

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Not For New Designs
Core Processor	8051
Core Size	8-Bit
Speed	25MHz
Connectivity	SMBus (2-Wire/I ² C), SPI, UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	29
Program Memory Size	8KB (8K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1.25K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 3.6V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	32-LQFP
Supplier Device Package	32-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/c8051f314-gq

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

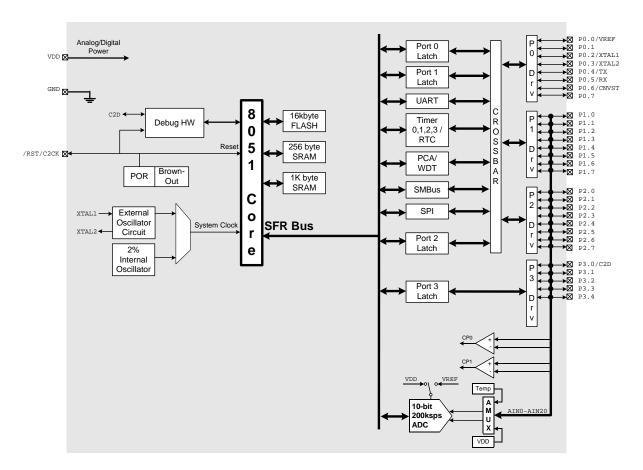


Figure 1.1. C8051F310 Block Diagram

3. Global DC Electrical Characteristics

Table 3.1. Global DC Electrical Characteristics

-40°C to +85°C, 25 MHz System Clock unless otherwise specified.

Parameter	Conditions	Min	Тур	Max	Units
Digital Supply Voltage		V_{RST}^{1}	3.0	3.6	V
Digital Supply RAM Data Retention Voltage		—	1.5	_	V
Specified Operating Temperature Range		-40	_	+85	°C
SYSCLK (system clock frequency)		0 ²	_	25	MHz
Tsysl (SYSCLK low time)		18			ns
Tsysh (SYSCLK high time)		18	—		ns
Digital Supply Current—CPU Act	ive (Normal Mode, fetching instruc	tions fro	om Flas	h)	
I _{DD} (Note 3)	V _{DD} = 3.0 V, F = 25 MHz	_	7.8	8.6	mA
	V _{DD} = 3.0 V, F = 1 MHz	—	0.38	_	mA
	V _{DD} = 3.0 V, F = 80 kHz	—	31		μA
	V _{DD} = 3.6 V, F = 25 MHz	—	10.7	12.1	mA
I _{DD} Supply Sensitivity (Note 3,	F = 25 MHz	_	67	_	%/V
Note 4)	F = 1 MHz	_	62	—	%/V
I _{DD} Frequency Sensitivity (Note 3,	V_{DD} = 3.0 V, F \leq 15 MHz, T = 25 °C	_	0.39	_	mA/MHz
Note 5)	V_{DD} = 3.0 V, F > 15 MHz, T = 25 °C	—	0.21		mA/MHz
	V_{DD} = 3.6 V, F \leq 15 MHz, T = 25 °C	—	0.55		mA/MHz
••	V _{DD} = 3.6 V, F > 15 MHz, T = 25 °C	_	0.27		mA/MHz

Notes:

- 1. Given in Table 9.1 on page 110.
- 2. SYSCLK must be at least 32 kHz to enable debugging.
- 3. Based on device characterization data, not production tested.
- 4. Active and Inactive I_{DD} at voltages and frequencies other than those specified can be calculated using the I_{DD} Supply Sensitivity. For example, if the V_{DD} is 3.3 V instead of 3.0 V at 25 MHz: I_{DD} = 7.8 mA typical at 3.0 V and f = 25 MHz. From this, I_{DD} = 7.8 mA + 0.67 x (3.3 V 3.0 V) = 8 mA at 3.3 V and f = 25 MHz.
- 5. I_{DD} can be estimated for frequencies ≤ 15 MHz by multiplying the frequency of interest by the frequency sensitivity number for that range. When using these numbers to estimate I_{DD} for > 15 MHz, the estimate should be the current at 25 MHz minus the difference in current indicated by the frequency sensitivity number. For example:

 V_{DD} = 3.0 V; F = 20 MHz, I_{DD} = 7.8 mA – (25 MHz – 20 MHz) x 0.21 mA/MHz = 6.75 mA.

Idle I_{DD} can be estimated for frequencies ≤ 1 MHz by multiplying the frequency of interest by the frequency sensitivity number for that range. When using these numbers to estimate Idle I_{DD} for > 1 MHz, the estimate should be the current at 25 MHz minus the difference in current indicated by the frequency sensitivity number. For example:

 V_{DD} = 3.0 V; F = 5 MHz, Idle I_{DD} = 4.8 mA – (25 MHz – 5 MHz) x 0.15 mA/MHz = 1.8 mA.

C8051F310/1/2/3/4/5/6/7

Other electrical characteristics tables are found in the data sheet section corresponding to the associated peripherals. For more information on electrical characteristics for a specific peripheral, refer to the page indicated in Table 3.2.

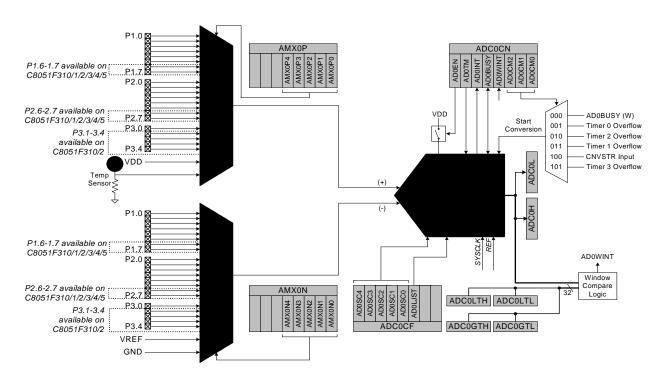

Peripheral Electrical Characteristics	Page No.
ADC0 Electrical Characteristics	65
External Voltage Reference Circuit Electrical Characteristics	68
Comparator Electrical Characteristics	78
Reset Electrical Characteristics	110
Flash Electrical Characteristics	112
Internal Oscillator Electrical Characteristics	123
Port I/O DC Electrical Characteristics	143

Table 3.2. Electrical Characteristics Quick Reference

5. 10-Bit ADC (ADC0, C8051F310/1/2/3/6 only)

The ADC0 subsystem for the C8051F310/1/2/3/6 consists of two analog multiplexers (referred to collectively as AMUX0) with 25 total input selections, and a 200 ksps, 10-bit successive-approximation-register ADC with integrated track-and-hold and programmable window detector. The AMUX0, data conversion modes, and window detector are all configurable under software control via the Special Function Registers shown in Figure 5.1. ADC0 operates in both Single-ended and Differential modes, and may be configured to measure P1.0–P3.4, the Temperature Sensor output, or V_{DD} with respect to P1.0–P3.4, VREF, or GND. The ADC0 subsystem is enabled only when the AD0EN bit in the ADC0 Control register (ADC0CN) is set to logic 1. The ADC0 subsystem is in low power shutdown when this bit is logic 0.

5.1. Analog Multiplexer

AMUX0 selects the positive and negative inputs to the ADC. Any of the following may be selected as the positive input: P1.0-P3.4, the on-chip temperature sensor, or the positive power supply (V_{DD}). Any of the following may be selected as the negative input: P1.0-P3.4, VREF, or GND. When GND is selected as the negative input, ADC0 operates in Single-ended Mode; all other times, ADC0 operates in Differential Mode. The ADC0 input channels are selected in the AMX0P and AMX0N registers as described in SFR Definition 5.1 and SFR Definition 5.2.

The conversion code format differs between Single-ended and Differential modes. The registers ADC0H and ADC0L contain the high and low bytes of the output conversion code from the ADC at the completion of each conversion. Data can be right-justified or left-justified, depending on the setting of the AD0LJST bit (ADC0CN.0). When in Single-ended Mode, conversion codes are represented as 10-bit unsigned integers.

6. Voltage Reference (C8051F310/1/2/3/6 only)

The voltage reference MUX on C8051F310/1/2/3/6 devices is configurable to use an externally connected voltage reference, or the power supply voltage (see Figure 6.1). The REFSL bit in the Reference Control register (REF0CN) selects the reference source. For an external source, REFSL should be set to '0'; For V_{DD} as the reference source, REFSL should be set to '1'.

The BIASE bit enables the internal voltage bias generator, which is used by the ADC, Temperature Sensor, and Internal Oscillator. This bit is forced to logic 1 when any of the aforementioned peripherals is enabled. The bias generator may be enabled manually by writing a '1' to the BIASE bit in register REF0CN; see SFR Definition 6.1 for REF0CN register details. The electrical specifications for the voltage reference circuit are given in Table 6.1.

Important Note About the VREF Input: Port pin P0.0 is used as the external VREF input. When using an external voltage reference, P0.0 should be configured as analog input and skipped by the Digital Crossbar. To configure P0.0 as analog input, set to '0' Bit0 in register P0MDIN. To configure the Crossbar to skip P0.0, set to '1' Bit0 in register P0SKIP. Refer to **Section "13. Port Input/Output" on page 129** for complete Port I/O configuration details.

The temperature sensor connects to the highest order input of the ADC0 positive input multiplexer (see **Section "5.1. Analog Multiplexer" on page 51** for details). The TEMPE bit in register REF0CN enables/disables the temperature sensor. While disabled, the temperature sensor defaults to a high impedance state and any ADC0 measurements performed on the sensor result in meaningless data.

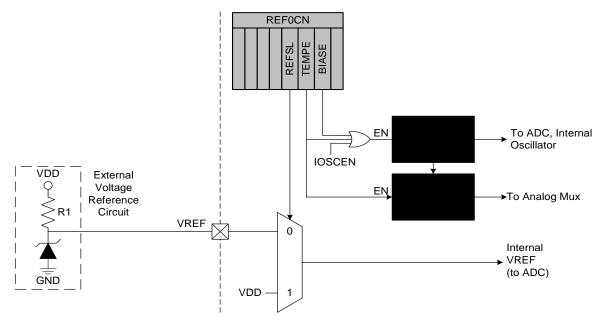


Figure 6.1. Voltage Reference Functional Block Diagram

C8051F310/1/2/3/4/5/6/7

The Comparator output can be polled in software, used as an interrupt source, and/or routed to a Port pin. When routed to a Port pin, the Comparator output is available asynchronous or synchronous to the system clock; the asynchronous output is available even in STOP mode (with no system clock active). When disabled, the Comparator output (if assigned to a Port I/O pin via the Crossbar) defaults to the logic low state, and its supply current falls to less than 100 nA. See **Section "13.1. Priority Crossbar Decoder" on page 131** for details on configuring Comparator outputs via the digital Crossbar. Comparator inputs can be externally driven from -0.25 V to (V_{DD}) + 0.25 V without damage or upset. The complete Comparator electrical specifications are given in Table 7.1.

The Comparator response time may be configured in software via the CPTnMD registers (see SFR Definition 7.3 and SFR Definition 7.6). Selecting a longer response time reduces the Comparator supply current. See Table 7.1 for complete timing and current consumption specifications.

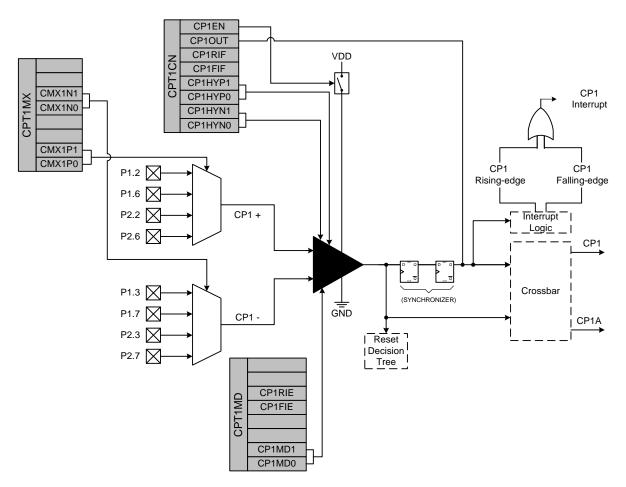


Figure 7.2. Comparator1 Functional Block Diagram

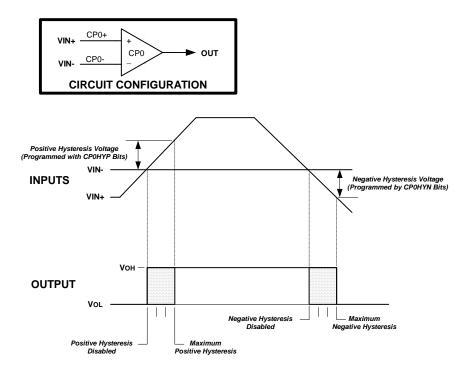


Figure 7.3. Comparator Hysteresis Plot

The Comparator hysteresis is software-programmable via its Comparator Control register CPTnCN (for n = 0 or 1). The user can program both the amount of hysteresis voltage (referred to the input voltage) and the positive and negative-going symmetry of this hysteresis around the threshold voltage.

The Comparator hysteresis is programmed using Bits3-0 in the Comparator Control Register CPTnCN (shown in SFR Definition 7.1 and SFR Definition 7.4). The amount of negative hysteresis voltage is determined by the settings of the CPnHYN bits. As shown in Table 7.1, settings of 20, 10 or 5 mV of negative hysteresis can be programmed, or negative hysteresis can be disabled. In a similar way, the amount of positive hysteresis is determined by the setting the CPnHYP bits.

Comparator interrupts can be generated on both rising-edge and falling-edge output transitions. (For Interrupt enable and priority control, see **Section "8.3. Interrupt Handler" on page 93**). The CPnFIF flag is set to logic 1 upon a Comparator falling-edge interrupt, and the CPnRIF flag is set to logic 1 upon the Comparator rising-edge interrupt. Once set, these bits remain set until cleared by software. The output state of the Comparator can be obtained at any time by reading the CPnOUT bit. The Comparator is enabled by setting the CPnEN bit to logic 1, and is disabled by clearing this bit to logic 0.

The output state of the Comparator can be obtained at any time by reading the CPnOUT bit. The Comparator is enabled by setting the CPnEN bit to logic 1, and is disabled by clearing this bit to logic 0.

Note that false rising edges and falling edges can be detected when the comparator is first powered-on or if changes are made to the hysteresis or response time control bits. Therefore, it is recommended that the rising-edge and falling-edge flags be explicitly cleared to logic 0 a short time after the comparator is enabled or its mode bits have been changed. This Power Up Time is specified in Table 7.1 on page 78.

Register	Address	Description	Page
SFRs are liste	ed in alphabetic	al order. All undefined SFR locations are reserved	
ACC	0xE0	Accumulator	92
ADC0CF	0xBC	ADC0 Configuration	59
ADC0CN	0xE8	ADC0 Control	60
ADC0GTH	0xC4	ADC0 Greater-Than Compare High	61
ADC0GTL	0xC3	ADC0 Greater-Than Compare Low	61
ADC0H	0xBE	ADC0 High	59
ADC0L	0xBD	ADC0 Low	59
ADC0LTH	0xC6	ADC0 Less-Than Compare Word High	62
ADC0LTL	0xC5	ADC0 Less-Than Compare Word Low	62
AMX0N	0xBA	AMUX0 Negative Channel Select	58
AMX0P	0xBB	AMUX0 Positive Channel Select	57
В	0xF0	B Register	93
CKCON	0x8E	Clock Control	193
CLKSEL	0xA9	Clock Select	123
CPT0CN	0x9B	Comparator0 Control	72
CPT0MD	0x9D	Comparator0 Mode Selection	74
CPT0MX	0x9F	Comparator0 MUX Selection	73
CPT1CN	0x9A	Comparator1 Control	75
CPT1MD	0x9C	Comparator1 Mode Selection	77
CPT1MX	0x9E	Comparator1 MUX Selection	76
DPH	0x83	Data Pointer High	91
DPL	0x82	Data Pointer Low	90
EIE1	0xE6	Extended Interrupt Enable 1	99
EIP1	0xF6	Extended Interrupt Priority 1	100
EMI0CN	0xAA	External Memory Interface Control	119
FLKEY	0xB7	Flash Lock and Key	117
FLSCL	0xB6	Flash Scale	117
IE	0xA8	Interrupt Enable	97
IP	0xB8	Interrupt Priority	98
IT01CF	0xE4	INT0/INT1 Configuration	101
OSCICL	0xB3	Internal Oscillator Calibration	122
OSCICN	0xB2	Internal Oscillator Control	122
OSCXCN	0xB1	External Oscillator Control	125
P0	0x80	Port 0 Latch	136
POMDIN	0xF1	Port 0 Input Mode Configuration	136
POMDOUT	0xA4	Port 0 Output Mode Configuration	137
POSKIP	0xD4	Port 0 Skip	137
P1	0x90	Port 1 Latch	138
P1MDIN	0xF2	Port 1 Input Mode Configuration	138
P1MDOUT	0xA5	Port 1 Output Mode Configuration	139
P1SKIP	0xD5	Port 1 Skip	139
P2	0xA0	Port 2 Latch	140
P2MDIN	0xF3	Port 2 Input Mode Configuration	140
P2MDOUT	0xA6	Port 2 Output Mode Configuration	141

Table 8.3. Special Function Registers

9.1. Power-On Reset

During power-up, the device is held in a reset state and the \overline{RST} pin is driven low until V_{DD} settles above V_{RST}. An additional delay occurs before the device is released from reset; the delay decreases as the V_{DD} ramp time increases (V_{DD} ramp time is defined as how fast V_{DD} ramps from 0 V to V_{RST}). Figure 9.2. plots the power-on and V_{DD} monitor reset timing. For valid ramp times (less than 1 ms), the power-on reset delay (T_{PORDelav}) is typically less than 0.3 ms.

Note: The maximum V_{DD} ramp time is 1 ms; slower ramp times may cause the device to be released from reset before V_{DD} reaches the V_{RST} level.

On exit from a power-on reset, the PORSF flag (RSTSRC.1) is set by hardware to logic 1. When PORSF is set, all of the other reset flags in the RSTSRC Register are indeterminate (PORSF is cleared by all other resets). Since all resets cause program execution to begin at the same location (0x0000) software can read the PORSF flag to determine if a power-up was the cause of reset. The content of internal data memory should be assumed to be undefined after a power-on reset. The V_{DD} monitor is disabled following a power-on reset.

Figure 9.2. Power-On and V_{DD} Monitor Reset Timing

9.2. Power-Fail Reset / V_{DD} Monitor

When a power-down transition or power irregularity causes V_{DD} to drop below V_{RST} , the power supply monitor will drive the RST pin low and hold the CIP-51 in a reset state (see Figure 9.2). When V_{DD} returns to a level above V_{RST} , the CIP-51 will be released from the reset state. Note that even though internal data memory contents are not altered by the power-fail reset, it is impossible to determine if V_{DD} dropped below the level required for data retention. If the PORSF flag reads '1', the data may no longer be valid. The V_{DD} monitor is disabled after power-on resets; however its defined state (enabled/disabled) is not altered by

- 10. Make certain that the Flash write and erase pointer variables are not located in XRAM. See your compiler documentation for instructions regarding how to explicitly locate variables in different memory areas.
- 11. Add address bounds checking to the routines that write or erase Flash memory to ensure that a routine called with an illegal address does not result in modification of the Flash.

10.4.3. System Clock

- 12. If operating from an external crystal, be advised that crystal performance is susceptible to electrical interference and is sensitive to layout and to changes in temperature. If the system is operating in an electrically noisy environment, use the internal oscillator or use an external CMOS clock.
- 13. If operating from the external oscillator, switch to the internal oscillator during Flash write or erase operations. The external oscillator can continue to run, and the CPU can switch back to the external oscillator after the Flash operation has completed.

Additional Flash recommendations and example code can be found in AN201, "Writing to Flash from Firm-ware", available from the Silicon Laboratories web site.

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
-	-	-	-	-	-	PSEE	PSWE	0000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:
								0x8F
Bits7–2: Bit1: Bit0:	UNUSED: Re PSEE: Progr Setting this b to be erased Flash memori tion addresse 0: Flash prog 1: Flash prog PSWE: Prog Setting this b write instruct 0: Writes to F 1: Writes to F memory.	am Store E bit (in combi . If this bit is ry using the ed by the N gram memo gram memo ram Store N bit allows we ion. The Fla Flash program	rase Enabl nation with s logic 1 an MOVX inst IOVX instru- ory erasure Write Enabl riting a byte ash location am memory	e PSWE) allo d Flash writ struction will action. The v disabled. enabled. e of data to t n should be y disabled.	ows an entir es are enat erase the e value of the he Flash pr erased befo	oled (PSWE entire page data byte w ogram men ore writing o	is logic 1) that contain written does nory using data.	, a write to ns the loca- s not matter. the MOVX

SFR Definition 10.1. PSCTL: Program Store R/W Control

116

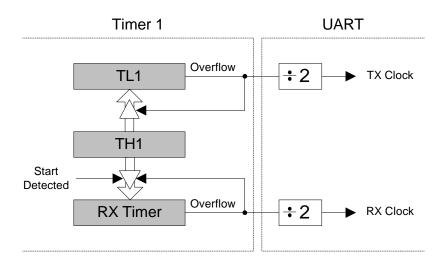
14.3.2. Clock Low Extension

SMBus provides a clock synchronization mechanism, similar to I2C, which allows devices with different speed capabilities to coexist on the bus. A clock-low extension is used during a transfer in order to allow slower slave devices to communicate with faster masters. The slave may temporarily hold the SCL line LOW to extend the clock low period, effectively decreasing the serial clock frequency.

14.3.3. SCL Low Timeout

If the SCL line is held low by a slave device on the bus, no further communication is possible. Furthermore, the master cannot force the SCL line high to correct the error condition. To solve this problem, the SMBus protocol specifies that devices participating in a transfer must detect any clock cycle held low longer than 25 ms as a "timeout" condition. Devices that have detected the timeout condition must reset the communication no later than 10 ms after detecting the timeout condition.

When the SMBTOE bit in SMB0CF is set, Timer 3 is used to detect SCL low timeouts. Timer 3 is forced to reload when SCL is high, and allowed to count when SCL is low. With Timer 3 enabled and configured to overflow after 25 ms (and SMBTOE set), the Timer 3 interrupt service routine can be used to reset (disable and re-enable) the SMBus in the event of an SCL low timeout.


14.3.4. SCL High (SMBus Free) Timeout

The SMBus specification stipulates that if the SCL and SDA lines remain high for more that 50 μ s, the bus is designated as free. When the SMBFTE bit in SMB0CF is set, the bus will be considered free if SCL and SDA remain high for more than 10 SMBus clock source periods. If the SMBus is waiting to generate a Master START, the START will be generated following this timeout. Note that a clock source is required for free timeout detection, even in a slave-only implementation.

15.1. Enhanced Baud Rate Generation

The UART0 baud rate is generated by Timer 1 in 8-bit auto-reload mode. The TX clock is generated by TL1; the RX clock is generated by a copy of TL1 (shown as RX Timer in Figure 15.2), which is not useraccessible. Both TX and RX Timer overflows are divided by two to generate the TX and RX baud rates. The RX Timer runs when Timer 1 is enabled, and uses the same reload value (TH1). However, an RX Timer reload is forced when a START condition is detected on the RX pin. This allows a receive to begin any time a START is detected, independent of the TX Timer state.

Timer 1 should be configured for Mode 2, 8-bit auto-reload (see **Section "17.1.3. Mode 2: 8-bit Counter/Timer with Auto-Reload" on page 189**). The Timer 1 reload value should be set so that over-flows will occur at two times the desired UART baud rate frequency. Note that Timer 1 may be clocked by one of six sources: SYSCLK, SYSCLK / 4, SYSCLK / 12, SYSCLK / 48, the external oscillator clock / 8, or an external input T1. For any given Timer 1 clock source, the UART0 baud rate is determined by Equation 15.1.

Equation 15.1. UART0 Baud Rate

$$UartBaudRate = \frac{T1_{CLK}}{(256 - T1H)} \times \frac{1}{2}$$

Where $T1_{CLK}$ is the frequency of the clock supplied to Timer 1, and T1H is the high byte of Timer 1 (reload value). Timer 1 clock frequency is selected as described in **Section "17. Timers" on page 187**. A quick reference for typical baud rates and system clock frequencies is given in Table 15.1 through Table 15.6. Note that the internal oscillator may still generate the system clock when the external oscillator is driving Timer 1.

		Frequency: 24.5 MHz										
	Target Baud Rate (bps)	Baud Rate % Error	Oscilla- tor Divide Factor	Timer Clock Source	SCA1-SCA0 (pre-scale select)*	T1M*	Timer 1 Reload Value (hex)					
	230400	-0.32%	106	SYSCLK	XX	1	0xCB					
	115200	-0.32%	212	SYSCLK	XX	1	0x96					
	57600	0.15%	426	SYSCLK	XX	1	0x2B					
from Ssc.	28800	-0.32%	848	SYSCLK / 4	01	0	0x96					
< froi Osc.	14400	0.15%	1704	SYSCLK / 12	00	0	0xB9					
	9600	-0.32%	2544	SYSCLK / 12	00	0	0x96					
SYSCL	2400	-0.32%	10176	SYSCLK / 48	10	0	0x96					
SY Int	1200	0.15%	20448	SYSCLK / 48	10	0	0x2B					

Table 15.1. Timer Settings for Standard Baud RatesUsing the Internal Oscillator

X = Don't care

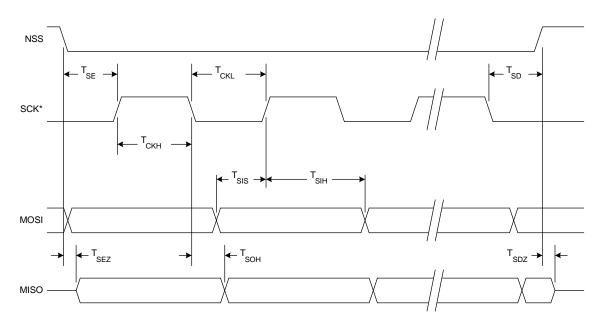
*Note: SCA1–SCA0 and T1M bit definitions can be found in **Section 17.1**.

Table 15.2. Timer Settings for Standard Baud RatesUsing an External 25 MHz Oscillator

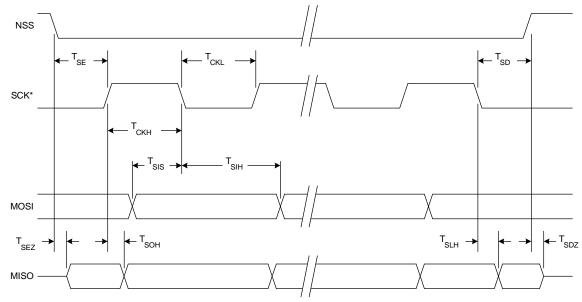
			Fre	quency: 25.0 M	lHz		
	Target Baud Rate (bps)	Baud Rate % Error	Oscilla- tor Divide Factor	Timer Clock Source	SCA1-SCA0 (pre-scale select)*	T1M*	Timer 1 Reload Value (hex)
	230400	-0.47%	108	SYSCLK	XX	1	0xCA
	115200	0.45%	218	SYSCLK	XX	1	0x93
	57600	-0.01%	434	SYSCLK	XX	1	0x27
from Osc.	28800	0.45%	872	SYSCLK / 4	01	0	0x93
	14400	-0.01%	1736	SYSCLK / 4	01	0	0x27
XLK Jal	9600	0.15%	2608	EXTCLK / 8	11	0	0x5D
SYSCLK External	2400	0.45%	10464	SYSCLK / 48	10	0	0x93
S ≺	1200	-0.01%	20832	SYSCLK / 48	10	0	0x27
ε.	57600	-0.47%	432	EXTCLK / 8	11	0	0xE5
< from Osc.	28800	-0.47%	864	EXTCLK / 8	11	0	0xCA
	14400	0.45%	1744	EXTCLK / 8	11	0	0x93
SYSCLK Internal C	9600	0.15%	2608	EXTCLK / 8	11	0	0x5D

X = Don't care

*Note: SCA1–SCA0 and T1M bit definitions can be found in Section 17.1.



SFR Definition 16.2. SPI0CN: SPI0 Control


R/W SPIF	R/W WCOL	R/W MODF	R/W RXOVRN	R/W NSSMD1	R/W	R TXBMT	R/W SPIEN	Reset Value 00000110
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	Bit
							SFR Addres	Addressable s: 0xF8
Bit 7:	SPIF: SPI0 I This bit is se setting this b automatically	t to logic 1 it causes th	by hardwar ne CPU to v	ector to the	SPI0 interru	upt service		
Bit 6:	WCOL: Write This bit is se the SPI0 dat cleared by se	e Collision İ t to logic 1 a register v	-lag. by hardwar	e (and gene	erates a SPI	0 interrupt)		
Bit 5:	MODF: Mod This bit is se collision is de matically clear	t to logic 1 etected (NS ared by har	by hardwar SS is low, M dware. It m	STEN = 1, just be clea	and NSSMD red by softwa	D[1:0] = 01)		
Bit 4:	RXOVRN: R This bit is se fer still holds shifted into the be cleared b	t to logic 1 unread da ne SPI0 shi	by hardwar ta from a pr	e (and gene evious tran	erates a SPI sfer and the	last bit of t	he current	transfer is
Bits 3–2:	NSSMD1–N Selects betw (See Section Slave Mode 00: 3-Wire S 01: 4-Wire S 1x: 4-Wire S assume the	SSMD0: SI reen the fol n "16.2. SP Operation lave or 3-w lave or Mul ingle-Maste	lowing NSS PIO Master I " on page ire Master I ti-Master M er Mode. NS	operation (Mode Oper 177). Mode. NSS ode (Defau	ation" on pa signal is not lt). NSS is a	t routed to a lways an ir	a port pin. put to the o	device.
Bit 1:	TXBMT: Tran This bit will b data in the tr indicating that	nsmit Buffe be set to log ansmit buff	r Empty. jic 0 when r er is transfe	erred to the	SPI shift reg	jister, this b		
Bit 0:	SPIEN: SPIC This bit enab 0: SPI disabl 1: SPI enabl	les/disable ed.	s the SPI.					

C8051F310/1/2/3/4/5/6/7

* SCK is shown for CKPOL = 0. SCK is the opposite polarity for CKPOL = 1.

Figure 16.10. SPI Slave Timing (CKPHA = 0)

* SCK is shown for CKPOL = 0. SCK is the opposite polarity for CKPOL = 1.

Figure 16.11. SPI Slave Timing (CKPHA = 1)

17. Timers

Each MCU includes four counter/timers: two are 16-bit counter/timers compatible with those found in the standard 8051, and two are 16-bit auto-reload timer for use with the ADC, SMBus, or for general purpose use. These timers can be used to measure time intervals, count external events and generate periodic interrupt requests. Timer 0 and Timer 1 are nearly identical and have four primary modes of operation. Timer 2 and Timer 3 offer 16-bit and split 8-bit timer functionality with auto-reload.

Timer 0 and Timer 1 Modes:	Timer 2 Modes:	Timer 3 Modes:	
13-bit counter/timer	16-bit timer with auto-reload	16-bit timer with auto-reload	
16-bit counter/timer			
8-bit counter/timer			
with auto-reload	Two 8-bit timers with auto-reload	Two 8-bit timers with auto-reload	
Two 8-bit counter/timers			
(Timer 0 only)			

Timers 0 and 1 may be clocked by one of five sources, determined by the Timer Mode Select bits (T1M-T0M) and the Clock Scale bits (SCA1-SCA0). The Clock Scale bits define a pre-scaled clock from which Timer 0 and/or Timer 1 may be clocked (See SFR Definition 17.3 for pre-scaled clock selection).

Timer 0/1 may then be configured to use this pre-scaled clock signal or the system clock. Timer 2 and Timer 3 may be clocked by the system clock, the system clock divided by 12, or the external oscillator clock source divided by 8.

Timer 0 and Timer 1 may also be operated as counters. When functioning as a counter, a counter/timer register is incremented on each high-to-low transition at the selected input pin (T0 or T1). Events with a frequency of up to one-fourth the system clock's frequency can be counted. The input signal need not be periodic, but it should be held at a given level for at least two full system clock cycles to ensure the level is properly sampled.

17.1. Timer 0 and Timer 1

Each timer is implemented as 16-bit register accessed as two separate bytes: a low byte (TL0 or TL1) and a high byte (TH0 or TH1). The Counter/Timer Control register (TCON) is used to enable Timer 0 and Timer 1 as well as indicate status. Timer 0 interrupts can be enabled by setting the ET0 bit in the IE register (SFR Definition 8.7. "IE: Interrupt Enable" on page 97); Timer 1 interrupts can be enabled by setting the ET1 bit in the IE register. Both counter/timers operate in one of four primary modes selected by setting the Mode Select bits T1M1-T0M0 in the Counter/Timer Mode register (TMOD). Each timer can be configured independently. Each operating mode is described below.

17.1.1. Mode 0: 13-bit Counter/Timer

Timer 0 and Timer 1 operate as 13-bit counter/timers in Mode 0. The following describes the configuration and operation of Timer 0. However, both timers operate identically, and Timer 1 is configured in the same manner as described for Timer 0.

The TH0 register holds the eight MSBs of the 13-bit counter/timer. TL0 holds the five LSBs in bit positions TL0.4–TL0.0. The three upper bits of TL0 (TL0.7–TL0.5) are indeterminate and should be masked out or ignored when reading. As the 13-bit timer register increments and overflows from 0x1FFF (all ones) to 0x0000, the timer overflow flag TF0 (TCON.5) is set and an interrupt will occur if Timer 0 interrupts are enabled.

SFR Definition	17.1.	TCON:	Timer	Control
----------------	-------	-------	-------	---------

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Valu
TF1	TR1	TF0	TR0	IE1	IT1	IE0	IT0	0000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Addre
						(bi	t addressable	e) 0x88
Sit7:	TF1: Timer 1		-		flan ann ba			h
	Set by hardw							
	matically clea			ctors to the	i imer i int	errupt servi	ce routine	•
	0: No Timer 1: Timer 1 ha							
Bit6:	TR1: Timer 1							
nio.	0: Timer 1 di		101.					
	1: Timer 1 er							
Bit5:	TF0: Timer 0		Flag					
	Set by hardw		-	rflows. This	s flag can be	e cleared by	/ software	but is auto
	matically clea							
	0: No Timer (
	1: Timer 0 ha	as overflow	ed.					
Bit4:	TR0: Timer C	Run Conti	rol.					
	0: Timer 0 di	sabled.						
	1: Timer 0 er	nabled.						
Bit3:	IE1: External	•						
	This flag is s							
	cleared by so							
	rupt 1 service				-		nen /INT1	is active as
	defined by bi		-	1CF (see S	FR Definitio	on 8.11).		
Bit2:	IT1: Interrupt							
	This bit select							
	is configured 8.11).	active low	or high by t			ICF registe	el (See SF	
	0: /INT1 is le	vel triggere	hd					
	1: /INT1 is ed							
Bit1:	IE0: External	0 00						
	This flag is se	•		n edae/leve	el of type de	fined by IT() is detecte	ed. It can b
	cleared by so							
	rupt 0 service							
	defined by bi							
BitO:	IT0: Interrupt	t 0 Type Se	lect.					
	This bit selec							
	is configured	active low	or high by t	he IN0PL b	oit in registe	r IT01CF (s	ee SFR D	efinition
	8.11).							
	0: /INT0 is le							
	1: /INT0 is ed							
		age triggere	ed.					

18.2.5. 8-Bit Pulse Width Modulator Mode

Each module can be used independently to generate a pulse width modulated (PWM) output on its associated CEXn pin. The frequency of the output is dependent on the timebase for the PCA counter/timer. The duty cycle of the PWM output signal is varied using the module's PCA0CPLn capture/compare register. When the value in the low byte of the PCA counter/timer (PCA0L) is equal to the value in PCA0CPLn, the output on the CEXn pin will be set. When the count value in PCA0L overflows, the CEXn output will be reset (see Figure 18.8). Also, when the counter/timer low byte (PCA0L) overflows from 0xFF to 0x00, PCA0CPLn is reloaded automatically with the value stored in the module's capture/compare high byte (PCA0CPHn) without software intervention. Setting the ECOMn and PWMn bits in the PCA0CPMn register enables 8-Bit Pulse Width Modulator mode. The duty cycle for 8-Bit PWM Mode is given by Equation 18.2.

Important Note About Capture/Compare Registers: When writing a 16-bit value to the PCA0 Capture/ Compare registers, the low byte should always be written first. Writing to PCA0CPLn clears the ECOMn bit to '0'; writing to PCA0CPHn sets ECOMn to '1'.

Equation 18.2. 8-Bit PWM Duty Cycle

 $DutyCycle = \frac{(256 - PCA0CPHn)}{256}$

Using Equation 18.2, the largest duty cycle is 100% (PCA0CPHn = 0), and the smallest duty cycle is 0.39% (PCA0CPHn = 0xFF). A 0% duty cycle may be generated by clearing the ECOMn bit to '0'.

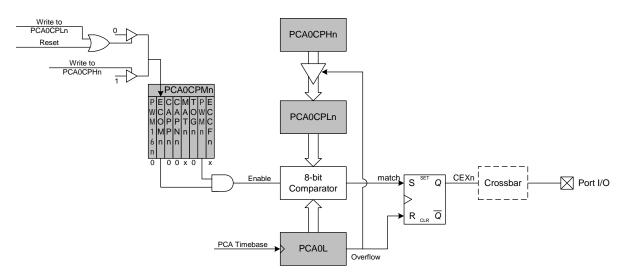


Figure 18.8. PCA 8-Bit PWM Mode Diagram

18.2.6. 16-Bit Pulse Width Modulator Mode

A PCA module may also be operated in 16-Bit PWM mode. In this mode, the 16-bit capture/compare module defines the number of PCA clocks for the low time of the PWM signal. When the PCA counter matches the module contents, the output on CEXn is asserted high; when the counter overflows, CEXn is asserted low. To output a varying duty cycle, new value writes should be synchronized with PCA CCFn match interrupts. 16-Bit PWM Mode is enabled by setting the ECOMn, PWMn, and PWM16n bits in the PCA0CPMn register. For a varying duty cycle, match interrupts should be enabled (ECCFn = 1 AND MATn = 1) to help synchronize the capture/compare register writes. The duty cycle for 16-Bit PWM Mode is given by Equation 18.3.

Important Note About Capture/Compare Registers: When writing a 16-bit value to the PCA0 Capture/ Compare registers, the low byte should always be written first. Writing to PCA0CPLn clears the ECOMn bit to '0'; writing to PCA0CPHn sets ECOMn to '1'.

Equation 18.3. 16-Bit PWM Duty Cycle

 $DutyCycle = \frac{(65536 - PCA0CPn)}{65536}$

Using Equation 18.3, the largest duty cycle is 100% (PCA0CPn = 0), and the smallest duty cycle is 0.0015% (PCA0CPn = 0xFFFF). A 0% duty cycle may be generated by clearing the ECOMn bit to '0'.

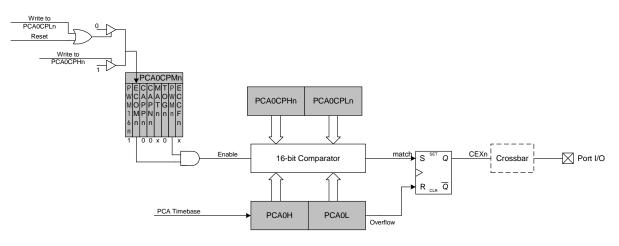


Figure 18.9. PCA 16-Bit PWM Mode

18.4. Register Descriptions for PCA

Following are detailed descriptions of the special function registers related to the operation of the PCA.

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
CF	CR		CCF4	CCF3	CCF2	CCF1	CCF0	00000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address
						(bi	t addressable) 0xD8
		·						
Bit7:	CF: PCA Co			0		0 FFF	-	
	Set by hardw							
	Counter/Tim		· · ·	•				
	to the PCA in must be clear	•		. This dillis	not automa	lucally clea	red by hard	iware and
Bit6:	CR: PCA Co			ol				
Dito.	This bit enab				her			
	0: PCA Cour							
	1: PCA Cour	nter/Timer	enabled.					
Bit5:	UNUSED. R	ead = 0b, \	Write = don't	care.				
Bit4:	CCF4: PCA							
	This bit is se							
	enabled, set	•						outine. This
D'/O	bit is not aut		•		d must be o	cleared by s	software.	
Bit3:	CCF3: PCA		•					
	This bit is se enabled, set				•			
	bit is not aut	•						
Bit2:	CCF2: PCA						sonware.	
	This bit is se		•		ipture occur	rs. When th	e CCF2 int	errupt is
	enabled, set				•			
	bit is not aut	-						
Bit1:	CCF1: PCA	Module 1 (Capture/Con	npare Flag.				
	This bit is se							
	enabled, set	-						outine. This
Dire	bit is not aut				d must be o	cleared by s	software.	
Bit0:	CCF0: PCA		•	•				
		ببالم سما برمائد						a record in
	This bit is se							
	This bit is se enabled, set bit is not aut	ting this bit	causes the	CPU to vec	tor to the P	CA interrup	ot service re	

SFR Definition 18.1. PCA0CN: PCA Control

