture/Compare Registers**: When writing a 16-bit value to the PCA0 Capture/ Compare registers, the low byte should always be written first. Writing to PCA0CPLn clears the ECOMn bit to '0'; writing to PCA0CPHn sets ECOMn to '1'.

### Equation 18.3. 16-Bit PWM Duty Cycle

 $DutyCycle = \frac{(65536 - PCA0CPn)}{65536}$ 

Using Equation 18.3, the largest duty cycle is 100% (PCA0CPn = 0), and the smallest duty cycle is 0.0015% (PCA0CPn = 0xFFFF). A 0% duty cycle may be generated by clearing the ECOMn bit to '0'.

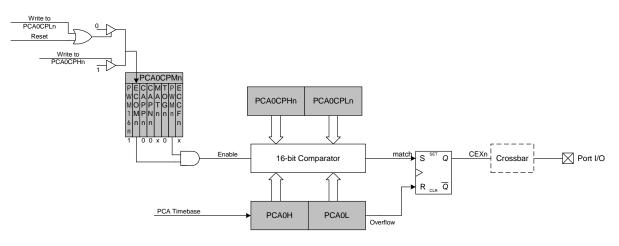



Figure 18.9. PCA 16-Bit PWM Mode

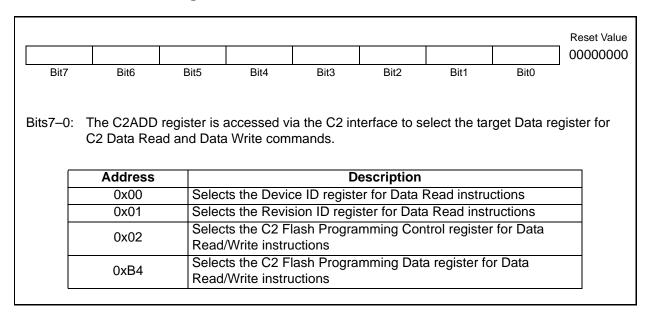


### 19.3. PCA Counter

On "REV A" devices, if the main PCA counter (PCA0H : PCA0L) overflows during the execution phase of a read-modify-write instruction (bit-wise SETB or CLR, ANL, ORL, XRL) that targets the PCA0CN register, the CF (Counter Overflow) bit will not be set. An example software work-around is as follows:

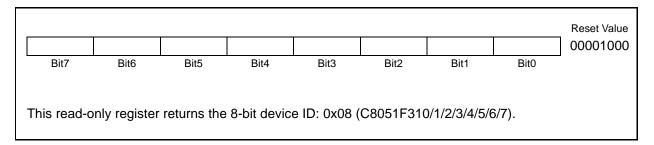
- Step 1. Disable global interrupts (EA = 0).
- Step 2. Read PCA0L. This will latch the value of PCA0H.
- Step 3. Read PCA0H, saving the value.
- Step 4. Execute the bit-wise operation on CCFn (for example, CLR CCF0, or CCF0 = 0;).
- Step 5. Read PCA0L.
- Step 6. Read PCA0H, saving the value.
- Step 7. If the value of PCA0H read in Step 3 is 0xFF and the value for PCA0H read in Step 6 is 0x00, then manually set the CF bit in software (for example, SETB CF, or CF = 1;).
- Step 8. Re-enable interrupts (EA = 1).

This behavior is not present on "REV B" and later devices. Software written for "REV A" devices will run on "REV B" and later devices without modification.




## 20. C2 Interface

C8051F31x devices include an on-chip Silicon Labs 2-Wire (C2) debug interface to allow Flash programming and in-system debugging with the production part installed in the end application. The C2 interface uses a clock signal (C2CK) and a bi-directional C2 data signal (C2D) to transfer information between the device and a host system. See the C2 Interface Specification for details on the C2 protocol.


### 20.1. C2 Interface Registers

The following describes the C2 registers necessary to perform Flash programming through the C2 interface. All C2 registers are accessed through the C2 interface as described in the C2 Interface Specification.



### C2 Register Definition 20.1. C2ADD: C2 Address

## C2 Register Definition 20.2. DEVICEID: C2 Device ID



