
Silicon Labs - C8051F313 Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Obsolete

Core Processor 8051

Core Size 8-Bit

Speed 25MHz

Connectivity SMBus (2-Wire/I²C), SPI, UART/USART

Peripherals POR, PWM, Temp Sensor, WDT

Number of I/O 25

Program Memory Size 8KB (8K x 8)

Program Memory Type FLASH

EEPROM Size -

RAM Size 1.25K x 8

Voltage - Supply (Vcc/Vdd) 2.7V ~ 3.6V

Data Converters A/D 17x10b

Oscillator Type Internal

Operating Temperature -40°C ~ 85°C (TA)

Mounting Type Surface Mount

Package / Case 28-VFQFN Exposed Pad

Supplier Device Package 28-QFN (5x5)

Purchase URL https://www.e-xfl.com/product-detail/silicon-labs/c8051f313

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/c8051f313-4427899
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

C8051F310/1/2/3/4/5/6/7
Figure 1.8. C8051F317 Block Diagram

UART

16 kB
FLASH

256 byte
SRAM

POR

SFR Bus

8
0
5
1

C
o
r
e

Reset
/RST/C2CK

External
Oscillator

Circuit

Debug HW

Brown-
Out

Analog/Digital
Power

P
0

D
r
v

1 kB
SRAM

XTAL1

XTAL2

P0.0/VREF
P0.1
P0.2/XTAL1
P0.3/XTAL2
P0.4/TX
P0.5/RX
P0.6/CNVST
P0.7

SPI

VDD

GND

C
R
O
S
S
B
A
R

P
1

D
r
v

P1.0
P1.1
P1.2
P1.3
P1.4
P1.5

Port 0
Latch

SMBus

Timer
0,1,2,3 /

RTC

Port 1
Latch

2%
Internal

Oscillator

System Clock

P
2

D
r
v

P
3

D
r
v

P2.0
P2.1
P2.2
P2.3
P2.4
P2.5

P3.0/C2D

CP1 +
-

CP0 +
-

C2D

Port 2
Latch

Port 3
Latch

PCA/
WDT
26 Rev. 1.7

C8051F310/1/2/3/4/5/6/7
Figure 4.1. LQFP-32 Pinout Diagram (Top View)

1

P3.2

P1.2

P1.7

P1.4

P1.3

P1.5VDD

/RST/C2CK

GND

P0.1

P0.0

P2.0

P2.1

2

3

4

5

6

7

8

24

23

22

21

20

19

18

17

9 10 11 12 13 14 15 16

3
2

3
1

3
0

2
9

2
8

2
7

2
6

2
5

P1.6

C8051F310/2/4
Top View

P3.0/C2D

P3.1

P
3

.3

P
3

.4

P
2

.7

P
2

.6

P
2

.5

P
2

.4

P
2

.3

P
2

.2
P

1.
1

P
1.

0

P
0.

7

P
0.

6

P
0.

5

P
0.

4

P
0.

3

P
0.

2

Rev. 1.7 41

C8051F310/1/2/3/4/5/6/7

Figure 4.3. QFN-28 Pinout Diagram (Top View)

4

5

6

7

2

1

3

1
1

1
2

1
3

1
498 1
0

18

17

16

15

20

21

19

25262728 23 2224

C8051F311/3/5
Top View

P0.1

P0.0

GND

VDD

/RST/C2CK

P3.0/C2D

P2.7

P
2.

6

P
2.

5

P
2.

4

P
2.

3

P
2.

2

P
2.

1

P
2.

0

P1.7

P1.6

P1.5

P1.4

P1.3

P1.2

P1.1

P
1.

0

P
0.

7

P
0.

6

P
0.

5

P
0.

4

P
0.

3

P
0.

2

GND

GND
Rev. 1.7 43

C8051F310/1/2/3/4/5/6/7
SFR Definition 5.3. ADC0CF: ADC0 Configuration

SFR Definition 5.4. ADC0H: ADC0 Data Word MSB

SFR Definition 5.5. ADC0L: ADC0 Data Word LSB

Bits7–3: AD0SC4–0: ADC0 SAR Conversion Clock Period Bits.
SAR Conversion clock is derived from system clock by the following equation, where
AD0SC refers to the 5-bit value held in bits AD0SC4–0. SAR Conversion clock require-
ments are given in Table 5.1.

Bit2: AD0LJST: ADC0 Left Justify Select.
0: Data in ADC0H:ADC0L registers are right-justified.
1: Data in ADC0H:ADC0L registers are left-justified.

Bits1–0: UNUSED. Read = 00b; Write = don’t care.

R/W R/W R/W R/W R/W R/W R/W R/W Reset Value

AD0SC4 AD0SC3 AD0SC2 AD0SC1 AD0SC0 AD0LJST - - 11111000
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 SFR Address:

0xBC

AD0SC
SYSCLK
CLKSAR
---------------------- 1–=

Bits7–0: ADC0 Data Word High-Order Bits.
For AD0LJST = 0: Bits 7–2 are the sign extension of Bit1. Bits 1–0 are the upper 2 bits of the
10-bit ADC0 Data Word.
For AD0LJST = 1: Bits 7–0 are the most-significant bits of the 10-bit ADC0 Data Word.

R/W R/W R/W R/W R/W R/W R/W R/W Reset Value

00000000
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 SFR Address:

0xBE

Bits7–0: ADC0 Data Word Low-Order Bits.
For AD0LJST = 0: Bits 7–0 are the lower 8 bits of the 10-bit Data Word.
For AD0LJST = 1: Bits 7–6 are the lower 2 bits of the 10-bit Data Word. Bits 5–0 will always
read ‘0’.

R/W R/W R/W R/W R/W R/W R/W R/W Reset Value

00000000
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 SFR Address:

0xBD
Rev. 1.7 59

C8051F310/1/2/3/4/5/6/7
XCH A, @Ri Exchange indirect RAM with A 1 2
XCHD A, @Ri Exchange low nibble of indirect RAM with A 1 2

Boolean Manipulation
CLR C Clear Carry 1 1
CLR bit Clear direct bit 2 2
SETB C Set Carry 1 1
SETB bit Set direct bit 2 2
CPL C Complement Carry 1 1
CPL bit Complement direct bit 2 2
ANL C, bit AND direct bit to Carry 2 2
ANL C, /bit AND complement of direct bit to Carry 2 2
ORL C, bit OR direct bit to carry 2 2
ORL C, /bit OR complement of direct bit to Carry 2 2
MOV C, bit Move direct bit to Carry 2 2
MOV bit, C Move Carry to direct bit 2 2
JC rel Jump if Carry is set 2 2/3
JNC rel Jump if Carry is not set 2 2/3
JB bit, rel Jump if direct bit is set 3 3/4
JNB bit, rel Jump if direct bit is not set 3 3/4
JBC bit, rel Jump if direct bit is set and clear bit 3 3/4

Program Branching
ACALL addr11 Absolute subroutine call 2 3
LCALL addr16 Long subroutine call 3 4
RET Return from subroutine 1 5
RETI Return from interrupt 1 5
AJMP addr11 Absolute jump 2 3
LJMP addr16 Long jump 3 4
SJMP rel Short jump (relative address) 2 3
JMP @A+DPTR Jump indirect relative to DPTR 1 3
JZ rel Jump if A equals zero 2 2/3
JNZ rel Jump if A does not equal zero 2 2/3
CJNE A, direct, rel Compare direct byte to A and jump if not equal 3 3/4
CJNE A, #data, rel Compare immediate to A and jump if not equal 3 3/4

CJNE Rn, #data, rel
Compare immediate to Register and jump if not
equal

3 3/4

CJNE @Ri, #data, rel
Compare immediate to indirect and jump if not
equal

3 4/5

DJNZ Rn, rel Decrement Register and jump if not zero 2 2/3
DJNZ direct, rel Decrement direct byte and jump if not zero 3 3/4
NOP No operation 1 1

Table 8.1. CIP-51 Instruction Set Summary (Continued)

Mnemonic Description Bytes
Clock
Cycles
Rev. 1.7 83

C8051F310/1/2/3/4/5/6/7
9.4. Missing Clock Detector Reset

The Missing Clock Detector (MCD) is a one-shot circuit that is triggered by the system clock. If the system
clock remains high or low for more than 100 µs, the one-shot will time out and generate a reset. After a
MCD reset, the MCDRSF flag (RSTSRC.2) will read ‘1’, signifying the MCD as the reset source; otherwise,
this bit reads ‘0’. Writing a ‘1’ to the MCDRSF bit enables the Missing Clock Detector; writing a ‘0’ disables
it. The state of the RST pin is unaffected by this reset.

9.5. Comparator0 Reset

Comparator0 can be configured as a reset source by writing a ‘1’ to the C0RSEF flag (RSTSRC.5). Com-
parator0 should be enabled and allowed to settle prior to writing to C0RSEF to prevent any turn-on chatter
on the output from generating an unwanted reset. The Comparator0 reset is active-low: if the non-inverting
input voltage (on CP0+) is less than the inverting input voltage (on CP0-), the device is put into the reset
state. After a Comparator0 reset, the C0RSEF flag (RSTSRC.5) will read ‘1’ signifying Comparator0 as the
reset source; otherwise, this bit reads ‘0’. The state of the RST pin is unaffected by this reset.

9.6. PCA Watchdog Timer Reset

The programmable Watchdog Timer (WDT) function of the Programmable Counter Array (PCA) can be
used to prevent software from running out of control during a system malfunction. The PCA WDT function
can be enabled or disabled by software as described in Section “18.3. Watchdog Timer Mode” on
page 212; the WDT is enabled and clocked by SYSCLK / 12 following any reset. If a system malfunction
prevents user software from updating the WDT, a reset is generated and the WDTRSF bit (RSTSRC.5) is
set to ‘1’. The state of the RST pin is unaffected by this reset.

9.7. Flash Error Reset

If a Flash read/write/erase or program read targets an illegal address, a system reset is generated. This
may occur due to any of the following:

• A Flash write or erase is attempted above user code space. This occurs when PSWE is set to ‘1’ and a
MOVX write operation targets an address above address 0x3DFF for C8051F310/1 or 0x1FFF for
C8051F312/3/4/5.

• A Flash read is attempted above user code space. This occurs when a MOVC operation targets an
address above address 0x3DFF for C8051F310/1 or 0x1FFF for C8051F312/3/4/5.

• A Program read is attempted above user code space. This occurs when user code attempts to branch
to an address above 0x3DFF for C8051F310/1 or 0x1FFF for C8051F312/3/4/5.

• A Flash read, write or erase attempt is restricted due to a Flash security setting (see Section
“10.3. Security Options” on page 113).

The FERROR bit (RSTSRC.6) is set following a Flash error reset. The state of the RST pin is unaffected by
this reset.

9.8. Software Reset

Software may force a reset by writing a ‘1’ to the SWRSF bit (RSTSRC.4). The SWRSF bit will read ‘1’ fol-
lowing a software forced reset. The state of the RST pin is unaffected by this reset.
108 Rev. 1.7

C8051F310/1/2/3/4/5/6/7
10. Flash Memory
On-chip, re-programmable Flash memory is included for program code and non-volatile data storage. The
Flash memory can be programmed in-system, a single byte at a time, through the C2 interface or by soft-
ware using the MOVX instruction. Once cleared to logic 0, a Flash bit must be erased to set it back to logic
1. Flash bytes would typically be erased (set to 0xFF) before being reprogrammed. The write and erase
operations are automatically timed by hardware for proper execution; data polling to determine the end of
the write/erase operation is not required. Code execution is stalled during a Flash write/erase operation.
Refer to Table 10.1 for complete Flash memory electrical characteristics.

10.1. Programming The Flash Memory

The simplest means of programming the Flash memory is through the C2 interface using programming
tools provided by Silicon Labs or a third party vendor. This is the only means for programming a non-initial-
ized device. For details on the C2 commands to program Flash memory, see Section “20. C2 Interface”
on page 223.

To ensure the integrity of Flash contents, it is strongly recommended that the on-chip VDD Monitor
be enabled in any system that includes code that writes and/or erases Flash memory from soft-
ware.

10.1.1. Flash Lock and Key Functions

Flash writes and erases by user software are protected with a lock and key function. The Flash Lock and
Key Register (FLKEY) must be written with the correct key codes, in sequence, before Flash operations
may be performed. The key codes are: 0xA5, 0xF1. The timing does not matter, but the codes must be
written in order. If the key codes are written out of order, or the wrong codes are written, Flash writes and
erases will be disabled until the next system reset. Flash writes and erases will also be disabled if a Flash
write or erase is attempted before the key codes have been written properly. The Flash lock resets after
each write or erase; the key codes must be written again before a following Flash operation can be per-
formed. The FLKEY register is detailed in SFR Definition 10.2.

10.1.2. Flash Erase Procedure

The Flash memory can be programmed from software using the MOVX write instruction with the address
and data byte to be programmed provided as normal operands. Before writing to Flash memory using
MOVX, Flash write operations must be enabled by: (1) setting the PSWE Program Store Write Enable bit
(PSCTL.0) to logic 1 (this directs the MOVX writes to target Flash memory); and (2) Writing the Flash key
codes in sequence to the Flash Lock register (FLKEY). The PSWE bit remains set until cleared by soft-
ware.

A write to Flash memory can clear bits to logic 0 but cannot set them; only an erase operation can set bits
to logic 1 in Flash. A byte location to be programmed should be erased before a new value is written.
The Flash memory is organized in 512-byte pages. The erase operation applies to an entire page (setting
all bytes in the page to 0xFF). To erase an entire 512-byte page, perform the following steps:

Step 1. Disable interrupts (recommended).
Step 2. Set the PSEE bit (register PSCTL).
Step 3. Set the PSWE bit (register PSCTL).
Step 4. Write the first key code to FLKEY: 0xA5.
Step 5. Write the second key code to FLKEY: 0xF1.
Step 6. Using the MOVX instruction, write a data byte to any location within the 512-byte page to

be erased.
Rev. 1.7 111

C8051F310/1/2/3/4/5/6/7
The level of Flash security depends on the Flash access method. The three Flash access methods that
can be restricted are reads, writes, and erases from the C2 debug interface, user firmware executing on
unlocked pages, and user firmware executing on locked pages. Table 10.2 summarizes the Flash security
features of the C8051F31x devices.

Table 10.2. Flash Security Summary

Action C2 Debug
Interface

User Firmware executing from:

an unlocked page a locked page

Read, Write or Erase unlocked pages
(except page with Lock Byte)

Permitted Permitted Permitted

Read, Write or Erase locked pages
(except page with Lock Byte)

Not Permitted Flash Error Reset Permitted

Read or Write page containing Lock Byte
(if no pages are locked)

Permitted Permitted Permitted

Read or Write page containing Lock Byte
(if any page is locked)

Not Permitted Flash Error Reset Permitted

Read contents of Lock Byte
(if no pages are locked)

Permitted Permitted Permitted

Read contents of Lock Byte
(if any page is locked)

Not Permitted Flash Error Reset Permitted

Erase page containing Lock Byte
(if no pages are locked)

Permitted Flash Error Reset Flash Error Reset

Erase page containing Lock Byte - Unlock all
pages (if any page is locked)

C2 Device
Erase Only

Flash Error Reset Flash Error Reset

Lock additional pages
(change '1's to '0's in the Lock Byte)

Not Permitted Flash Error Reset Flash Error Reset

Unlock individual pages
(change '0's to '1's in the Lock Byte)

Not Permitted Flash Error Reset Flash Error Reset

Read, Write or Erase Reserved Area Not Permitted Flash Error Reset Flash Error Reset

C2 Device Erase - Erases all Flash pages including the page containing the Lock Byte.

Flash Error Reset - Not permitted; Causes Flash Error Device Reset (FERROR bit in RSTSRC is '1' after
reset).

- All prohibited operations that are performed via the C2 interface are ignored (do not cause device reset).

- Locking any Flash page also locks the page containing the Lock Byte.

- Once written to, the Lock Byte cannot be modified except by performing a C2 Device Erase.

- If user code writes to the Lock Byte, the Lock does not take effect until the next device reset.
114 Rev. 1.7

C8051F310/1/2/3/4/5/6/7
12.4. External Crystal Example

If a crystal or ceramic resonator is used as an external oscillator source for the MCU, the circuit should be
configured as shown in Figure 12.1, Option 1. The External Oscillator Frequency Control value (XFCN)
should be chosen from the Crystal column of the table in SFR Definition 12.4. For example, an
11.0592 MHz crystal requires an XFCN setting of 111b.

When the crystal oscillator is first enabled, the oscillator amplitude detection circuit requires a settling time
to achieve proper bias. Introducing a delay of 1 ms between enabling the oscillator and checking the
XTLVLD bit will prevent a premature switch to the external oscillator as the system clock. Switching to the
external oscillator before the crystal oscillator has stabilized can result in unpredictable behavior. The rec-
ommended procedure is:

Step 1. Force the XTAL1 and XTAL2 pins low by writing 0s to the port latch.
Step 2. Configure XTAL1 and XTAL2 as analog inputs.
Step 3. Enable the external oscillator.
Step 4. Wait at least 1 ms.
Step 5. Poll for XTLVLD => '1'.
Step 6. Switch the system clock to the external oscillator.

Note: Tuning-fork crystals may require additional settling time before XTLVLD returns a valid result.

The capacitors shown in the external crystal configuration provide the load capacitance required by the
crystal for correct oscillation. These capacitors are "in series" as seen by the crystal and "in parallel" with
the stray capacitance of the XTAL1 and XTAL2 pins.

Note: The load capacitance depends upon the crystal and the manufacturer. Please refer to the crystal
data sheet when completing these calculations.

For example, a tuning-fork crystal of 32.768 kHz with a recommended load capacitance of 12.5 pF should
use the configuration shown in Figure 12.1, Option 1. The total value of the capacitors and the stray capac-
itance of the XTAL pins should equal 25 pF. With a stray capacitance of 3 pF per pin, the 22 pF capacitors
yield an equivalent capacitance of 12.5 pF across the crystal, as shown in Figure 12.2.

Figure 12.2. 32.768 kHz External Crystal Example

Important Note on External Crystals: Crystal oscillator circuits are quite sensitive to PCB layout. The
crystal should be placed as close as possible to the XTAL pins on the device. The traces should be as
short as possible and shielded with ground plane from any other traces which could introduce noise or
interference.

22 pF

22 pF

32.768 kHz 10 M

XTAL1

XTAL2

Ω

126 Rev. 1.7

C8051F310/1/2/3/4/5/6/7
Figure 14.4 shows the typical SCL generation described by Equation 14.2. Notice that THIGH is typically
twice as large as TLOW. The actual SCL output may vary due to other devices on the bus (SCL may be
extended low by slower slave devices, or driven low by contending master devices). The bit rate when
operating as a master will never exceed the limits defined by equation Equation 14.1.

Figure 14.4. Typical SMBus SCL Generation

Setting the EXTHOLD bit extends the minimum setup and hold times for the SDA line. The minimum SDA
setup time defines the absolute minimum time that SDA is stable before SCL transitions from low-to-high.
The minimum SDA hold time defines the absolute minimum time that the current SDA value remains stable
after SCL transitions from high-to-low. EXTHOLD should be set so that the minimum setup and hold times
meet the SMBus Specification requirements of 250 ns and 300 ns, respectively. Table 14.2 shows the min-
imum setup and hold times for the two EXTHOLD settings. Setup and hold time extensions are typically
necessary when SYSCLK is above 10 MHz.

With the SMBTOE bit set, Timer 3 should be configured to overflow after 25 ms in order to detect SCL low
timeouts (see Section “14.3.3. SCL Low Timeout” on page 148). The SMBus interface will force Timer 3
to reload while SCL is high, and allow Timer 3 to count when SCL is low. The Timer 3 interrupt service rou-
tine should be used to reset SMBus communication by disabling and re-enabling the SMBus.

SMBus Free Timeout detection can be enabled by setting the SMBFTE bit. When this bit is set, the bus will
be considered free if SDA and SCL remain high for more than 10 SMBus clock source periods (see
Figure 14.4). When a Free Timeout is detected, the interface will respond as if a STOP was detected (an
interrupt will be generated, and STO will be set).

Table 14.2. Minimum SDA Setup and Hold Times

EXTHOLD Minimum SDA Setup Time Minimum SDA Hold Time

0

Tlow – 4 system clocks

OR

1 system clock + s/w delay*

3 system clocks

1 11 system clocks 12 system clocks

*Note: Setup Time for ACK bit transmissions and the MSB of all data transfers. The s/w
delay occurs between the time SMB0DAT or ACK is written and when SI is cleared.
Note that if SI is cleared in the same write that defines the outgoing ACK value, s/w
delay is zero.

SCL

Timer Source
Overflows

SCL High TimeoutTLow THigh
Rev. 1.7 151

C8051F310/1/2/3/4/5/6/7
14.4.2. SMB0CN Control Register

SMB0CN is used to control the interface and to provide status information (see SFR Definition 14.2). The
higher four bits of SMB0CN (MASTER, TXMODE, STA, and STO) form a status vector that can be used to
jump to service routines. MASTER and TXMODE indicate the master/slave state and transmit/receive
modes, respectively.

STA and STO indicate that a START and/or STOP has been detected or generated since the last SMBus
interrupt. STA and STO are also used to generate START and STOP conditions when operating as a mas-
ter. Writing a ‘1’ to STA will cause the SMBus interface to enter Master Mode and generate a START when
the bus becomes free (STA is not cleared by hardware after the START is generated). Writing a ‘1’ to STO
while in Master Mode will cause the interface to generate a STOP and end the current transfer after the
next ACK cycle. If STO and STA are both set (while in Master Mode), a STOP followed by a START will be
generated.

As a receiver, writing the ACK bit defines the outgoing ACK value; as a transmitter, reading the ACK bit
indicates the value received on the last ACK cycle. ACKRQ is set each time a byte is received, indicating
that an outgoing ACK value is needed. When ACKRQ is set, software should write the desired outgoing
value to the ACK bit before clearing SI. A NACK will be generated if software does not write the ACK bit
before clearing SI. SDA will reflect the defined ACK value immediately following a write to the ACK bit;
however SCL will remain low until SI is cleared. If a received slave address is not acknowledged, further
slave events will be ignored until the next START is detected.

The ARBLOST bit indicates that the interface has lost an arbitration. This may occur anytime the interface
is transmitting (master or slave). A lost arbitration while operating as a slave indicates a bus error condi-
tion. ARBLOST is cleared by hardware each time SI is cleared.

The SI bit (SMBus Interrupt Flag) is set at the beginning and end of each transfer, after each byte frame, or
when an arbitration is lost; see Table 14.3 for more details.

Important Note About the SI Bit: The SMBus interface is stalled while SI is set; thus SCL is held low, and
the bus is stalled until software clears SI.

Table 14.3 lists all sources for hardware changes to the SMB0CN bits. Refer to Table 14.4 for SMBus sta-
tus decoding using the SMB0CN register.
Rev. 1.7 153

C8051F310/1/2/3/4/5/6/7
14.5.3. Slave Receiver Mode

Serial data is received on SDA and the clock is received on SCL. When slave events are enabled (INH =
0), the interface enters Slave Receiver Mode when a START followed by a slave address and direction bit
(WRITE in this case) is received. Upon entering Slave Receiver Mode, an interrupt is generated and the
ACKRQ bit is set. Software responds to the received slave address with an ACK, or ignores the received
slave address with a NACK. If the received slave address is ignored, slave interrupts will be inhibited until
the next START is detected. If the received slave address is acknowledged, zero or more data bytes are
received. Software must write the ACK bit after each received byte to ACK or NACK the received byte. The
interface exits Slave Receiver Mode after receiving a STOP. Note that the interface will switch to Slave
Transmitter Mode if SMB0DAT is written while an active Slave Receiver. Figure 14.7 shows a typical Slave
Receiver sequence. Two received data bytes are shown, though any number of bytes may be received.
Notice that the ‘data byte transferred’ interrupts occur before the ACK cycle in this mode.

Figure 14.7. Typical Slave Receiver Sequence

PWSLAS Data ByteData Byte A AA

S = START
P = STOP
A = ACK
W = WRITE
SLA = Slave Address

Received by SMBus
Interface

Transmitted by
SMBus Interface

Interrupt Interrupt Interrupt

Interrupt
Rev. 1.7 159

C8051F310/1/2/3/4/5/6/7
14.6. SMBus Status Decoding

The current SMBus status can be easily decoded using the SMB0CN register. In the table below, STATUS
VECTOR refers to the four upper bits of SMB0CN: MASTER, TXMODE, STA, and STO. Note that the
shown response options are only the typical responses; application-specific procedures are allowed as
long as they conform to the SMBus specification. Highlighted responses are allowed but do not conform to
the SMBus specification.

Table 14.4. SMBus Status Decoding

M
o

d
e

Values Read

Current SMbus State Typical Response Options

Values
Written

S
ta

tu
s

V
ec

to
r

A
C

K
R

Q

A
R

B
L

O
S

T

A
C

K

S
TA

S
T

O

A
C

K

M
as

te
r

T
ra

ns
m

itt
er

1110 0 0 X
A master START was
generated.

Load slave address + R/W into
SMB0DAT.

0 0 X

1100

0 0 0
A master data or address byte
was transmitted; NACK
received.

Set STA to restart transfer. 1 0 X

Abort transfer. 0 1 X

0 0 1
A master data or address byte
was transmitted; ACK
received.

Load next data byte into
SMB0DAT.

0 0 X

End transfer with STOP. 0 1 X

End transfer with STOP and start
another transfer.

1 1 X

Send repeated START. 1 0 X

Switch to Master Receiver Mode
(clear SI without writing new data
to SMB0DAT).

0 0 X

M
as

te
r

R
ec

ei
ve

r

1000 1 0 X
A master data byte was
received; ACK requested.

Acknowledge received byte; Read
SMB0DAT.

0 0 1

Send NACK to indicate last byte,
and send STOP.

0 1 0

Send NACK to indicate last byte,
and send STOP followed by
START.

1 1 0

Send ACK followed by repeated
START.

1 0 1

Send NACK to indicate last byte,
and send repeated START.

1 0 0

Send ACK and switch to Master
Transmitter Mode (write to
SMB0DAT before clearing SI).

0 0 1

Send NACK and switch to Master
Transmitter Mode (write to
SMB0DAT before clearing SI).

0 0 0
Rev. 1.7 161

C8051F310/1/2/3/4/5/6/7
S
la

ve
 T

ra
ns

m
itt

er

0100

0 0 0
A slave byte was transmitted;
NACK received.

No action required (expecting
STOP condition).

0 0 X

0 0 1
A slave byte was transmitted;
ACK received.

Load SMB0DAT with next data
byte to transmit.

0 0 X

0 1 X
A Slave byte was transmitted;
error detected.

No action required (expecting
Master to end transfer).

0 0 X

0101 0 X X
A STOP was detected while
an addressed Slave Transmit-
ter.

No action required (transfer com-
plete).

0 0 X

S
la

ve
 R

ec
ei

ve
r

0010

1 0 X
A slave address was
received; ACK requested.

Acknowledge received address. 0 0 1

Do not acknowledge received
address.

0 0 0

1 1 X
Lost arbitration as master;
slave address received; ACK
requested.

Acknowledge received address. 0 0 1

Do not acknowledge received
address.

0 0 0

Reschedule failed transfer; do not
acknowledge received address.

1 0 0

0010 0 1 X
Lost arbitration while attempt-
ing a repeated START.

Abort failed transfer. 0 0 X

Reschedule failed transfer. 1 0 X

0001

1 1 X
Lost arbitration while attempt-
ing a STOP.

No action required (transfer com-
plete/aborted).

0 0 0

0 0 X
A STOP was detected while
an addressed slave receiver.

No action required (transfer com-
plete).

0 0 X

0 1 X
Lost arbitration due to a
detected STOP.

Abort transfer. 0 0 X

Reschedule failed transfer. 1 0 X

0000

1 0 X
A slave byte was received;
ACK requested.

Acknowledge received byte; Read
SMB0DAT.

0 0 1

Do not acknowledge received
byte.

0 0 0

1 1 X
Lost arbitration while transmit-
ting a data byte as master.

Abort failed transfer. 0 0 0

Reschedule failed transfer. 1 0 0

Table 14.4. SMBus Status Decoding (Continued)
M

o
d

e

Values Read

Current SMbus State Typical Response Options

Values
Written

S
ta

tu
s

V

e
c

to
r

A
C

K
R

Q

A
R

B
L

O
S

T

A
C

K

S
TA

S
T

O

A
C

K

162 Rev. 1.7

C8051F310/1/2/3/4/5/6/7
SFR Definition 15.1. SCON0: Serial Port 0 Control

Bit7: S0MODE: Serial Port 0 Operation Mode.
This bit selects the UART0 Operation Mode.
0: 8-bit UART with Variable Baud Rate.
1: 9-bit UART with Variable Baud Rate.

Bit6: UNUSED. Read = 1b. Write = don’t care.
Bit5: MCE0: Multiprocessor Communication Enable.

The function of this bit is dependent on the Serial Port 0 Operation Mode.
S0MODE = 0: Checks for valid stop bit.

0: Logic level of stop bit is ignored.
1: RI0 will only be activated if stop bit is logic level 1.

S0MODE = 1: Multiprocessor Communications Enable.
0: Logic level of ninth bit is ignored.
1: RI0 is set and an interrupt is generated only when the ninth bit is logic 1.

Bit4: REN0: Receive Enable.
This bit enables/disables the UART receiver.
0: UART0 reception disabled.
1: UART0 reception enabled.

Bit3: TB80: Ninth Transmission Bit.
The logic level of this bit will be assigned to the ninth transmission bit in 9-bit UART Mode. It
is not used in 8-bit UART Mode. Set or cleared by software as required.

Bit2: RB80: Ninth Receive Bit.
RB80 is assigned the value of the STOP bit in Mode 0; it is assigned the value of the 9th
data bit in Mode 1.

Bit1: TI0: Transmit Interrupt Flag.
Set by hardware when a byte of data has been transmitted by UART0 (after the 8th bit in 8-
bit UART Mode, or at the beginning of the STOP bit in 9-bit UART Mode). When the UART0
interrupt is enabled, setting this bit causes the CPU to vector to the UART0 interrupt service
routine. This bit must be cleared manually by software.

Bit0: RI0: Receive Interrupt Flag.
Set to ‘1’ by hardware when a byte of data has been received by UART0 (set at the STOP bit
sampling time). When the UART0 interrupt is enabled, setting this bit to ‘1’ causes the CPU
to vector to the UART0 interrupt service routine. This bit must be cleared manually by soft-
ware.

R/W R R/W R/W R/W R/W R/W R/W Reset Value

S0MODE MCE0 REN0 TB80 RB80 TI0 RI0 01000000
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 Bit Addressable

SFR Address: 0x98
168 Rev. 1.7

C8051F310/1/2/3/4/5/6/7
16.1. Signal Descriptions

The four signals used by SPI0 (MOSI, MISO, SCK, NSS) are described below.

16.1.1. Master Out, Slave In (MOSI)

The master-out, slave-in (MOSI) signal is an output from a master device and an input to slave devices. It
is used to serially transfer data from the master to the slave. This signal is an output when SPI0 is operat-
ing as a master and an input when SPI0 is operating as a slave. Data is transferred most-significant bit
first. When configured as a master, MOSI is driven by the MSB of the shift register in both 3- and 4-wire
mode.

16.1.2. Master In, Slave Out (MISO)

The master-in, slave-out (MISO) signal is an output from a slave device and an input to the master device.
It is used to serially transfer data from the slave to the master. This signal is an input when SPI0 is operat-
ing as a master and an output when SPI0 is operating as a slave. Data is transferred most-significant bit
first. The MISO pin is placed in a high-impedance state when the SPI module is disabled and when the SPI
operates in 4-wire mode as a slave that is not selected. When acting as a slave in 3-wire mode, MISO is
always driven by the MSB of the shift register.

16.1.3. Serial Clock (SCK)

The serial clock (SCK) signal is an output from the master device and an input to slave devices. It is used
to synchronize the transfer of data between the master and slave on the MOSI and MISO lines. SPI0 gen-
erates this signal when operating as a master. The SCK signal is ignored by a SPI slave when the slave is
not selected (NSS = 1) in 4-wire slave mode.

16.1.4. Slave Select (NSS)

The function of the slave-select (NSS) signal is dependent on the setting of the NSSMD1 and NSSMD0
bits in the SPI0CN register. There are three possible modes that can be selected with these bits:

• NSSMD[1:0] = 00: 3-Wire Master or 3-Wire Slave Mode: SPI0 operates in 3-wire mode, and NSS is
disabled. When operating as a slave device, SPI0 is always selected in 3-wire mode. Since no select
signal is present, SPI0 must be the only slave on the bus in 3-wire mode. This is intended for point-to-
point communication between a master and one slave.

• NSSMD[1:0] = 01: 4-Wire Slave or Multi-Master Mode: SPI0 operates in 4-wire mode, and NSS is
enabled as an input. When operating as a slave, NSS selects the SPI0 device. When operating as a
master, a 1-to-0 transition of the NSS signal disables the master function of SPI0 so that multiple mas-
ter devices can be used on the same SPI bus.

• NSSMD[1:0] = 1x: 4-Wire Master Mode: SPI0 operates in 4-wire mode, and NSS is enabled as an out-
put. The setting of NSSMD0 determines what logic level the NSS pin will output. This configuration
should only be used when operating SPI0 as a master device.

See Figure 16.2, Figure 16.3, and Figure 16.4 for typical connection diagrams of the various operational
modes. Note that the setting of NSSMD bits affects the pinout of the device. When in 3-wire master or
3-wire slave mode, the NSS pin will not be mapped by the crossbar. In all other modes, the NSS signal will
be mapped to a pin on the device. See Section “13. Port Input/Output” on page 129 for general purpose
port I/O and crossbar information.
174 Rev. 1.7

C8051F310/1/2/3/4/5/6/7
17.2.2. 8-bit Timers with Auto-Reload

When T2SPLIT is set, Timer 2 operates as two 8-bit timers (TMR2H and TMR2L). Both 8-bit timers oper-
ate in auto-reload mode as shown in Figure 17.5. TMR2RLL holds the reload value for TMR2L; TMR2RLH
holds the reload value for TMR2H. The TR2 bit in TMR2CN handles the run control TMR2H. TMR2L is
always running when configured for 8-bit Mode.

Each 8-bit timer may be configured to use SYSCLK, SYSCLK divided by 12, or the external oscillator clock
source divided by 8. The Timer 2 Clock Select bits (T2MH and T2ML in CKCON) select either SYSCLK or
the clock defined by the Timer 2 External Clock Select bit (T2XCLK in TMR2CN), as follows:

Note: External clock divided by 8 is synchronized with the system clock, and the external clock must be
less than or equal to the system clock to operate in this mode.

The TF2H bit is set when TMR2H overflows from 0xFF to 0x00; the TF2L bit is set when TMR2L overflows
from 0xFF to 0x00. When Timer 2 interrupts are enabled (IE.5), an interrupt is generated each time
TMR2H overflows. If Timer 2 interrupts are enabled and TF2LEN (TMR2CN.5) is set, an interrupt is gener-
ated each time either TMR2L or TMR2H overflows. When TF2LEN is enabled, software must check the
TF2H and TF2L flags to determine the source of the Timer 2 interrupt. The TF2H and TF2L interrupt flags
are not cleared by hardware and must be manually cleared by software.

Figure 17.5. Timer 2 8-Bit Mode Block Diagram

T2MH T2XCLK TMR2H Clock
Source

T2ML T2XCLK TMR2L Clock
Source

0 0 SYSCLK/12 0 0 SYSCLK/12
0 1 External Clock/8 0 1 External Clock/8
1 X SYSCLK 1 X SYSCLK

SYSCLK

TCLK

0

1
TR2

External Clock / 8

SYSCLK / 12 0

1

T2XCLK

1

0

TMR2H

TMR2RLH
Reload

Reload

TCLK TMR2L

TMR2RLL

Interrupt

 T
M

R
2C

N

T2SPLIT

TF2LEN
TF2L
TF2H

T2XCLK

TR2

To ADC,
SMBus

To SMBus

CKCON
T
3
M
H

T
3
M
L

S
C
A
0

S
C
A
1

T
0
M

T
2
M
H

T
2
M
L

T
1
M

196 Rev. 1.7

C8051F310/1/2/3/4/5/6/7
SFR Definition 17.8. TMR2CN: Timer 2 Control

Bit7: TF2H: Timer 2 High Byte Overflow Flag.
Set by hardware when the Timer 2 high byte overflows from 0xFF to 0x00. In 16 bit mode,
this will occur when Timer 2 overflows from 0xFFFF to 0x0000. When the Timer 2 interrupt is
enabled, setting this bit causes the CPU to vector to the Timer 2 interrupt service routine.
TF2H is not automatically cleared by hardware and must be cleared by software.

Bit6: TF2L: Timer 2 Low Byte Overflow Flag.
Set by hardware when the Timer 2 low byte overflows from 0xFF to 0x00. When this bit is
set, an interrupt will be generated if TF2LEN is set and Timer 2 interrupts are enabled. TF2L
will set when the low byte overflows regardless of the Timer 2 mode. This bit is not automat-
ically cleared by hardware.

Bit5: TF2LEN: Timer 2 Low Byte Interrupt Enable.
This bit enables/disables Timer 2 Low Byte interrupts. If TF2LEN is set and Timer 2 inter-
rupts are enabled, an interrupt will be generated when the low byte of Timer 2 overflows.
This bit should be cleared when operating Timer 2 in 16-bit mode.
0: Timer 2 Low Byte interrupts disabled.
1: Timer 2 Low Byte interrupts enabled.

Bit4: UNUSED. Read = 0b. Write = don’t care.
Bit3: T2SPLIT: Timer 2 Split Mode Enable.

When this bit is set, Timer 2 operates as two 8-bit timers with auto-reload.
0: Timer 2 operates in 16-bit auto-reload mode.
1: Timer 2 operates as two 8-bit auto-reload timers.

Bit2: TR2: Timer 2 Run Control.
This bit enables/disables Timer 2. In 8-bit mode, this bit enables/disables TMR2H only;
TMR2L is always enabled in this mode.
0: Timer 2 disabled.
1: Timer 2 enabled.

Bit1: UNUSED. Read = 0b. Write = don’t care.
Bit0: T2XCLK: Timer 2 External Clock Select.

This bit selects the external clock source for Timer 2. If Timer 2 is in 8-bit mode, this bit
selects the external oscillator clock source for both timer bytes. However, the Timer 2 Clock
Select bits (T2MH and T2ML in register CKCON) may still be used to select between the
external clock and the system clock for either timer.
0: Timer 2 external clock selection is the system clock divided by 12.
1: Timer 2 external clock selection is the external clock divided by 8. Note that the external
oscillator source divided by 8 is synchronized with the system clock.

R/W R/W R/W R/W R/W R/W R/W R/W Reset Value

TF2H TF2L TF2LEN - T2SPLIT TR2 - T2XCLK 00000000
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 SFR Address:

(bit addressable) 0xC8
Rev. 1.7 197

C8051F310/1/2/3/4/5/6/7
SFR Definition 17.9. TMR2RLL: Timer 2 Reload Register Low Byte

SFR Definition 17.10. TMR2RLH: Timer 2 Reload Register High Byte

SFR Definition 17.11. TMR2L: Timer 2 Low Byte

SFR Definition 17.12. TMR2H Timer 2 High Byte

Bits 7–0: TMR2RLL: Timer 2 Reload Register Low Byte.
TMR2RLL holds the low byte of the reload value for Timer 2.

R/W R/W R/W R/W R/W R/W R/W R/W Reset Value

00000000
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 SFR Address:

0xCA

Bits 7–0: TMR2RLH: Timer 2 Reload Register High Byte.
The TMR2RLH holds the high byte of the reload value for Timer 2.

R/W R/W R/W R/W R/W R/W R/W R/W Reset Value

00000000
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 SFR Address:

0xCB

Bits 7–0: TMR2L: Timer 2 Low Byte.
In 16-bit mode, the TMR2L register contains the low byte of the 16-bit Timer 2. In 8-bit mode,
TMR2L contains the 8-bit low byte timer value.

R/W R/W R/W R/W R/W R/W R/W R/W Reset Value

00000000
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 SFR Address:

0xCC

Bits 7–0: TMR2H: Timer 2 High Byte.
In 16-bit mode, the TMR2H register contains the high byte of the 16-bit Timer 2. In 8-bit
mode, TMR2H contains the 8-bit high byte timer value.

R/W R/W R/W R/W R/W R/W R/W R/W Reset Value

00000000
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 SFR Address:

0xCD
198 Rev. 1.7

C8051F310/1/2/3/4/5/6/7
18. Programmable Counter Array
The Programmable Counter Array (PCA0) provides enhanced timer functionality while requiring less CPU
intervention than the standard 8051 counter/timers. The PCA consists of a dedicated 16-bit counter/timer
and five 16-bit capture/compare modules. Each capture/compare module has its own associated I/O line
(CEXn) which is routed through the Crossbar to Port I/O when enabled (See Section “13.1. Priority
Crossbar Decoder” on page 131 for details on configuring the Crossbar). The counter/timer is driven by
a programmable timebase that can select between six sources: system clock, system clock divided by four,
system clock divided by twelve, the external oscillator clock source divided by 8, Timer 0 overflow, or an
external clock signal on the ECI input pin. Each capture/compare module may be configured to operate
independently in one of six modes: Edge-Triggered Capture, Software Timer, High-Speed Output, Fre-
quency Output, 8-Bit PWM, or 16-Bit PWM (each mode is described in Section “18.2. Capture/Compare
Modules” on page 205). The external oscillator clock option is ideal for real-time clock (RTC) functionality,
allowing the PCA to be clocked by a precision external oscillator while the internal oscillator drives the sys-
tem clock. The PCA is configured and controlled through the system controller's Special Function Regis-
ters. The PCA block diagram is shown in Figure 18.1

Important Note: The PCA Module 4 may be used as a watchdog timer (WDT), and is enabled in this mode
following a system reset. Access to certain PCA registers is restricted while WDT mode is enabled. See
Section 18.3 for details.

Figure 18.1. PCA Block Diagram

Capture/Compare
Module 1

Capture/Compare
Module 0

Capture/Compare
Module 2

Capture/Compare
Module 3

Capture/Compare
Module 4 / WDT

C
E

X
1

E
C

I

Crossbar

C
E

X
2

C
E

X
3

C
E

X
4

C
E

X
0

Port I/O

16-Bit Counter/Timer
PCA

CLOCK
MUX

SYSCLK/12

SYSCLK/4

Timer 0 Overflow

 ECI

SYSCLK

External Clock/8
Rev. 1.7 203

