
Silicon Labs - C8051F314 Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Obsolete

Core Processor 8051

Core Size 8-Bit

Speed 25MHz

Connectivity SMBus (2-Wire/I²C), SPI, UART/USART

Peripherals POR, PWM, WDT

Number of I/O 29

Program Memory Size 8KB (8K x 8)

Program Memory Type FLASH

EEPROM Size -

RAM Size 1.25K x 8

Voltage - Supply (Vcc/Vdd) 2.7V ~ 3.6V

Data Converters -

Oscillator Type Internal

Operating Temperature -40°C ~ 85°C (TA)

Mounting Type Surface Mount

Package / Case 32-LQFP

Supplier Device Package 32-LQFP (7x7)

Purchase URL https://www.e-xfl.com/product-detail/silicon-labs/c8051f314

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/c8051f314-4427900
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

C8051F310/1/2/3/4/5/6/7
SFR Definition 18.7. PCA0CPHn: PCA Capture Module High Byte 219
C2 Register Definition 20.1. C2ADD: C2 Address . 223
C2 Register Definition 20.2. DEVICEID: C2 Device ID . 223
C2 Register Definition 20.3. REVID: C2 Revision ID . 224
C2 Register Definition 20.4. FPCTL: C2 Flash Programming Control 224
C2 Register Definition 20.5. FPDAT: C2 Flash Programming Data 224
Rev. 1.7 15

C8051F310/1/2/3/4/5/6/7
NOTES:
16 Rev. 1.7

C8051F310/1/2/3/4/5/6/7
P1.5 21 17 13
D I/O or

A In
Port 1.5. See Section 13 for a complete description.

P1.6 20 16
D I/O or

A In
Port 1.6. See Section 13 for a complete description.

P1.7 19 15
D I/O or

A In
Port 1.7. See Section 13 for a complete description.

P2.0 18 14 12
D I/O or

A In
Port 2.0. See Section 13 for a complete description.

P2.1 17 13 11
D I/O or

A In
Port 2.1. See Section 13 for a complete description.

P2.2 16 12 10
D I/O or

A In
Port 2.2. See Section 13 for a complete description.

P2.3 15 11 9
D I/O or

A In
Port 2.3. See Section 13 for a complete description.

P2.4 14 10 8
D I/O or

A In
Port 2.4. See Section 13 for a complete description.

P2.5 13 9 7
D I/O or

A In
Port 2.5. See Section 13 for a complete description.

P2.6 12 8
D I/O or

A In
Port 2.6. See Section 13 for a complete description.

P2.7 11 7
D I/O or

A In
Port 2.7. See Section 13 for a complete description.

P3.1 7
D I/O or

A In
Port 3.1. See Section 13 for a complete description.

P3.2 8
D I/O or

A In
Port 3.2. See Section 13 for a complete description.

P3.3 9
D I/O or

A In
Port 3.3. See Section 13 for a complete description.

P3.4 10
D I/O or

A In
Port 3.4. See Section 13 for a complete description.

Table 4.1. Pin Definitions for the C8051F31x (Continued)

Name
Pin Numbers

Type Description
‘F310/2/4 ‘F311/3/5 ‘F316/7
40 Rev. 1.7

C8051F310/1/2/3/4/5/6/7

Figure 4.10. QFN-24 Solder Paste Recommendation

Top View

E2
D

2

b
e

0.35 mm

0.30 mm

0.10 mm

0.20 mm

0.45 mm

0.75 mm

0.
3

5
m

m

0.
10

 m
m

0.
45

 m
m

E

D

0.
7

5
m

m

0.80 mm

0.60 mm

0.35 mm 0.35 mm

0.45 mm

0.30 mm

0.20 mm

Pin #1
50 Rev. 1.7

C8051F310/1/2/3/4/5/6/7
ORL A, direct OR direct byte to A 2 2
ORL A, @Ri OR indirect RAM to A 1 2
ORL A, #data OR immediate to A 2 2
ORL direct, A OR A to direct byte 2 2
ORL direct, #data OR immediate to direct byte 3 3
XRL A, Rn Exclusive-OR Register to A 1 1
XRL A, direct Exclusive-OR direct byte to A 2 2
XRL A, @Ri Exclusive-OR indirect RAM to A 1 2
XRL A, #data Exclusive-OR immediate to A 2 2
XRL direct, A Exclusive-OR A to direct byte 2 2
XRL direct, #data Exclusive-OR immediate to direct byte 3 3
CLR A Clear A 1 1
CPL A Complement A 1 1
RL A Rotate A left 1 1
RLC A Rotate A left through Carry 1 1
RR A Rotate A right 1 1
RRC A Rotate A right through Carry 1 1
SWAP A Swap nibbles of A 1 1

Data Transfer
MOV A, Rn Move Register to A 1 1
MOV A, direct Move direct byte to A 2 2
MOV A, @Ri Move indirect RAM to A 1 2
MOV A, #data Move immediate to A 2 2
MOV Rn, A Move A to Register 1 1
MOV Rn, direct Move direct byte to Register 2 2
MOV Rn, #data Move immediate to Register 2 2
MOV direct, A Move A to direct byte 2 2
MOV direct, Rn Move Register to direct byte 2 2
MOV direct, direct Move direct byte to direct byte 3 3
MOV direct, @Ri Move indirect RAM to direct byte 2 2
MOV direct, #data Move immediate to direct byte 3 3
MOV @Ri, A Move A to indirect RAM 1 2
MOV @Ri, direct Move direct byte to indirect RAM 2 2
MOV @Ri, #data Move immediate to indirect RAM 2 2
MOV DPTR, #data16 Load DPTR with 16-bit constant 3 3
MOVC A, @A+DPTR Move code byte relative DPTR to A 1 3
MOVC A, @A+PC Move code byte relative PC to A 1 3
MOVX A, @Ri Move external data (8-bit address) to A 1 3
MOVX @Ri, A Move A to external data (8-bit address) 1 3
MOVX A, @DPTR Move external data (16-bit address) to A 1 3
MOVX @DPTR, A Move A to external data (16-bit address) 1 3
PUSH direct Push direct byte onto stack 2 2
POP direct Pop direct byte from stack 2 2
XCH A, Rn Exchange Register with A 1 1
XCH A, direct Exchange direct byte with A 2 2

Table 8.1. CIP-51 Instruction Set Summary (Continued)

Mnemonic Description Bytes
Clock
Cycles
82 Rev. 1.7

C8051F310/1/2/3/4/5/6/7
SFR Definition 8.6. B: B Register

8.3. Interrupt Handler

The CIP-51 includes an extended interrupt system supporting a total of 14 interrupt sources with two prior-
ity levels. The allocation of interrupt sources between on-chip peripherals and external inputs pins varies
according to the specific version of the device. Each interrupt source has one or more associated interrupt-
pending flag(s) located in an SFR. When a peripheral or external source meets a valid interrupt condition,
the associated interrupt-pending flag is set to logic 1.

If interrupts are enabled for the source, an interrupt request is generated when the interrupt-pending flag is
set. As soon as execution of the current instruction is complete, the CPU generates an LCALL to a prede-
termined address to begin execution of an interrupt service routine (ISR). Each ISR must end with an RETI
instruction, which returns program execution to the next instruction that would have been executed if the
interrupt request had not occurred. If interrupts are not enabled, the interrupt-pending flag is ignored by the
hardware and program execution continues as normal. (The interrupt-pending flag is set to logic 1 regard-
less of the interrupt's enable/disable state.)

Each interrupt source can be individually enabled or disabled through the use of an associated interrupt
enable bit in an SFR (IE-EIE1). However, interrupts must first be globally enabled by setting the EA bit
(IE.7) to logic 1 before the individual interrupt enables are recognized. Setting the EA bit to logic 0 disables
all interrupt sources regardless of the individual interrupt-enable settings.

Note: Any instruction that clears the EA bit should be immediately followed by an instruction that
has two or more opcode bytes. For example:

// in 'C':
EA = 0; // clear EA bit
EA = 0; // ... followed by another 2-byte opcode

; in assembly:
CLR EA ; clear EA bit
CLR EA ; ... followed by another 2-byte opcode

If an interrupt is posted during the execution phase of a "CLR EA" opcode (or any instruction which clears
the EA bit), and the instruction is followed by a single-cycle instruction, the interrupt may be taken. How-
ever, a read of the EA bit will return a '0' inside the interrupt service routine. When the "CLR EA" opcode is
followed by a multi-cycle instruction, the interrupt will not be taken.

Some interrupt-pending flags are automatically cleared by the hardware when the CPU vectors to the ISR.
However, most are not cleared by the hardware and must be cleared by software before returning from the
ISR. If an interrupt-pending flag remains set after the CPU completes the return-from-interrupt (RETI)

Bits7–0: B: B Register.
This register serves as a second accumulator for certain arithmetic operations.

R/W R/W R/W R/W R/W R/W R/W R/W Reset Value

B.7 B.6 B.5 B.4 B.3 B.2 B.1 B.0 00000000
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 SFR Address:

(bit addressable) 0xF0
Rev. 1.7 93

C8051F310/1/2/3/4/5/6/7
any other reset source. For example, if the VDD monitor is enabled and a software reset is performed, the
VDD monitor will still be enabled after the reset.

Important Note: The VDD monitor must be enabled before it is selected as a reset source. Selecting the
VDD monitor as a reset source before it is enabled and stabilized may cause a system reset. The proce-
dure for configuring the VDD monitor as a reset source is shown below:

Step 1. Enable the VDD monitor (VDMEN bit in VDM0CN = ‘1’).
Step 2. Wait for the VDD monitor to stabilize (see Table 9.1 for the VDD Monitor turn-on time).

Note: This delay should be omitted if software contains routines that erase or write Flash
memory.

Step 3. Select the VDD monitor as a reset source (PORSF bit in RSTSRC = ‘1’).

See Figure 9.2 for VDD monitor timing; note that the reset delay is not incurred after a VDD monitor reset.
See Table 9.1 for complete electrical characteristics of the VDD monitor.

SFR Definition 9.1. VDM0CN: VDD Monitor Control

9.3. External Reset

The external RST pin provides a means for external circuitry to force the device into a reset state. Assert-
ing an active-low signal on the RST pin generates a reset; an external pullup and/or decoupling of the RST
pin may be necessary to avoid erroneous noise-induced resets. See Table 9.1 for complete RST pin spec-
ifications. The PINRSF flag (RSTSRC.0) is set on exit from an external reset.

Bit7: VDMEN: VDD Monitor Enable.
This bit is turns the VDD monitor circuit on/off. The VDD Monitor cannot generate system
resets until it is also selected as a reset source in register RSTSRC (Figure 9.2). The VDD
Monitor must be allowed to stabilize before it is selected as a reset source. Selecting the
VDD monitor as a reset source before it has stabilized may generate a system reset.
See Table 9.1 for the minimum VDD Monitor turn-on time.
0: VDD Monitor Disabled.
1: VDD Monitor Enabled.

Bit6: VDD STAT: VDD Status.
This bit indicates the current power supply status (VDD Monitor output).
0: VDD is at or below the VDD monitor threshold.
1: VDD is above the VDD monitor threshold.

Bits5–0: Reserved. Read = Variable. Write = don’t care.

R/W R R R R R R R Reset Value

VDMEN VDDSTAT Reserved Reserved Reserved Reserved Reserved Reserved Variable
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

SFR Address: 0xFF
Rev. 1.7 107

C8051F310/1/2/3/4/5/6/7
10. Make certain that the Flash write and erase pointer variables are not located in XRAM. See
your compiler documentation for instructions regarding how to explicitly locate variables in dif-
ferent memory areas.

11. Add address bounds checking to the routines that write or erase Flash memory to ensure that
a routine called with an illegal address does not result in modification of the Flash.

10.4.3. System Clock

12. If operating from an external crystal, be advised that crystal performance is susceptible to
electrical interference and is sensitive to layout and to changes in temperature. If the system is
operating in an electrically noisy environment, use the internal oscillator or use an external
CMOS clock.

13. If operating from the external oscillator, switch to the internal oscillator during Flash write or
erase operations. The external oscillator can continue to run, and the CPU can switch back to
the external oscillator after the Flash operation has completed.

Additional Flash recommendations and example code can be found in AN201, "Writing to Flash from Firm-
ware", available from the Silicon Laboratories web site.

SFR Definition 10.1. PSCTL: Program Store R/W Control

Bits7–2: UNUSED: Read = 000000b, Write = don’t care.
Bit1: PSEE: Program Store Erase Enable

Setting this bit (in combination with PSWE) allows an entire page of Flash program memory
to be erased. If this bit is logic 1 and Flash writes are enabled (PSWE is logic 1), a write to
Flash memory using the MOVX instruction will erase the entire page that contains the loca-
tion addressed by the MOVX instruction. The value of the data byte written does not matter.
0: Flash program memory erasure disabled.
1: Flash program memory erasure enabled.

Bit0: PSWE: Program Store Write Enable
Setting this bit allows writing a byte of data to the Flash program memory using the MOVX
write instruction. The Flash location should be erased before writing data.
0: Writes to Flash program memory disabled.
1: Writes to Flash program memory enabled; the MOVX write instruction targets Flash
memory.

R/W R/W R/W R/W R/W R/W R/W R/W Reset Value

- - - - - - PSEE PSWE 00000000
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 SFR Address:

0x8F
116 Rev. 1.7

C8051F310/1/2/3/4/5/6/7
13. Port Input/Output
Digital and analog resources are available through 29 I/O pins (C8051F310/2/4), or 25 I/O pins
(C8051F311/3/5), or 21 I/O pins (C8051F316/7). Port pins are organized as three byte-wide Ports and one
5-bit-wide (C8051F310/2/4) or 1-bit-wide (C8051F311/3/5) Port. In the C8051F316/7, the port pins are
organized as one byte-wide Port, two 6-bit-wide Ports and one 1-bit-wide Port. Each of the Port pins can
be defined as general-purpose I/O (GPIO) or analog input; Port pins P0.0-P2.3 can be assigned to one of
the internal digital resources as shown in Figure 13.3. The designer has complete control over which func-
tions are assigned, limited only by the number of physical I/O pins. This resource assignment flexibility is
achieved through the use of a Priority Crossbar Decoder. The state of a Port I/O pin can always be read in
the corresponding Port latch, regardless of the Crossbar settings.

The Crossbar assigns the selected internal digital resources to the I/O pins based on the Priority Decoder
(Figure 13.3 and Figure 13.4). The registers XBR0 and XBR1, defined in SFR Definition 13.1 and SFR
Definition 13.2, are used to select internal digital functions.

All Port I/Os are 5 V tolerant (refer to Figure 13.2 for the Port cell circuit). The Port I/O cells are configured
as either push-pull or open-drain in the Port Output Mode registers (PnMDOUT, where n = 0,1,2,3). Com-
plete Electrical Specifications for Port I/O are given in Table 13.1 on page 143.

Figure 13.1. Port I/O Functional Block Diagram

XBR0, XBR1,
PnSKIP Registers

Digital
Crossbar

Priority
Decoder

2

P0.0

P0.7

PnMDOUT,
PnMDIN Registers

UART

(I
n

te
rn

a
l D

ig
ita

l S
ig

n
a

ls
)

Highest
Priority

Lowest
Priority

SYSCLK

2
SMBus

T0, T1
2

6
PCA

CP1
Outputs

2

4
SPI

CP0
Outputs

2

P1.0

P1.7

P2.0

P2.7

P3.0

P3.4

(P
or

t
La

tc
he

s)

P0 (P0.0-P0.7)

(P1.0-P1.7)

(P2.0-P2.3)

(P2.4-P2.7)

8

8

4

4

P1

P2

Notes:
1. P3.1-P3.4 only available on the
C8051F310/2/4
2. P1.6,P1.7,P2.6,P2.7 only available
on the C8051F310/1/2/3/4/5

(P3.0-P3.4)

5

P3

5

P2
I/O

Cells

P3
I/O

Cells

P1
I/O

Cells

P0
I/O

Cells

8

8

84

4

Rev. 1.7 129

C8051F310/1/2/3/4/5/6/7
SFR Definition 13.3. P0: Port0

SFR Definition 13.4. P0MDIN: Port0 Input Mode

Bits7–0: P0.[7:0]
Write - Output appears on I/O pins per Crossbar Registers.
0: Logic Low Output.
1: Logic High Output (high impedance if corresponding P0MDOUT.n bit = 0).
Read - Always reads ‘1’ if selected as analog input in register P0MDIN. Directly reads Port
pin when configured as digital input.
0: P0.n pin is logic low.
1: P0.n pin is logic high.

R/W R/W R/W R/W R/W R/W R/W R/W Reset Value

P0.7 P0.6 P0.5 P0.4 P0.3 P0.2 P0.1 P0.0 11111111
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 SFR Address:

(bit addressable) 0x80

Bits7–0: Analog Input Configuration Bits for P0.7–P0.0 (respectively).
Port pins configured as analog inputs have their weak pullup, digital driver, and digital
receiver disabled.
0: Corresponding P0.n pin is configured as an analog input.
1: Corresponding P0.n pin is not configured as an analog input.

R/W R/W R/W R/W R/W R/W R/W R/W Reset Value

11111111
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 SFR Address:

0xF1
136 Rev. 1.7

C8051F310/1/2/3/4/5/6/7
SFR Definition 13.11. P2: Port2

SFR Definition 13.12. P2MDIN: Port2 Input Mode

Bits7–0: P2.[7:0]
Write - Output appears on I/O pins per Crossbar Registers.
0: Logic Low Output.
1: Logic High Output (high impedance if corresponding P2MDOUT.n bit = 0).
Read - Always reads ‘1’ if selected as analog input in register P2MDIN. Directly reads Port
pin when configured as digital input.
0: P2.n pin is logic low.
1: P2.n pin is logic high.

Note: Only P2.0–P2.5 are associated with Port pins on the C8051F316/7 devices.

R/W R/W R/W R/W R/W R/W R/W R/W Reset Value

P2.7 P2.6 P2.5 P2.4 P2.3 P2.2 P2.1 P2.0 11111111
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 SFR Address:

(bit addressable) 0xA0

Bits7–0: Analog Input Configuration Bits for P2.7–P2.0 (respectively).
Port pins configured as analog inputs have their weak pullup, digital driver, and digital
receiver disabled.
0: Corresponding P2.n pin is configured as an analog input.
1: Corresponding P2.n pin is not configured as an analog input.

Note: Only P2.0–P2.5 are associated with Port pins on the C8051F316/7 devices.

R/W R/W R/W R/W R/W R/W R/W R/W Reset Value

11111111
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 SFR Address:

0xF3
140 Rev. 1.7

C8051F310/1/2/3/4/5/6/7
14.1. Supporting Documents

It is assumed the reader is familiar with or has access to the following supporting documents:

• The I2C-Bus and How to Use It (including specifications), Philips Semiconductor.
• The I2C-Bus Specification—Version 2.0, Philips Semiconductor.
• System Management Bus Specification—Version 1.1, SBS Implementers Forum.

14.2. SMBus Configuration

Figure 14.2 shows a typical SMBus configuration. The SMBus specification allows any recessive voltage
between 3.0 V and 5.0 V; different devices on the bus may operate at different voltage levels. The bi-direc-
tional SCL (serial clock) and SDA (serial data) lines must be connected to a positive power supply voltage
through a pullup resistor or similar circuit. Every device connected to the bus must have an open-drain or
open-collector output for both the SCL and SDA lines, so that both are pulled high (recessive state) when
the bus is free. The maximum number of devices on the bus is limited only by the requirement that the rise
and fall times on the bus not exceed 300 ns and 1000 ns, respectively.

Figure 14.2. Typical SMBus Configuration

14.3. SMBus Operation

Two types of data transfers are possible: data transfers from a master transmitter to an addressed slave
receiver (WRITE), and data transfers from an addressed slave transmitter to a master receiver (READ).
The master device initiates both types of data transfers and provides the serial clock pulses on SCL. The
SMBus interface may operate as a master or a slave, and multiple master devices on the same bus are
supported. If two or more masters attempt to initiate a data transfer simultaneously, an arbitration scheme
is employed with a single master always winning the arbitration. Note that it is not necessary to specify one
device as the Master in a system; any device who transmits a START and a slave address becomes the
master for the duration of that transfer.

A typical SMBus transaction consists of a START condition followed by an address byte (Bits7–1: 7-bit
slave address; Bit0: R/W direction bit), one or more bytes of data, and a STOP condition. Each byte that is
received (by a master or slave) must be acknowledged (ACK) with a low SDA during a high SCL (see
Figure 14.3). If the receiving device does not ACK, the transmitting device will read a NACK (not acknowl-
edge), which is a high SDA during a high SCL.

VDD = 5 V

Master
Device

Slave
Device 1

Slave
Device 2

VDD = 3 V VDD = 5 V VDD = 3 V

SDA

SCL
146 Rev. 1.7

C8051F310/1/2/3/4/5/6/7
14.5.3. Slave Receiver Mode

Serial data is received on SDA and the clock is received on SCL. When slave events are enabled (INH =
0), the interface enters Slave Receiver Mode when a START followed by a slave address and direction bit
(WRITE in this case) is received. Upon entering Slave Receiver Mode, an interrupt is generated and the
ACKRQ bit is set. Software responds to the received slave address with an ACK, or ignores the received
slave address with a NACK. If the received slave address is ignored, slave interrupts will be inhibited until
the next START is detected. If the received slave address is acknowledged, zero or more data bytes are
received. Software must write the ACK bit after each received byte to ACK or NACK the received byte. The
interface exits Slave Receiver Mode after receiving a STOP. Note that the interface will switch to Slave
Transmitter Mode if SMB0DAT is written while an active Slave Receiver. Figure 14.7 shows a typical Slave
Receiver sequence. Two received data bytes are shown, though any number of bytes may be received.
Notice that the ‘data byte transferred’ interrupts occur before the ACK cycle in this mode.

Figure 14.7. Typical Slave Receiver Sequence

PWSLAS Data ByteData Byte A AA

S = START
P = STOP
A = ACK
W = WRITE
SLA = Slave Address

Received by SMBus
Interface

Transmitted by
SMBus Interface

Interrupt Interrupt Interrupt

Interrupt
Rev. 1.7 159

C8051F310/1/2/3/4/5/6/7
14.5.4. Slave Transmitter Mode

Serial data is transmitted on SDA and the clock is received on SCL. When slave events are enabled (INH
= 0), the interface enters Slave Receiver Mode (to receive the slave address) when a START followed by a
slave address and direction bit (READ in this case) is received. Upon entering Slave Transmitter Mode, an
interrupt is generated and the ACKRQ bit is set. Software responds to the received slave address with an
ACK, or ignores the received slave address with a NACK. If the received slave address is ignored, slave
interrupts will be inhibited until a START is detected. If the received slave address is acknowledged, data
should be written to SMB0DAT to be transmitted. The interface enters Slave Transmitter Mode, and trans-
mits one or more bytes of data. After each byte is transmitted, the master sends an acknowledge bit; if the
acknowledge bit is an ACK, SMB0DAT should be written with the next data byte. If the acknowledge bit is
a NACK, SMB0DAT should not be written to before SI is cleared (Note: an error condition may be gener-
ated if SMB0DAT is written following a received NACK while in Slave Transmitter Mode). The interface
exits Slave Transmitter Mode after receiving a STOP. Note that the interface will switch to Slave Receiver
Mode if SMB0DAT is not written following a Slave Transmitter interrupt. Figure 14.8 shows a typical Slave
Transmitter sequence. Two transmitted data bytes are shown, though any number of bytes may be trans-
mitted. Notice that the ‘data byte transferred’ interrupts occur after the ACK cycle in this mode.

Figure 14.8. Typical Slave Transmitter Sequence

PRSLAS Data ByteData Byte A NA

S = START
P = STOP
N = NACK
R = READ
SLA = Slave Address

Received by SMBus
Interface

Transmitted by
SMBus Interface

Interrupt Interrupt Interrupt

Interrupt
160 Rev. 1.7

C8051F310/1/2/3/4/5/6/7
S
la

ve
 T

ra
ns

m
itt

er

0100

0 0 0
A slave byte was transmitted;
NACK received.

No action required (expecting
STOP condition).

0 0 X

0 0 1
A slave byte was transmitted;
ACK received.

Load SMB0DAT with next data
byte to transmit.

0 0 X

0 1 X
A Slave byte was transmitted;
error detected.

No action required (expecting
Master to end transfer).

0 0 X

0101 0 X X
A STOP was detected while
an addressed Slave Transmit-
ter.

No action required (transfer com-
plete).

0 0 X

S
la

ve
 R

ec
ei

ve
r

0010

1 0 X
A slave address was
received; ACK requested.

Acknowledge received address. 0 0 1

Do not acknowledge received
address.

0 0 0

1 1 X
Lost arbitration as master;
slave address received; ACK
requested.

Acknowledge received address. 0 0 1

Do not acknowledge received
address.

0 0 0

Reschedule failed transfer; do not
acknowledge received address.

1 0 0

0010 0 1 X
Lost arbitration while attempt-
ing a repeated START.

Abort failed transfer. 0 0 X

Reschedule failed transfer. 1 0 X

0001

1 1 X
Lost arbitration while attempt-
ing a STOP.

No action required (transfer com-
plete/aborted).

0 0 0

0 0 X
A STOP was detected while
an addressed slave receiver.

No action required (transfer com-
plete).

0 0 X

0 1 X
Lost arbitration due to a
detected STOP.

Abort transfer. 0 0 X

Reschedule failed transfer. 1 0 X

0000

1 0 X
A slave byte was received;
ACK requested.

Acknowledge received byte; Read
SMB0DAT.

0 0 1

Do not acknowledge received
byte.

0 0 0

1 1 X
Lost arbitration while transmit-
ting a data byte as master.

Abort failed transfer. 0 0 0

Reschedule failed transfer. 1 0 0

Table 14.4. SMBus Status Decoding (Continued)
M

o
d

e

Values Read

Current SMbus State Typical Response Options

Values
Written

S
ta

tu
s

V

e
c

to
r

A
C

K
R

Q

A
R

B
L

O
S

T

A
C

K

S
TA

S
T

O

A
C

K

162 Rev. 1.7

C8051F310/1/2/3/4/5/6/7
15.3. Multiprocessor Communications

9-Bit UART mode supports multiprocessor communication between a master processor and one or more
slave processors by special use of the ninth data bit. When a master processor wants to transmit to one or
more slaves, it first sends an address byte to select the target(s). An address byte differs from a data byte
in that its ninth bit is logic 1; in a data byte, the ninth bit is always set to logic 0.

Setting the MCE0 bit (SCON0.5) of a slave processor configures its UART such that when a stop bit is
received, the UART will generate an interrupt only if the ninth bit is logic 1 (RB80 = 1) signifying an address
byte has been received. In the UART interrupt handler, software will compare the received address with
the slave's own assigned 8-bit address. If the addresses match, the slave will clear its MCE0 bit to enable
interrupts on the reception of the following data byte(s). Slaves that weren't addressed leave their MCE0
bits set and do not generate interrupts on the reception of the following data bytes, thereby ignoring the
data. Once the entire message is received, the addressed slave resets its MCE0 bit to ignore all transmis-
sions until it receives the next address byte.

Multiple addresses can be assigned to a single slave and/or a single address can be assigned to multiple
slaves, thereby enabling "broadcast" transmissions to more than one slave simultaneously. The master
processor can be configured to receive all transmissions or a protocol can be implemented such that the
master/slave role is temporarily reversed to enable half-duplex transmission between the original master
and slave(s).

Figure 15.6. UART Multi-Processor Mode Interconnect Diagram

Master
Device

Slave
Device

TXRX RX TX

Slave
Device

RX TX

Slave
Device

RX TX

V+
Rev. 1.7 167

C8051F310/1/2/3/4/5/6/7
16.1. Signal Descriptions

The four signals used by SPI0 (MOSI, MISO, SCK, NSS) are described below.

16.1.1. Master Out, Slave In (MOSI)

The master-out, slave-in (MOSI) signal is an output from a master device and an input to slave devices. It
is used to serially transfer data from the master to the slave. This signal is an output when SPI0 is operat-
ing as a master and an input when SPI0 is operating as a slave. Data is transferred most-significant bit
first. When configured as a master, MOSI is driven by the MSB of the shift register in both 3- and 4-wire
mode.

16.1.2. Master In, Slave Out (MISO)

The master-in, slave-out (MISO) signal is an output from a slave device and an input to the master device.
It is used to serially transfer data from the slave to the master. This signal is an input when SPI0 is operat-
ing as a master and an output when SPI0 is operating as a slave. Data is transferred most-significant bit
first. The MISO pin is placed in a high-impedance state when the SPI module is disabled and when the SPI
operates in 4-wire mode as a slave that is not selected. When acting as a slave in 3-wire mode, MISO is
always driven by the MSB of the shift register.

16.1.3. Serial Clock (SCK)

The serial clock (SCK) signal is an output from the master device and an input to slave devices. It is used
to synchronize the transfer of data between the master and slave on the MOSI and MISO lines. SPI0 gen-
erates this signal when operating as a master. The SCK signal is ignored by a SPI slave when the slave is
not selected (NSS = 1) in 4-wire slave mode.

16.1.4. Slave Select (NSS)

The function of the slave-select (NSS) signal is dependent on the setting of the NSSMD1 and NSSMD0
bits in the SPI0CN register. There are three possible modes that can be selected with these bits:

• NSSMD[1:0] = 00: 3-Wire Master or 3-Wire Slave Mode: SPI0 operates in 3-wire mode, and NSS is
disabled. When operating as a slave device, SPI0 is always selected in 3-wire mode. Since no select
signal is present, SPI0 must be the only slave on the bus in 3-wire mode. This is intended for point-to-
point communication between a master and one slave.

• NSSMD[1:0] = 01: 4-Wire Slave or Multi-Master Mode: SPI0 operates in 4-wire mode, and NSS is
enabled as an input. When operating as a slave, NSS selects the SPI0 device. When operating as a
master, a 1-to-0 transition of the NSS signal disables the master function of SPI0 so that multiple mas-
ter devices can be used on the same SPI bus.

• NSSMD[1:0] = 1x: 4-Wire Master Mode: SPI0 operates in 4-wire mode, and NSS is enabled as an out-
put. The setting of NSSMD0 determines what logic level the NSS pin will output. This configuration
should only be used when operating SPI0 as a master device.

See Figure 16.2, Figure 16.3, and Figure 16.4 for typical connection diagrams of the various operational
modes. Note that the setting of NSSMD bits affects the pinout of the device. When in 3-wire master or
3-wire slave mode, the NSS pin will not be mapped by the crossbar. In all other modes, the NSS signal will
be mapped to a pin on the device. See Section “13. Port Input/Output” on page 129 for general purpose
port I/O and crossbar information.
174 Rev. 1.7

C8051F310/1/2/3/4/5/6/7
17.3.2. 8-bit Timers with Auto-Reload

When T3SPLIT is set, Timer 3 operates as two 8-bit timers (TMR3H and TMR3L). Both 8-bit timers oper-
ate in auto-reload mode as shown in Figure 17.5. TMR3RLL holds the reload value for TMR3L; TMR3RLH
holds the reload value for TMR3H. The TR3 bit in TMR3CN handles the run control TMR3H. TMR3L is
always running when configured for 8-bit Mode.

Each 8-bit timer may be configured to use SYSCLK, SYSCLK divided by 12, or the external oscillator clock
source divided by 8. The Timer 3 Clock Select bits (T3MH and T3ML in CKCON) select either SYSCLK or
the clock defined by the Timer 3 External Clock Select bit (T3XCLK in TMR3CN), as follows:

Note: External clock divided by 8 is synchronized with the system clock, and the external clock must be
less than or equal to the system clock to operate in this mode.

The TF3H bit is set when TMR3H overflows from 0xFF to 0x00; the TF3L bit is set when TMR3L overflows
from 0xFF to 0x00. When Timer 3 interrupts are enabled, an interrupt is generated each time TMR3H over-
flows. If Timer 3 interrupts are enabled and TF3LEN (TMR3CN.5) is set, an interrupt is generated each
time either TMR3L or TMR3H overflows. When TF3LEN is enabled, software must check the TF3H and
TF3L flags to determine the source of the Timer 3 interrupt. The TF3H and TF3L interrupt flags are not
cleared by hardware and must be manually cleared by software.

Figure 17.7. Timer 3 8-Bit Mode Block Diagram

T3MH T3XCLK TMR3H Clock
Source

T3ML T3XCLK TMR3L Clock
Source

0 0 SYSCLK/12 0 0 SYSCLK/12
0 1 External Clock/8 0 1 External Clock/8
1 X SYSCLK 1 X SYSCLK

SYSCLK

TCLK

0

1
TR3

External Clock / 8

SYSCLK / 12 0

1

T3XCLK

1

0

TMR3H

TMR3RLH
Reload

Reload

TCLK TMR3L

TMR3RLL

Interrupt

 T
M

R
3C

N

T3SPLIT

TF3LEN
TF3L
TF3H

T3XCLK

TR3

To ADC

CKCON
T
3
M
H

T
3
M
L

S
C
A
0

S
C
A
1

T
0
M

T
2
M
H

T
2
M
L

T
1
M

200 Rev. 1.7

C8051F310/1/2/3/4/5/6/7
18.2. Capture/Compare Modules

Each module can be configured to operate independently in one of six operation modes: Edge-triggered
Capture, Software Timer, High Speed Output, Frequency Output, 8-Bit Pulse Width Modulator, or 16-Bit
Pulse Width Modulator. Each module has Special Function Registers (SFRs) associated with it in the CIP-
51 system controller. These registers are used to exchange data with a module and configure the module's
mode of operation.

Table 18.2 summarizes the bit settings in the PCA0CPMn registers used to select the PCA capture/com-
pare module’s operating modes. Setting the ECCFn bit in a PCA0CPMn register enables the module's
CCFn interrupt. Note: PCA0 interrupts must be globally enabled before individual CCFn interrupts are rec-
ognized. PCA0 interrupts are globally enabled by setting the EA bit and the EPCA0 bit to logic 1. See
Figure 18.3 for details on the PCA interrupt configuration.

Figure 18.3. PCA Interrupt Block Diagram

Table 18.2. PCA0CPM Register Settings for PCA Capture/Compare Modules

PWM16 ECOM CAPP CAPN MAT TOG PWM ECCF Operation Mode

X X 1 0 0 0 0 X
Capture triggered by positive edge
on CEXn

X X 0 1 0 0 0 X
Capture triggered by negative edge
on CEXn

X X 1 1 0 0 0 X
Capture triggered by transition on
CEXn

X 1 0 0 1 0 0 X Software Timer
X 1 0 0 1 1 0 X High Speed Output
X 1 0 0 X 1 1 X Frequency Output
0 1 0 0 X 0 1 X 8-Bit Pulse Width Modulator
1 1 0 0 X 0 1 X 16-Bit Pulse Width Modulator

X = Don’t Care

PCA0CN
C
F

C
R

C
C
F
0

C
C
F
2

C
C
F
1

C
C
F
4

C
C
F
3

PCA0MD
C
I
D
L

W
D
T
E

E
C
F

C
P
S
1

C
P
S
0

W
D
L
C
K

C
P
S
2

0

1

PCA Module 0
(CCF0)

PCA Module 1
(CCF1)

ECCF1

0

1

ECCF0

0

1

PCA Module 2
(CCF2)

ECCF2

0

1

PCA Module 3
(CCF3)

ECCF3

0

1

PCA Module 4
(CCF4)

ECCF4

PCA Counter/
Timer Overflow

0

1

Interrupt
Priority
Decoder

EPCA0

0

1

EA

0

1

PCA0CPMn

(for n = 0 to 4)

P
W
M
1
6
n

E
C
O
M
n

E
C
C
F
n

T
O
G
n

P
W
M
n

C
A
P
P
n

C
A
P
N
n

M
A
T
n

Rev. 1.7 205

C8051F310/1/2/3/4/5/6/7
NOTES:
Rev. 1.7 227

