E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I²C, SPI
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	15
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	4V ~ 5.5V
Data Converters	A/D 6x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SSOP (0.209", 5.30mm Width)
Supplier Device Package	20-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16c717-i-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

1.0 Device Overview	5
2.0 Memory Organization	9
3.0 I/O Ports	
4.0 Program Memory Read (PMR)	41
5.0 Timer0 Module	
6.0 Timer1 Module	
7.0 Timer2 Module	
8.0 Enhanced Capture/Compare/PWM (ECCP) Modules	53
9.0 Master Synchronous Serial Port (MSSP) Module	65
10.0 Voltage Reference Module and Low-voltage Detect	101
11.0 Analog-to-Digital Converter (A/D) Module	105
12.0 Special Features of the CPU	117
13.0 Instruction Set Summary	133
14.0 Development Support	
15.0 Electrical Characteristics	147
16.0 DC and AC Characteristics Graphs and Tables	179
17.0 Packaging Information	197
APPENDIX A: Revision History	207
APPENDIX B: Device Differences	208
Index	209
On-Line Support	215
Reader Response	
PIC16C717/770/771 Product Identification System	217

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@mail.microchip.com** or fax the **Reader Response Form** in the back of this data sheet to (480) 792-4150. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

- · Microchip's Worldwide Web site; http://www.microchip.com
- · Your local Microchip sales office (see last page)
- The Microchip Corporate Literature Center; U.S. FAX: (480) 792-7277

When contacting a sales office or the literature center, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our web site at www.microchip.com/cn to receive the most current information on all of our products.

2.2.2.6 PIE2 REGISTER

This register contains the individual enable bits for the SSP bus collision and low voltage detect interrupts.

REGISTER 2-6: PERIPHERAL INTERRUPT ENABLE REGISTER 2 (PIE2: 8Dh)

	R/W-0	U-0	U-0	U-0	R/W-0	U-0	U-0	U-0
	LVDIE		—	—	BCLIE	_	—	
	bit 7							bit 0
bit 7	LVDIE: Lov	v Voltage De	etect Interru	ot Enable bit				
	1 = LVD Int 0 = LVD Int	•						
		•						
bit 6-4	Unimpleme	ented: Read	d as '0'					
bit 3	BCLIE: Bus	s Collision Ir	nterrupt Ena	ble bit				
	1 = Bus Co	llision interr	upt is enable	ed				
	0 = Bus Co	llision interr	upt is disabl	ed				
bit 2-0	Unimpleme	ented: Read	d as '0'					
	Legend:							
	R = Readal	ole bit	W = W	ritable bit	U = Unim	plemented	bit, read as	0'
	- n = Value	at POR	'1' = Bi	t is set	'0' = Bit is	s cleared	x = Bit is u	nknown

The INDF register is not a physical register. Addressing INDF actually addresses the register whose address is contained in the FSR register (FSR is a *pointer*). This is indirect addressing.

Reading INDF itself indirectly (FSR = 0) will produce 00h. Writing to the INDF register indirectly results in a no-operation (although STATUS bits may be affected).

A simple program to clear RAM locations 20h-2Fh using indirect addressing is shown in Example 2-1.

EXAMPLE 2-1: How to Clear RAM Using Indirect Addressing

	movlw	0x20	;initialize pointer
	movwf	FSR	; to RAM
NEXT	clrf	INDF	;clear INDF register
	incf	FSR	;inc pointer
	btfss	FSR,4	;all done?
	goto	NEXT	;NO, clear next
CONTIN	IUE		
	:		;YES, continue

An effective 9-bit address is obtained by concatenating the 8-bit FSR register and the IRP bit (STATUS<7>), as shown in Figure 2-5.

FIGURE 2-5: DIRECT/INDIRECT ADDRESSING

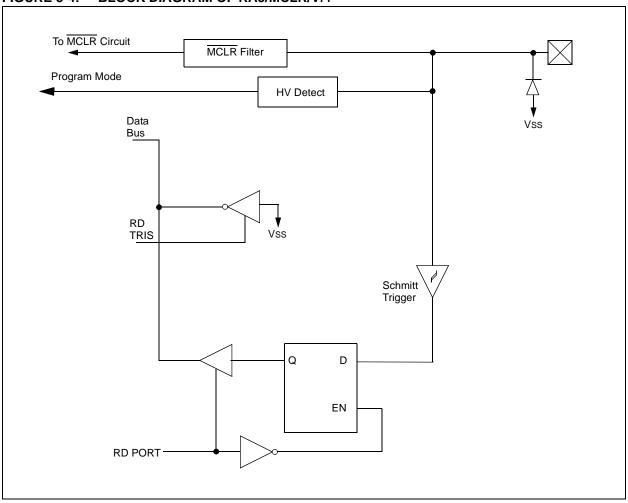


FIGURE 3-4: BLOCK DIAGRAM OF RA5/MCLR/VPP

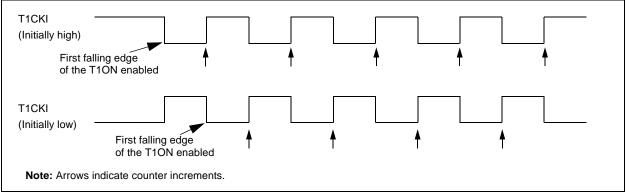
Name	Function	Input Type	Output Type	Description
	RB0	TTL	CMOS	Bi-directional I/O ⁽¹⁾
RB0/AN4/INT	AN4	AN		A/D input
	INT	ST		Interrupt input
	RB1	TTL	CMOS	Bi-directional I/O ⁽¹⁾
RB1/AN5/SS	AN5	AN		A/D input
	SS	ST		SSP slave select input
	RB2	TTL	CMOS	Bi-directional I/O ⁽¹⁾
RB2/SCK/SCL	SCK	ST	CMOS	Serial clock I/O for SPI
	SCL	ST	OD	Serial clock I/O for I ² C
	RB3	TTL	CMOS	Bi-directional I/O ⁽¹⁾
RB3/CCP1/P1A	CCP1	ST	CMOS	Capture 1 input/Compare 1 output
	P1A		CMOS	PWM P1A output
	RB4	TTL	CMOS	Bi-directional I/O ⁽¹⁾
RB4/SDI/SDA	SDI	ST		Serial data in for SPI
	SDA	ST	OD	Serial data I/O for I ² C
	RB5	TTL	CMOS	Bi-directional I/O ⁽¹⁾
RB5/SDO/P1B	SDO		CMOS	Serial data out for SPI
	P1B		CMOS	PWM P1B output
	RB6	TTL	CMOS	Bi-directional I/O ⁽¹⁾
	T1OSO		XTAL	Crystal/Resonator
RB6/T1OSO/T1CKI/P1C	T1CKI	CMOS		TMR1 clock input
	P1C		CMOS	PWM P1C output
	RB7	TTL	CMOS	Bi-directional I/O ⁽¹⁾
RB7/T1OSI/P1D	T1OSI	XTAL		TMR1 crystal/resonator
	P1D		CMOS	PWM P1D output

TABLE 3-3: PORTB FUNCTIONS

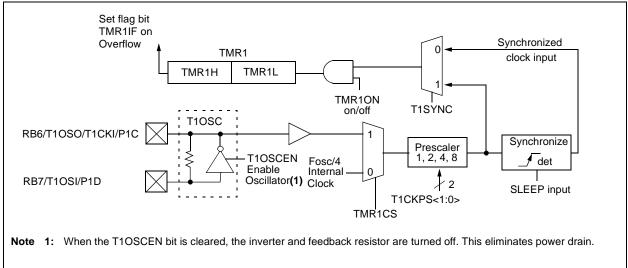
Note 1: Bit programmable pull-ups.

TABLE 3-4: SUMMARY OF REGISTERS ASSOCIATED WITH PORTB

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other RESETS
06h, 106h	PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	xxxx xx11	uuuu uull
86h, 186h	TRISB	PORTE	B Data Dire	ction Reg	jister					1111 1111	1111 1111
81h, 181h	OPTION_REG	RBPU	INTEDG	TOCS	T0SE	PSA	PS2	PS1	PS0	1111 1111	1111 1111
95h	WPUB	PORTE	8 Weak Pul	I-up Cont	rol					1111 1111	1111 1111
96h	IOCB	PORTE	ORTB Interrupt on Change Control							1111 0000	1111 0000
9Dh	ANSEL	_	_	ANS5	ANS4	ANS3	ANS2	ANS1	ANS0	11 1111	11 1111


Legend: x = unknown, u = unchanged. Shaded cells are not used by PORTB.

NOTES:


6.1.1 TIMER1 COUNTER OPERATION

In this mode, Timer1 is being incremented via an external source. Increments occur on a rising edge. After Timer1 is enabled in Counter mode, the module must first have a falling edge before the counter begins to increment.

FIGURE 6-2: TIMER1 BLOCK DIAGRAM

6.2 Timer1 Oscillator

A crystal oscillator circuit is built in between pins T1OSI (input) and T1OSO (amplifier output). It is enabled by setting control bit T1OSCEN (T1CON<3>). The oscillator is a low power oscillator rated up to 200 kHz. It will continue to run during SLEEP. It is primarily intended for a 32 kHz crystal. Table 6-1 shows the capacitor selection for the Timer1 oscillator.

The Timer1 oscillator is identical to the LP oscillator. The user must provide a software time delay to ensure proper oscillator start-up.

TABLE 6-1:CAPACITOR SELECTION FOR
THE TIMER1 OSCILLATOR

Osc Type	;	Freq	C1	C2			
LP		32 kHz	32 kHz 33 pF				
		100 kHz	15 pF	15 pF			
		200 kHz	15 pF	15 pF			
These	va	lues are for o	design guida	nce only.			
(Higher capacitance increases the stability of oscillator but also increases the start-up time.						
	cha	nce each reso aracteristics, t sonator/crysta	he user shoul	d consult the			

priate values of external components.

6.3 Timer1 Interrupt

The TMR1 Register pair (TMR1H:TMR1L) increments from 0000h to FFFFh and rolls over to 0000h. The TMR1 Interrupt, if enabled, is generated on overflow which is latched in interrupt flag bit TMR1IF (PIR1<0>). This interrupt can be enabled/disabled by setting/clearing TMR1 interrupt enable bit TMR1IE (PIE1<0>).

6.4 Resetting Timer1 using a CCP Trigger Output

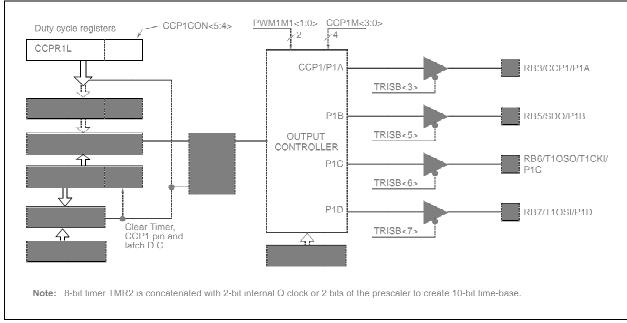
If the ECCP module is configured in Compare mode to generate a "special event trigger" (CCP1M<3:0> = 1011), this signal will reset Timer1 and start an A/D conversion (if the A/D module is enabled).

Note:	The spe	cial e	event	trigg	ers from tl	ne CC	P1
	module	will	not	set	interrupt	flag	bit
	TMR1IF	(PIR	1<0>).			

Timer1 must be configured for either timer or Synchronized Counter mode to take advantage of this feature. If Timer1 is running in Asynchronous Counter mode, this RESET operation may not work.

In the event that a write to Timer1 coincides with a special event trigger from ECCP, the write will take precedence.

In this mode of operation, the CCPR1H:CCPR1L registers pair effectively becomes the period register for Timer1.


TABLE 6-2: REGISTERS ASSOCIATED WITH TIMER1 AS A TIMER/COUNTER

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other RESETS
0Bh,8Bh, 10Bh,18Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	—	ADIF			SSPIF	CCP1IF	TMR2IF	TMR1IF	-0 0000	-0 0000
8Ch	PIE1	—	ADIE			SSPIE	CCP1IE	TMR2IE	TMR1IE	-0 0000	-0 0000
0Eh	TMR1L	Holding regis	ster for th	ne Least Sign	ificant Byte of	the 16-bit TM	R1 register			XXXX XXXX	uuuu uuuu
0Fh	TMR1H	Holding regis	Holding register for the Most Significant Byte of the 16-bit TMR1 register							XXXX XXXX	uuuu uuuu
10h	T1CON	_	_	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	00 0000	uu uuuu

Legend: x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used by the Timer1 module.

8.3 PWM Mode

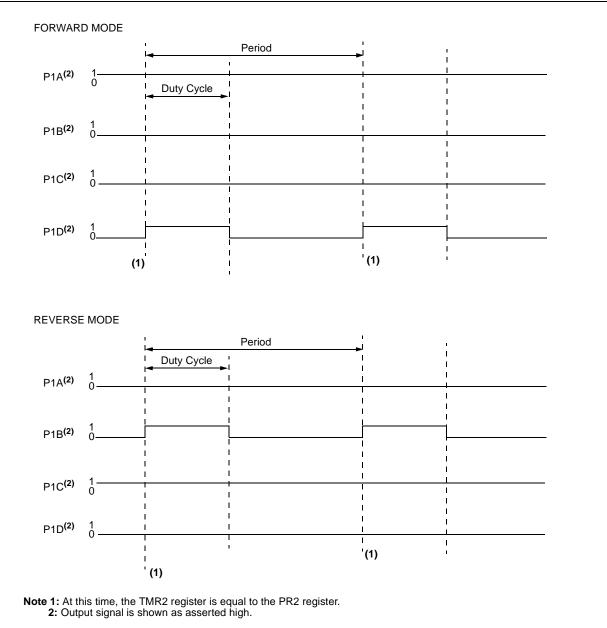
In Pulse Width Modulation (PWM) mode, the ECCP module produces up to a 10-bit resolution PWM output. Figure 8-3 shows the simplified PWM block diagram.

FIGURE 8-3: SIMPLIFIED PWM BLOCK DIAGRAM

8.3.1 PWM PERIOD

The PWM period is specified by writing to the PR2 register. The PWM period can be calculated using the following formula:

 $PWM PERIOD = [(PR2) + 1] \cdot 4 \cdot TOSC \cdot (TMR2 PRESCALE VALUE)$


PWM frequency is defined as 1 / [PWM period].

When TMR2 is equal to PR2, the following three events occur on the next increment cycle:

- TMR2 is cleared
- The CCP1 pin is set (exception: if PWM duty cycle = 0%, the CCP1 pin will not be set)
- The PWM duty cycle is latched from CCPR1L into CCPR1H

Note: The Timer2 postscaler (see Section 7.0) is not used in the determination of the PWM frequency. The postscaler could be used to have a servo update rate at a different frequency than the PWM output. In Full-Bridge Output mode, four pins are used as outputs; however, only two outputs are active at a time. In the Forward mode, RB3/CCP1/P1A pin is continuously active, and RB7/T1OSI/P1D pin is modulated. In the Reverse mode, RB6/T1OSO/T1CKI/P1C pin is continuously active, and RB5/SDO/P1B pin is modulated.

P1A, P1B, P1C and P1D outputs are multiplexed with PORTB<3> and PORTB<5:7> data latches. TRISB<3> and TRISB<5:7> bits must be cleared to make the P1A, P1B, P1C, and P1D pins output.

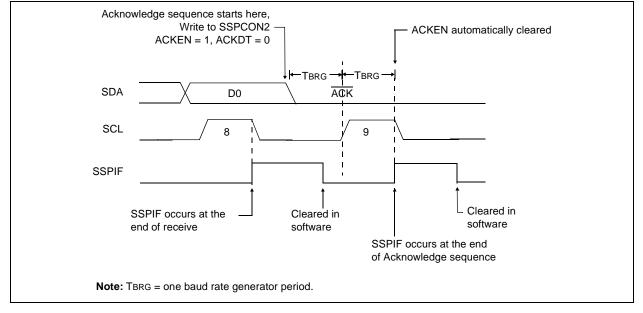
9.0 MASTER SYNCHRONOUS SERIAL PORT (MSSP) MODULE

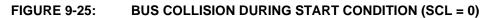
The Master Synchronous Serial Port (MSSP) module is a serial interface useful for communicating with other peripheral or microcontroller devices. These peripheral devices may be serial EEPROMs, shift registers, display drivers, etc. The MSSP module can operate in one of two modes:

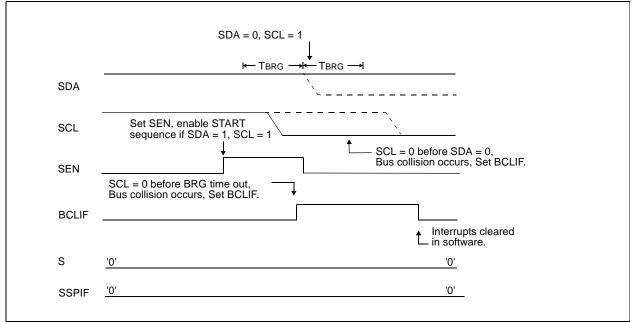
- Serial Peripheral Interface (SPI™)
- Inter-Integrated Circuit (I²C[™])

9.2.14 ACKNOWLEDGE SEQUENCE TIMING

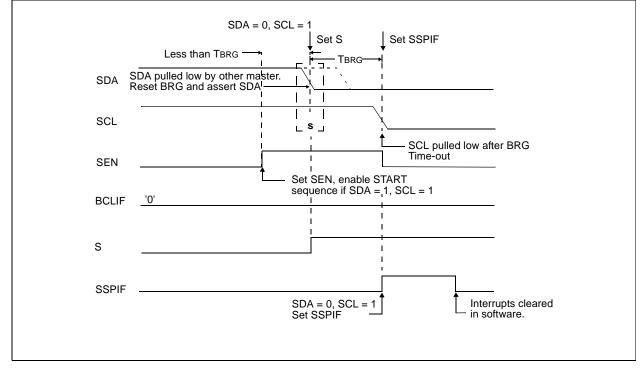
An Acknowledge sequence is enabled by setting the Acknowledge sequence enable bit, ACKEN (SSPCON2<4>). When this bit is set, the SCL pin is pulled low and the contents of the Acknowledge data bit ACKDT (SSPCON2<5>) is presented on the SDA pin. If the user wishes to generate an Acknowledge (ACK), then the ACKDT bit should be cleared. Otherwise, the user should set the ACKDT bit (NACK) before starting an Acknowledge sequence. The baud rate generator is then loaded from SSPADD<6:0> and counts for one rollover period (TBRG). The SCL pin is then de-asserted (pulled high). When the SCL pin is sampled high (clock


arbitration), the baud rate generator is reloaded and counts for another TBRG. At the completion of the TBRG period, the following events occur (see Figure 9-20):

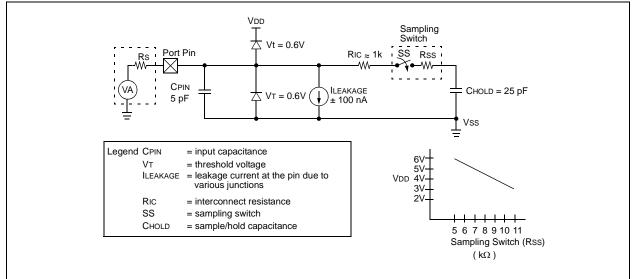

- The SCL pin is pulled low.
- The ACKEN bit is automatically cleared.
- The baud rate generator is turned off.
- The MSSP module goes into IDLE mode.


9.2.14.1 WCOL STATUS FLAG

If the user writes the SSPBUF when an Acknowledge sequence is in progress, the WCOL is set and the contents of the buffer are unchanged (the write doesn't occur).


FIGURE 9-20: ACKNOWLEDGE SEQUENCE WAVEFORM

REGISTER 11-1: A/D CONTROL REGISTER 0 (ADCON0: 1Fh).


	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	ADCS1	ADCS0	CHS2	CHS1	CHS0	GO/DONE	CHS3	ADON
	bit 7							bit 0
bit 7-6	ADCS<1:0	>: A/D Conv	version Cloc	k Select bits	6			
		/RL and/or \	/RH are not	used for A/	D reference	e (VCFG<2:0>	= 000, 0	01, 011
	or 101):	0						
	00 = Fosc/ 01 = Fosc/							
	10 = Fosc/	-						
		clock derive	d from a dec	licated RC of	oscillator)			
	If internal V	'RL and/or V	RH are used	for A/D refe	erence (VCI	FG<2:0>=01	0, 100, 1	10 or 111):
	00 = Fosc/							
	01 = Fosc/							
	10 = Fosc/ 11 = Frc/8							
bit 5-3,1		: Analog Ch	annel Selec	t bits				
,		annel 00 (AN						
		annel 01 (AN	,					
		annel 02 (AN	,					
		annel 03 (AN						
		annel 04 (AN	,					
		annel 05 (AN erved, do no	,					
		erved, do no						
		erved, do no						
		erved, do no						
		erved, do no						
		erved, do no						
		erved, do no erved, do no						
		erved, do no						
		erved, do no						
bit 2	GO/DONE:	A/D Conve	rsion Status	bit				
	This bit	is automati	cally cleared	l by hardwa		s an A/D conv e A/D convers		
		nversion cor	npleted/not	in progress				
bit 0	ADON: A/E							
		nverter mod nverter is sh			oporating a	urront		
	O = A/U COI	nverter is sh	UTUTT 2DO CO	neumoe no		TITEDT		

Legend:				
R = Readabl	e bit	W = Writable bit	U = Unimplemented b	oit, read as '0'
- n = Value a	t POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

EXAMPLE 11-3: CALCULATING THE MINIMUM REQUIRED SAMPLE TIME

TACQ =	Amplifier Settling Time
	+ Holding Capacitor Charging Time
	+Temperature offset †
TACQ =	5 μs
	+ Tc
	+ [(Temp - 25°C)(0.05 μs/°C)] †
Tc= Ho	Iding Capacitor Charging Time
Tc = (C	HOLD) (RIC + RSS + RS) In (1/16384)
Tc = -25	5 pF (1 kΩ +10 kΩ + 2.5 kΩ) In (1/16384)
Tc = -25	5 pF (13.5 kΩ) In (1/16384)
Tc = -0.	338 (-9.704)μs
Tc = 3.3	3 μs
TACQ =	5 µs
	+ 3.3 μs
	+ [(50°C - 25°C)(0.05 μs / °C)]
TACQ =	8.3 μs + 1.25 μs
TACQ =	9.55 μs
	perature coefficient is only required for atures > 25°C.

FIGURE 11-5: ANALOG INPUT MODEL

SUBLW	Subtract W from Literal					
Syntax:	[<i>label</i>] SUBLW k					
Operands:	$0 \leq k \leq 255$					
Operation:	$k - (W) \rightarrow (W)$					
Status Affected:	C, DC, Z					
Description:	The W register is subtracted (2's complement method) from the eight bit literal 'k'. The result is placed in the W register.					

XORLW	Exclusive OR Literal with W					
Syntax:	[<i>label</i>] XORLW k					
Operands:	$0 \leq k \leq 255$					
Operation:	(W) .XOR. $k \rightarrow (W)$					
Status Affected:	Z					
Description:	The contents of the W register are XOR'ed with the eight bit lit- eral 'k'. The result is placed in the W register.					

SUBWF	Subtract W from f					
Syntax:	[<i>label</i>] SUBWF f,d					
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$					
Operation:	(f) - (W) \rightarrow (destination)					
Status Affected:	C, DC, Z					
Description:	Subtract (2's complement method) W register from register 'f'. If 'd' is 0, the result is stored in the W regis- ter. If 'd' is 1, the result is stored back in register 'f'.					

XORWF	Exclusive OR W with f					
Syntax:	[<i>label</i>] XORWF f,d					
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$					
Operation:	(W) .XOR. (f) \rightarrow (destination)					
Status Affected:	Z					
Description:	Exclusive OR the contents of the W register with register 'f'. If 'd' is 0, the result is stored in the W register. If 'd' is 1, the result is stored back in register 'f'.					

SWAPF	Swap Nybbles in f					
Syntax:	[label] SWAPF f,d					
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$					
Operation:	$(f<3:0>) \rightarrow (destination<7:4>),$ $(f<7:4>) \rightarrow (destination<3:0>)$					
Status Affected:	None					
Description:	The upper and lower nybbles of register 'f' are exchanged. If 'd' is 0, the result is placed in W regis- ter. If 'd' is 1, the result is placed in register 'f'.					

14.8 MPLAB ICD In-Circuit Debugger

Microchip's In-Circuit Debugger, MPLAB ICD, is a powerful, low cost, run-time development tool. This tool is based on the FLASH PIC MCUs and can be used to develop for this and other PIC microcontrollers. The MPLAB ICD utilizes the in-circuit debugging capability built into the FLASH devices. This feature, along with Microchip's In-Circuit Serial Programming[™] protocol, offers cost-effective in-circuit FLASH debugging from the graphical user interface of the MPLAB Integrated Development Environment. This enables a designer to develop and debug source code by watching variables, single-stepping and setting break points. Running at full speed enables testing hardware in real-time.

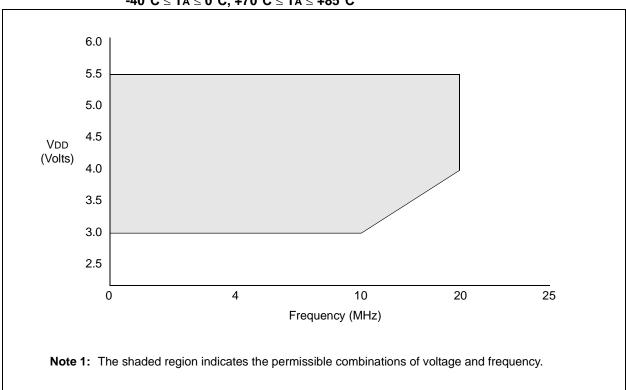
14.9 PRO MATE II Universal Device Programmer

The PRO MATE II universal device programmer is a full-featured programmer, capable of operating in Stand-alone mode, as well as PC-hosted mode. The PRO MATE II device programmer is CE compliant.

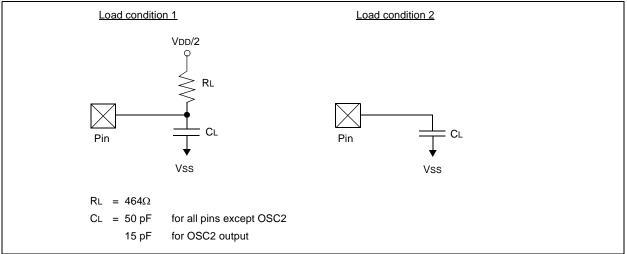
The PRO MATE II device programmer has programmable VDD and VPP supplies, which allow it to verify programmed memory at VDD min and VDD max for maximum reliability. It has an LCD display for instructions and error messages, keys to enter commands and a modular detachable socket assembly to support various package types. In Stand-alone mode, the PRO MATE II device programmer can read, verify, or program PIC devices. It can also set code protection in this mode.

14.10 PICSTART Plus Entry Level Development Programmer

The PICSTART Plus development programmer is an easy-to-use, low cost, prototype programmer. It connects to the PC via a COM (RS-232) port. MPLAB Integrated Development Environment software makes using the programmer simple and efficient.


The PICSTART Plus development programmer supports all PIC devices with up to 40 pins. Larger pin count devices, such as the PIC16C92X and PIC17C76X, may be supported with an adapter socket. The PICSTART Plus development programmer is CE compliant.

14.11 PICDEM 1 Low Cost PIC MCU Demonstration Board


The PICDEM 1 demonstration board is a simple board which demonstrates the capabilities of several of Microchip's microcontrollers. The microcontrollers supported are: PIC16C5X (PIC16C54 to PIC16C58A). PIC16C61, PIC16C62X, PIC16C71, PIC16C8X, PIC17C42, PIC17C43 and PIC17C44. All necessary hardware and software is included to run basic demo programs. The user can program the sample microcontrollers provided with the PICDEM 1 demonstration board on a PRO MATE II device programmer, or a PICSTART Plus development programmer, and easily test firmware. The user can also connect the PICDEM 1 demonstration board to the MPLAB ICE incircuit emulator and download the firmware to the emulator for testing. A prototype area is available for the user to build some additional hardware and connect it to the microcontroller socket(s). Some of the features include an RS-232 interface, a potentiometer for simulated analog input, push button switches and eight LEDs connected to PORTB.

14.12 PICDEM 2 Low Cost PIC16CXX Demonstration Board

The PICDEM 2 demonstration board is a simple demonstration board that supports the PIC16C62, PIC16C64, PIC16C65, PIC16C73 and PIC16C74 microcontrollers. All the necessary hardware and software is included to run the basic demonstration programs. The user can program the sample microcontrollers provided with the PICDEM 2 demonstration board on a PRO MATE II device programmer, or a PICSTART Plus development programmer, and easily test firmware. The MPLAB ICE in-circuit emulator may also be used with the PICDEM 2 demonstration board to test firmware. A prototype area has been provided to the user for adding additional hardware and connecting it to the microcontroller socket(s). Some of the features include a RS-232 interface, push button switches, a potentiometer for simulated analog input, a serial EEPROM to demonstrate usage of the I²C[™] bus and separate headers for connection to an LCD module and a keypad.

TABLE 15-6:	ENHANCED CAPTURE/COMPARE/PWM REQUIREMENTS (ECCP)
-------------	--

Param. No.	Sym	Characteristic			Min	Тур†	Max	Units	Conditions
50*	TccL	CCP1 input low time	No Prescaler		0.5Tcy + 20	—	_	ns	
				PIC16 C 717/770/771	10	_	_	ns	
			With Prescaler	PIC16 LC 717/770/771	20	—	_	ns	
51* TccH	CCP1 input high	No Prescaler	•	0.5Tcy + 20	—	_	ns		
		time	With Prescaler	PIC16 C 717/770/771	10	_	_	ns	
				PIC16 LC 717/770/771	20	—	_	ns	
52*	TccP	CCP1 input period			<u>3Tcy + 40</u> N	—	_	ns	N = prescale value (1, 4 or 16)
53* TccR CCP1 of		CCP1 output fall ti	CP1 output fall time		—	10	25	ns	
				PIC16 LC 717/770/771	—	25	45	ns	
54* TccF		CCP1 output fall time		PIC16 C 717/770/771	—	10	25	ns	
				PIC16 LC 717/770/771	—	25	45	ns	

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.