

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, SPI
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	15
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	OTP
EEPROM Size	
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	4V ~ 5.5V
Data Converters	A/D 6x10b
Oscillator Type	Internal
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	18-SOIC (0.295", 7.50mm Width)
Supplier Device Package	18-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16c717-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.2.2.4 PIE1 REGISTER

This register contains the individual enable bits for the peripheral interrupts.

Note: Bit PEIE (INTCON<6>) must be set to enable any peripheral interrupt.

REGISTER 2-4: PERIPHERAL INTERRUPT ENABLE REGISTER 1 (PIE1: 8Ch)

	U-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0			
		ADIE			SSPIE	CCP1IE	TMR2IE	TMR1IE			
	bit 7	<u> </u>		<u> </u>	<u> </u>		·	bit 0			
bit 7	Unimplem	ented: Rea	d as '0'								
bit 6	ADIE: A/D	Converter I	nterrupt Ena	ble bit							
	 1 = Enables the A/D interrupt 0 = Disables the A/D interrupt 										
bit 5-4	Unimplem	ented: Rea	d as '0'								
bit 3	SSPIE: Synchronous Serial Port Interrupt Enable bit										
	 1 = Enables the SSP interrupt 0 = Disables the SSP interrupt 										
bit 2	CCP1IE: C	CCP1IE: CCP1 Interrupt Enable bit									
	1 = Enable: 0 = Disable	s the CCP1 s the CCP1	interrupt interrupt								
bit 1	TMR2IE: TMR2 to PR2 Match Interrupt Enable bit										
	1 = Enable 0 = Disable	s the TMR2 es the TMR2	to PR2 mate to PR2 mate	ch interrupt tch interrupt							
bit 0	TMR1IE: ⊤	MR1 Overfl	ow Interrupt	Enable bit							
	 1 = Enables the TMR1 overflow interrupt 0 = Disables the TMR1 overflow interrupt 										
	Lenerati										
	Legena:	61. 6 1	147 14	/	11 11.5		h.'t	101			
	R = Reada	DIE DIT	VV = VV	ritable bit	U = Unin	nplemented	bit, read as	0			
	- n = Value	at POR	'1' = B	it is set	'0' = Bit i	s cleared	x = Bit is u	nknown			

2.2.2.6 PIE2 REGISTER

This register contains the individual enable bits for the SSP bus collision and low voltage detect interrupts.

REGISTER 2-6: PERIPHERAL INTERRUPT ENABLE REGISTER 2 (PIE2: 8Dh)

	R/W-0	U-0	U-0	U-0	R/W-0	U-0	U-0	U-0		
	LVDIE	—	—	_	BCLIE	_	—	—		
	bit 7							bit 0		
bit 7	LVDIE: Lov	v Voltage D	etect Interru	pt Enable bit	I					
	 1 = LVD Interrupt is enabled 0 = LVD Interrupt is disabled 									
bit 6-4	Unimplemented: Read as '0'									
bit 3	BCLIE: Bus	s Collision I	nterrupt Ena	ble bit						
	1 = Bus Co 0 = Bus Co	Ilision interr	upt is enable upt is disabl	ed ed						
bit 2-0	Unimplem	ented: Rea	d as '0'							
	Legend:									
	R = Reada	ble bit	W = W	ritable bit	U = Unim	plemented	bit, read as	0'		
	- n = Value	at POR	'1' = B	it is set	'0' = Bit is	s cleared	x = Bit is u	nknown		

3.3 PORTB and the TRISB Register

PORTB is an 8-bit wide bi-directional port. The corresponding data direction register is TRISB. Setting a TRISB bit (=1) will make the corresponding PORTB pin an input (i.e., put the corresponding output driver in a Hi-impedance mode). Clearing a TRISB bit (=0) will make the corresponding PORTB pin an output (i.e., put the contents of the output latch on the selected pin).

EXAMPLE 3-2: Initializing PORTB

BCF	STATUS,	RP0;	
CLRF	PORTB	;	Initialize PORTB by
		;	clearing output
		;	data latches
BSF	STATUS,	RP0;	Select Bank 1
MOVLW	0xCF	;	Value used to
		;	initialize data
		;	direction
MOVWF	TRISB	;	Set RB<3:0> as inputs
		;	RB<5:4> as outputs
		;	RB<7:6> as inputs
MOVLW	0x30	;	Set RB<1:0> as analog
			inputs
MOVWF	ANSEL	;	
BCF	STATUS,	RP0;	Return to Bank 0

Each of the PORTB pins has an internal pull-up, which can be individually enabled from the WPUB register. A single global enable bit can turn on/off the enabled pullups. Clearing the RBPU bit, (OPTION_REG<7>), enables the weak pull-up resistors. The weak pull-up is automatically turned off when the port pin is configured as an output. The pull-ups are disabled on a Power-on Reset. Each of the PORTB pins, if configured as input, also has an interrupt-on-change feature, which can be individually selected from the IOCB register. The RBIE bit in the INTCON register functions as a global enable bit to turn on/off the interrupt-on-change feature. The selected inputs are compared to the old value latched on the last read of PORTB. The "mismatch" outputs are OR'ed together to generate the RB Port Change Interrupt with flag bit RBIF (INTCON<0>).

This interrupt can wake the device from SLEEP. The user, in the interrupt service routine, can clear the interrupt in the following manner:

- a) Any read or write of PORTB. This will end the mismatch condition.
- a) Clear flag bit RBIF.

A mismatch condition will continue to set flag bit RBIF. Reading PORTB will end the mismatch condition and allow flag bit RBIF to be cleared.

The interrupt-on-change feature is recommended for wake-up on key depression operation and operations where PORTB is only used for the interrupt-on-change feature. Polling of PORTB is not recommended while using the interrupt-on-change feature.

TABLE 4-1: PROGRAM MEMORY READ REGISTER SUMMARY

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other RESETS
18Ch	PMCON1	Reserved	_	—	_	—	—	_	RD	10	10
10Eh	PMDATH	—	—	PMD13	PMD12	PMD11	PMD10	PMD9	PMD8	xx xxxx	uu uuuu
10Ch	PMDATL	PMD7	PMD6	PMD5	PMD4	PMD3	PMD2	PMD1	PMD0	XXXX XXXX	uuuu uuuu
10Fh	PMADRH	—		—		PMA11	PMA10	PMA9	PMA8	xxxx	uuuu
10Dh	PMADRL	PMA7	PMA6	PMA5	PMA4	PMA3	PMA2	PMA1	PMA0	XXXX XXXX	uuuu uuuu

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by Program Memory Read.

6.2 Timer1 Oscillator

A crystal oscillator circuit is built in between pins T1OSI (input) and T1OSO (amplifier output). It is enabled by setting control bit T1OSCEN (T1CON<3>). The oscillator is a low power oscillator rated up to 200 kHz. It will continue to run during SLEEP. It is primarily intended for a 32 kHz crystal. Table 6-1 shows the capacitor selection for the Timer1 oscillator.

The Timer1 oscillator is identical to the LP oscillator. The user must provide a software time delay to ensure proper oscillator start-up.

TABLE 6-1:CAPACITOR SELECTION FOR
THE TIMER1 OSCILLATOR

Osc	Тур	е	Freq	C1	C2					
L	P		32 kHz	33 pF						
			100 kHz	100 kHz 15 pF						
			200 kHz	15 pF	15 pF					
Tł	These values are for design guidance only.									
Note	1:	Higher capacitance increases the stability of oscillator but also increases the start-up time								
	2:	Sir cha res	nce each resonator/crystal has its own naracteristics, the user should consult the esonator/crystal manufacturer for appro-							

priate values of external components.

6.3 Timer1 Interrupt

The TMR1 Register pair (TMR1H:TMR1L) increments from 0000h to FFFFh and rolls over to 0000h. The TMR1 Interrupt, if enabled, is generated on overflow which is latched in interrupt flag bit TMR1IF (PIR1<0>). This interrupt can be enabled/disabled by setting/clearing TMR1 interrupt enable bit TMR1IE (PIE1<0>).

6.4 Resetting Timer1 using a CCP Trigger Output

If the ECCP module is configured in Compare mode to generate a "special event trigger" (CCP1M<3:0> = 1011), this signal will reset Timer1 and start an A/D conversion (if the A/D module is enabled).

Note:	The spe	The special event triggers from the CCP1								
	module	will	not	set	interrupt	flag	bit			
	TMR1IF (PIR1<0>).									

Timer1 must be configured for either timer or Synchronized Counter mode to take advantage of this feature. If Timer1 is running in Asynchronous Counter mode, this RESET operation may not work.

In the event that a write to Timer1 coincides with a special event trigger from ECCP, the write will take precedence.

In this mode of operation, the CCPR1H:CCPR1L registers pair effectively becomes the period register for Timer1.

TABLE 6-2: REGISTERS ASSOCIATED WITH TIMER1 AS A TIMER/COUNTER

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other RESETS
0Bh,8Bh, 10Bh,18Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	—	ADIF	_	_	SSPIF	CCP1IF	TMR2IF	TMR1IF	-0 0000	-0 0000
8Ch	PIE1	—	ADIE	_	_	SSPIE	CCP1IE	TMR2IE	TMR1IE	-0 0000	-0 0000
0Eh	TMR1L	Holding regi	ster for t	he Least Sign	ificant Byte of	the 16-bit TM	R1 register			XXXX XXXX	uuuu uuuu
0Fh	TMR1H	Holding regi	Holding register for the Most Significant Byte of the 16-bit TMR1 register							XXXX XXXX	uuuu uuuu
10h	T1CON		_	T1CKPS1	T1CKPS0	T10SCEN	T1SYNC	TMR1CS	TMR10N	00 0000	uu uuuu

Legend: x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used by the Timer1 module.

8.2.3 SOFTWARE INTERRUPT MODE

When generate software interrupt is chosen, the CCP1 pin is not affected. Only an ECCP interrupt is generated (if enabled).

8.2.4 SPECIAL EVENT TRIGGER

In this mode, an internal hardware trigger is generated, which may be used to initiate an action.

The special event trigger output of ECCP resets the TMR1 register pair. This allows the CCPR1 register to effectively be a 16-bit programmable period register for Timer1.

The special event trigger output of ECCP module will also start an A/D conversion if the A/D module is enabled.

Note: The special event trigger will not set the interrupt flag bit TMR1IF (PIR1<0>).

FIGURE 8-2:

COMPARE MODE OPERATION BLOCK DIAGRAM

TABLE 8-2: REGISTERS ASSOCIATED WITH CAPTURE, COMPARE AND TIMER1

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other RESETS
INTCON	GIE	PEIE	T0IE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	0000 000u
PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
TRISB	PORTB Dat	a Direction Re		1111 1111	1111 1111					
TMR1L	Holding regi	ster for the Lea	ast Significar	nt Byte of th	e 16-bit TMR1	register			XXXX XXXX	uuuu uuuu
TMR1H	Holding regi	ster for the Mo	st Significan	t Byte of the	e 16-bit TMR1r	egister			XXXX XXXX	uuuu uuuu
T1CON	-	—	T1CKPS 1	T1CKP S0	T1OSCEN	T1SYNC	TMR1CS	TMR1O N	00 0000	uu uuuu
CCPR1L	Capture/Cor	mpare/PWM re		XXXX XXXX	uuuu uuuu					
CCPR1H	Capture/Compare/PWM register1 (MSB) xxxx xxxx uuuu uuuu									
CCP1CON	PWM1M1	PWM1M0	DC1B1	DC1B0	CCP1M3	CCP1M2	CCP1M1	CCP1M0	0000 0000	0000 0000

Legend: x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used by Capture and Timer1.

8.3.4 OUTPUT POLARITY CONFIGURATION

The CCP1M<1:0> bits in the CCP1CON register allow user to choose the logic conventions (asserted high/ low) for each of the outputs. See Register 8-1 for further details.

FIGURE 8-6:	HALF-BRIDGE PWM OUTPUT
-------------	------------------------

The PWM output polarities must be selected before the PWM outputs are enabled. Charging the polarity configuration while the PWM outputs are active is not recommended, since it may result in unpredictable operation.

9.0 MASTER SYNCHRONOUS SERIAL PORT (MSSP) MODULE

The Master Synchronous Serial Port (MSSP) module is a serial interface useful for communicating with other peripheral or microcontroller devices. These peripheral devices may be serial EEPROMs, shift registers, display drivers, etc. The MSSP module can operate in one of two modes:

- Serial Peripheral Interface (SPI™)
- Inter-Integrated Circuit (I²C[™])

11.4 A/D Conversions

Example 11-1 shows an example that performs an A/D conversion. The port pins are configured as analog inputs. The analog reference VREF+ is the device AVDD and the analog reference VREF- is the device AVSS. The A/D interrupt is enabled and the A/D conversion clock is TRC. The conversion is performed on the AN0 channel.

EXAMPLE	11-1: P	ERFC	RMING AN	I A/D	CONVERSION
DCE	CUNTIC	PD 0	:Select	Bank	1

	BSF	STATUS, RPO	;Select Bank 1
	CLRF	ADCON1	;Configure A/D Voltage Reference
	MOVLW	0x01	
	MOVWF	ANSEL	disable ANO digital input buffer;
	MOVWF	TRISA	;RAO is input mode
	BSF	PIE1, ADIE	;Enable A/D interrupt
	BCF	STATUS, RPO	;Select Bank 0
	MOVLW	0xC1	;RC clock, A/D is on,
			;Ch 0 is selected
	MOVWF	ADCON0	i
	BCF	PIR1, ADIF	;Clear A/D Int Flag
	BSF	INTCON, PEIE	;Enable Peripheral
	BSF	INTCON, GIE	;Enable All Interrupts
;			
;	Ensure th	hat the required	l sampling time for the
;	selected	input channel h	as lapsed. Then the
;	conversio	on may be starte	ed.
	BSF	ADCON0, GO	;Start A/D Conversion
		:	;The ADIF bit will be
			;set and the GO/DONE bit
		:	;cleared upon completion-
			; of the A/D conversion.
;	Wait for	$\ensuremath{\texttt{A}}\xspace/\ensuremath{\texttt{D}}\xspace$ completion	and read ADRESH:ADRESL for result.

TABLE 13-2: PIC16CXXX INSTRUCTION SET

Mnemonic,		Description	Cycles		14-Bit	Opcode	9	Status	Notes
Operands				MSb			LSb	Affected	
BYTE-ORIE	NTED	FILE REGISTER OPERATIONS							
ADDWF	f, d	Add W and f	1	00	0111	dfff	ffff	C,DC,Z	1,2
ANDWF	f, d	AND W with f	1	00	0101	dfff	ffff	Z	1,2
CLRF	f	Clear f	1	00	0001	lfff	ffff	Z	2
CLRW	-	Clear W	1	00	0001	0000	0011	Z	
COMF	f, d	Complement f	1	00	1001	dfff	ffff	Z	1,2
DECF	f, d	Decrement f	1	00	0011	dfff	ffff	Z	1,2
DECFSZ	f, d	Decrement f, Skip if 0	1(2)	00	1011	dfff	ffff		1,2,3
INCF	f, d	Increment f	1	00	1010	dfff	ffff	Z	1,2
INCFSZ	f, d	Increment f, Skip if 0	1(2)	00	1111	dfff	ffff		1,2,3
IORWF	f, d	Inclusive OR W with f	1	00	0100	dfff	ffff	Z	1,2
MOVF	f, d	Move f	1	00	1000	dfff	ffff	Z	1,2
MOVWF	f	Move W to f	1	00	0000	lfff	ffff		
NOP	-	No Operation	1	00	0000	0xx0	0000		
RLF	f, d	Rotate Left f through Carry	1	00	1101	dfff	ffff	С	1,2
RRF	f, d	Rotate Right f through Carry	1	00	1100	dfff	ffff	С	1,2
SUBWF	f, d	Subtract W from f	1	00	0010	dfff	ffff	C,DC,Z	1,2
SWAPF	f, d	Swap nybbles in f	1	00	1110	dfff	ffff		1,2
XORWF	f, d	Exclusive OR W with f	1	00	0110	dfff	ffff	Z	1,2
BIT-ORIENT	ED FIL	E REGISTER OPERATIONS							
BCF	f, b	Bit Clear f	1	01	00bb	bfff	ffff		1,2
BSF	f, b	Bit Set f	1	01	01bb	bfff	ffff		1,2
BTFSC	f, b	Bit Test f, Skip if Clear	1 (2)	01	10bb	bfff	ffff		3
BTFSS	f, b	Bit Test f, Skip if Set	1 (2)	01	11bb	bfff	ffff		3
LITERAL A	ND CO	NTROL OPERATIONS							
ADDLW	k	Add literal and W	1	11	111x	kkkk	kkkk	C,DC,Z	
ANDLW	k	AND literal with W	1	11	1001	kkkk	kkkk	Z	
CALL	k	Call subroutine	2	10	0kkk	kkkk	kkkk		
CLRWDT	-	Clear Watchdog Timer	1	00	0000	0110	0100	TO,PD	
GOTO	k	Go to address	2	10	1kkk	kkkk	kkkk		
IORLW	k	Inclusive OR literal with W	1	11	1000	kkkk	kkkk	Z	
MOVLW	k	Move literal to W	1	11	00xx	kkkk	kkkk		
RETFIE	-	Return from interrupt	2	00	0000	0000	1001		
RETLW	k	Return with literal in W	2	11	01xx	kkkk	kkkk		
RETURN	-	Return from Subroutine	2	00	0000	0000	1000		
SLEEP	-	Go into Standby mode	1	00	0000	0110	0011	TO,PD	
SUBLW	k	Subtract W from literal	1	11	110x	kkkk	kkkk	C,DC,Z	
XORLW	k	Exclusive OR literal with W	1	11	1010	kkkk	kkkk	Z	

Note 1: When an I/O register is modified as a function of itself (e.g., MOVF PORTB, 1), the value used will be that value present on the pins themselves. For example, if the data latch is '1' for a pin configured as input and is driven low by an external device, the data will be written back with a '0'.

2: If this instruction is executed on the TMR0 register (and, where applicable, d = 1), the prescaler will be cleared if assigned to the Timer0 Module.

3: If Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

14.4 MPLINK Object Linker/ MPLIB Object Librarian

The MPLINK object linker combines relocatable objects created by the MPASM assembler and the MPLAB C17 and MPLAB C18 C compilers. It can also link relocatable objects from pre-compiled libraries, using directives from a linker script.

The MPLIB object librarian is a librarian for precompiled code to be used with the MPLINK object linker. When a routine from a library is called from another source file, only the modules that contain that routine will be linked in with the application. This allows large libraries to be used efficiently in many different applications. The MPLIB object librarian manages the creation and modification of library files.

The MPLINK object linker features include:

- Integration with MPASM assembler and MPLAB C17 and MPLAB C18 C compilers.
- Allows all memory areas to be defined as sections to provide link-time flexibility.

The MPLIB object librarian features include:

- Easier linking because single libraries can be included instead of many smaller files.
- Helps keep code maintainable by grouping related modules together.
- Allows libraries to be created and modules to be added, listed, replaced, deleted or extracted.

14.5 MPLAB SIM Software Simulator

The MPLAB SIM software simulator allows code development in a PC-hosted environment by simulating the PIC series microcontrollers on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a file, or user-defined key press, to any of the pins. The execution can be performed in single step, execute until break, or Trace mode.

The MPLAB SIM simulator fully supports symbolic debugging using the MPLAB C17 and the MPLAB C18 C compilers and the MPASM assembler. The software simulator offers the flexibility to develop and debug code outside of the laboratory environment, making it an excellent multiproject software development tool.

14.6 MPLAB ICE High Performance Universal In-Circuit Emulator with MPLAB IDE

The MPLAB ICE universal in-circuit emulator is intended to provide the product development engineer with a complete microcontroller design tool set for PIC microcontrollers (MCUs). Software control of the MPLAB ICE in-circuit emulator is provided by the MPLAB Integrated Development Environment (IDE), which allows editing, building, downloading and source debugging from a single environment.

The MPLAB ICE 2000 is a full-featured emulator system with enhanced trace, trigger and data monitoring features. Interchangeable processor modules allow the system to be easily reconfigured for emulation of different processors. The universal architecture of the MPLAB ICE in-circuit emulator allows expansion to support new PIC microcontrollers.

The MPLAB ICE in-circuit emulator system has been designed as a real-time emulation system, with advanced features that are generally found on more expensive development tools. The PC platform and Microsoft[®] Windows environment were chosen to best make these features available to you, the end user.

14.7 ICEPIC In-Circuit Emulator

The ICEPIC low cost, in-circuit emulator is a solution for the Microchip Technology PIC16C5X, PIC16C6X, PIC16C7X and PIC16CXXX families of 8-bit One-Time-Programmable (OTP) microcontrollers. The modular system can support different subsets of PIC16C5X or PIC16CXXX products through the use of interchangeable personality modules, or daughter boards. The emulator is capable of emulating without target application circuitry being present.

PIC16LC717/770/771				dard O ating te	perati i mpera	n g Con iture (-4(-4(ditions (unless otherwise stated) $0^{\circ}C \le TA \le +70^{\circ}C$ for commercial $0^{\circ}C \le TA \le +85^{\circ}C$ for industrial $0^{\circ}C \le TA \le +125^{\circ}C$ for extended	
PIC16C7	717/770/7	71	$\begin{array}{llllllllllllllllllllllllllllllllllll$					
Param. No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions	
	IPD	Power-down Current ⁽³⁾						
D020D		PIC16LC7XX		0.3	2.0	μΑ	VDD = 3V, -40°C to 85°C	
D020E					5.0		VDD = 3V, -40°C to 125°C	
D020F				0.1	1.5	μA	VDD = 2.5V, -40°C to 85°C	
D020G					3.0		VDD = 2.5V, -40°C to 125°C	
D020		PIC16C7XX		1.4	4.0	μA	VDD = 5.5V, -40°C to 85°C	
D020A					8.0		VDD = 5.5V, -40°C to 125°C	
D020B				1.0	3.5	μA	VDD = 4V, -40°C to 85°C	
D020C					6.0		VDD = 4V, -40°C to 125°C	

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in active Operation mode are:

 $\frac{OSC1}{MCLR}$ = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD $\frac{MCLR}{MCLR}$ = VDD; WDT enabled/disabled as specified.

3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD or VSS.

TABLE 15-15: PIC16C717 AND PIC16LC717 A/D CONVERSION REQUIREMENT (NORMAL MODE)

Parameter No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
130* ⁽³⁾	TAD	A/D clock period	1.6	_		μs	Tosc based, VREF \geq 2.5V
			3.0	—	—	μs	Tosc based, VREF full range
			3.0	6.0	9.0	μs	ADCS<1:0> = 11 (A/D RC mode) At VDD = 2.5V
			2.0	4.0	6.0	μs	At VDD = 5.0V
131*	ТСNV	Conversion time (not including acquisition time) (Note 1)		11 Tad	_	Tad	
132*	TACQ	Acquisition Time	(Note 2)	11.5	_	μs	
			5*	_	_	μs	The minimum time is the amplifier settling time. This may be used if the "new" input voltage has not changed by more than 1LSb (i.e., 1mV @ 4.096V) from the last sam- pled voltage (as stated on CHOLD).
134*	TGO	Q4 to A/D clock start	—	Tosc/2	_	_	

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: ADRES register may be read on the following TCY cycle.

2: See Section 11.6 for minimum conditions.

3: These numbers multiplied by 8 if VRH or VRL is selected as A/D reference.

Param. No.	Symbol	Characteristic		Min	Max	Units	Conditions
100*	Thigh	Clock high time	100 kHz mode	2(Tosc)(BRG + 1)	_	ms	
		Ū,	400 kHz mode	2(Tosc)(BRG + 1)	_	ms	
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)	—	ms	
101*	TLOW	Clock low time 100 kHz mode		2(Tosc)(BRG + 1)	_	ms	
			400 kHz mode	2(Tosc)(BRG + 1)	_	ms	
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)	—	ms	
102*	TR	SDA and SCL	100 kHz mode	_	1000	ns	Cb is specified to be from
		rise time	400 kHz mode	20 + 0.1Cb	300	ns	10 to 400 pF
			1 MHz mode ⁽¹⁾	_	300	ns	
103*	TF	SDA and SCL	100 kHz mode	_	300	ns	Cb is specified to be from
		fall time	400 kHz mode	20 + 0.1Cb	300	ns	10 to 400 pF
			1 MHz mode ⁽¹⁾	_	100	ns	
90*	TSU:STA	START condition	100 kHz mode	2(Tosc)(BRG + 1)	_	ms	Only relevant for Repeated
		setup time	400 kHz mode	2(Tosc)(BRG + 1)	_	ms	START
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)	—	ms	condition
91*	THD:STA	START condition	100 kHz mode	2(Tosc)(BRG + 1)	—	ms	After this period the first clock
		hold time	400 kHz mode	2(Tosc)(BRG + 1)		ms	pulse is generated
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)	_	ms	
106*	THD:DAT	Data input	100 kHz mode	0	—	ns	
		hold time	400 kHz mode	0	0.9	ms	
			1 MHz mode ⁽¹⁾	TBD	_	ns	
107*	TSU:DAT	Data input	100 kHz mode	250	_	ns	Note 2
		setup time	400 kHz mode	100	—	ns	
			1 MHz mode ⁽¹⁾	TBD	_	ns	
92*	Tsu:sto	STOP condition	100 kHz mode	2(Tosc)(BRG + 1)	—	ms	
		setup time	400 kHz mode	2(Tosc)(BRG + 1)	_	ms	
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)	—	ms	
109*	ΤΑΑ	Output valid from	100 kHz mode	_	3500	ns	
		clock	400 kHz mode		1000	ns	
			1 MHz mode ⁽¹⁾	—	—	ns	
110	TBUF	Bus free time	100 kHz mode	4.7 ‡	—	ms	Time the bus must be free
			400 kHz mode	1.3 ‡	_	ms	before a new transmission
			1 MHz mode ⁽¹⁾	TBD‡	—	ms	can start
D102 ‡	Cb	Bus capacitive loading		—	400	pF	

TABLE 15-22: MASTER SSP I²C BUS DATA REQUIREMENTS

* These parameters are characterized but not tested. For the value required by the I²C specification, please refer to the PICmicroTM Mid-Range MCU Family Reference Manual (DS33023).

‡ These parameters are for design guidance only and are not tested, nor characterized.

Note 1: Maximum pin capacitance = 10 pF for all I^2C pins.

2: A Fast mode l^2C bus device can be used in a Standard mode l^2C bus system, but $(TSU:DAT) \ge 250$ ns must then be met. This will automatically be the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line.

[(TR) + (TSU:DAT) = 1000 + 250 = 1250 ns], for 100 kHz mode, before the SCL line is released.

PIC16C717/770/771

17.1 Package Marking Information (Cont'd)

20-Lead SSOP

	XXXXXXXXXXXX XXXXXXXXXXXX
0	S YYWWNNN

20-Lead CERDIP Windowed

Example PIC16C770 20I/SS 9917017

Example

20-Lead SOIC

Example

18-Lead Plastic Dual In-line (P) – 300 mil (PDIP) 17.2

For the most current package drawings, please see the Microchip Packaging Specification located Note: at http://www.microchip.com/packaging

		INCHES*		MILLIMETERS			
Dimension	Limits	MIN	NOM	MAX	MIN	NOM	MAX
Number of Pins	n		18			18	
Pitch	р		.100			2.54	
Top to Seating Plane	Α	.140	.155	.170	3.56	3.94	4.32
Molded Package Thickness	A2	.115	.130	.145	2.92	3.30	3.68
Base to Seating Plane	A1	.015			0.38		
Shoulder to Shoulder Width	E	.300	.313	.325	7.62	7.94	8.26
Molded Package Width	E1	.240	.250	.260	6.10	6.35	6.60
Overall Length	D	.890	.898	.905	22.61	22.80	22.99
Tip to Seating Plane	L	.125	.130	.135	3.18	3.30	3.43
Lead Thickness	С	.008	.012	.015	0.20	0.29	0.38
Upper Lead Width	B1	.045	.058	.070	1.14	1.46	1.78
Lower Lead Width	В	.014	.018	.022	0.36	0.46	0.56
Overall Row Spacing §	eВ	.310	.370	.430	7.87	9.40	10.92
Mold Draft Angle Top	α	5	10	15	5	10	15
Mold Draft Angle Bottom	β	5	10	15	5	10	15

* Controlling Parameter § Significant Characteristic

Notes: Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side. JEDEC Equivalent: MS-001 Derwing b. C04 007

Drawing No. C04-007

INDEX

Α

A/D	105
A/D Converter Enable (ADIE Bit)	17
ADCON0 Register	105
ADCON1 Register	105, 107
ADRES Register	105
Block Diagram	109
Configuring Analog Port	108
Conversion time	115
Conversions	
converter characteristics 164, 165,	166, 170
Faster Conversion - Lower Resolution Tradeof	115
Internal Sampling Switch (Rss) Impedence	113
Operation During Sleep	116
Sampling Requirements	113
Sampling Time	113
Source Impedance	113
Special Event Trigger (ECCP)	
A/D Conversion Clock	110
ACK	77
Acknowledge Data bit AKD	69
Acknowledge Sequence Enable bit AKE	00
Acknowledge Sequence Enable bit, ARE	
ACKIOWIEUge Status Dit, ANS	
ADCONU Register	
ADCON1 Register	105, 107
ADRES	105
ADRES Register 11, 12,	105, 116
AKD	69
AKE	69
AKS	69
Analog-to-Digital Converter. See A/D	
Analog-to-Digital Converter. See A/D Application Note AN578, "Use of the SSP Module	
Analog-to-Digital Converter. See A/D Application Note AN578, "Use of the SSP Module in the I2C Multi-Master Environment."	
Analog-to-Digital Converter. See A/D Application Note AN578, "Use of the SSP Module in the I2C Multi-Master Environment." Architecture	
Analog-to-Digital Converter. See A/D Application Note AN578, "Use of the SSP Module in the I2C Multi-Master Environment." Architecture PIC16C717/PIC16C717 Block Diagram	
Analog-to-Digital Converter. See A/D Application Note AN578, "Use of the SSP Module in the I2C Multi-Master Environment." Architecture PIC16C717/PIC16C717 Block Diagram PIC16C770/771/PIC16C770/771 Block Diagram	
Analog-to-Digital Converter. See A/D Application Note AN578, "Use of the SSP Module in the I2C Multi-Master Environment." Architecture PIC16C717/PIC16C717 Block Diagram PIC16C770/771/PIC16C770/771 Block Diagram	
Analog-to-Digital Converter. See A/D Application Note AN578, "Use of the SSP Module in the I2C Multi-Master Environment." Architecture PIC16C717/PIC16C717 Block Diagram PIC16C770/771/PIC16C770/771 Block Diagrar Assembler	
Analog-to-Digital Converter. See A/D Application Note AN578, "Use of the SSP Module in the I2C Multi-Master Environment." Architecture PIC16C717/PIC16C717 Block Diagram PIC16C770/771/PIC16C770/771 Block Diagran Assembler MPASM Assembler	
Analog-to-Digital Converter. See A/D Application Note AN578, "Use of the SSP Module in the I2C Multi-Master Environment." Architecture PIC16C717/PIC16C717 Block Diagram PIC16C770/771/PIC16C770/771 Block Diagram Assembler MPASM Assembler B	
Analog-to-Digital Converter. See A/D Application Note AN578, "Use of the SSP Module in the I2C Multi-Master Environment." Architecture PIC16C717/PIC16C717 Block Diagram PIC16C770/771/PIC16C770/771 Block Diagram Assembler MPASM Assembler B Banking, Data Memory	
Analog-to-Digital Converter. See A/D Application Note AN578, "Use of the SSP Module in the I2C Multi-Master Environment." Architecture PIC16C717/PIC16C717 Block Diagram PIC16C770/771/PIC16C770/771 Block Diagram Assembler MPASM Assembler B Banking, Data Memory Baud Rate Generator	
Analog-to-Digital Converter. See A/D Application Note AN578, "Use of the SSP Module in the I2C Multi-Master Environment." Architecture PIC16C717/PIC16C717 Block Diagram PIC16C770/771/PIC16C770/771 Block Diagram Assembler MPASM Assembler B Banking, Data Memory Baud Rate Generator BF	
Analog-to-Digital Converter. See A/D Application Note AN578, "Use of the SSP Module in the I2C Multi-Master Environment." Architecture PIC16C717/PIC16C717 Block Diagram PIC16C770/771/PIC16C770/771 Block Diagram Assembler MPASM Assembler B Banking, Data Memory BF Block Diagrams	
Analog-to-Digital Converter. See A/D Application Note AN578, "Use of the SSP Module in the I2C Multi-Master Environment." Architecture PIC16C717/PIC16C717 Block Diagram PIC16C770/771/PIC16C770/771 Block Diagram Assembler MPASM Assembler B Banking, Data Memory BF	
Analog-to-Digital Converter. See A/D Application Note AN578, "Use of the SSP Module in the I2C Multi-Master Environment." Architecture PIC16C717/PIC16C717 Block Diagram PIC16C770/771/PIC16C770/771 Block Diagram Assembler MPASM Assembler B Banking, Data Memory Baud Rate Generator BF	
Analog-to-Digital Converter. See A/D Application Note AN578, "Use of the SSP Module in the I2C Multi-Master Environment." Architecture PIC16C717/PIC16C717 Block Diagram PIC16C770/771/PIC16C770/771 Block Diagram Assembler MPASM Assembler B Banking, Data Memory Baud Rate Generator	
Analog-to-Digital Converter. See A/D Application Note AN578, "Use of the SSP Module in the I2C Multi-Master Environment." Architecture PIC16C717/PIC16C717 Block Diagram PIC16C770/771/PIC16C770/771 Block Diagram Assembler MPASM Assembler B Banking, Data Memory Baud Rate Generator BF	
Analog-to-Digital Converter. See A/D Application Note AN578, "Use of the SSP Module in the I2C Multi-Master Environment." Architecture PIC16C717/PIC16C717 Block Diagram PIC16C770/771/PIC16C770/771 Block Diagrar Assembler MPASM Assembler B Banking, Data Memory Baud Rate Generator BF	
Analog-to-Digital Converter. See A/D Application Note AN578, "Use of the SSP Module in the I2C Multi-Master Environment." Architecture PIC16C717/PIC16C717 Block Diagram PIC16C770/771/PIC16C770/771 Block Diagrar Assembler MPASM Assembler	
Analog-to-Digital Converter. See A/D Application Note AN578, "Use of the SSP Module in the I2C Multi-Master Environment." Architecture PIC16C717/PIC16C717 Block Diagram PIC16C770/771/PIC16C770/771 Block Diagrar Assembler MPASM Assembler	
Analog-to-Digital Converter. See A/D Application Note AN578, "Use of the SSP Module in the I2C Multi-Master Environment." Architecture PIC16C717/PIC16C717 Block Diagram PIC16C770/771/PIC16C770/771 Block Diagrar Assembler MPASM Assembler	
Analog-to-Digital Converter. See A/D Application Note AN578, "Use of the SSP Module in the I2C Multi-Master Environment." Architecture PIC16C717/PIC16C717 Block Diagram PIC16C770/771/PIC16C770/771 Block Diagrar Assembler MPASM Assembler	
Analog-to-Digital Converter. See A/D Application Note AN578, "Use of the SSP Module in the I2C Multi-Master Environment." Architecture PIC16C717/PIC16C717 Block Diagram PIC16C770/771/PIC16C770/771 Block Diagrar Assembler MPASM Assembler	
Analog-to-Digital Converter. See A/D Application Note AN578, "Use of the SSP Module in the I2C Multi-Master Environment." Architecture PIC16C717/PIC16C717 Block Diagram PIC16C770/771/PIC16C770/771 Block Diagran Assembler MPASM Assembler	
Analog-to-Digital Converter. See A/D Application Note AN578, "Use of the SSP Module in the I2C Multi-Master Environment." Architecture PIC16C717/PIC16C717 Block Diagram PIC16C770/771/PIC16C770/771 Block Diagran Assembler MPASM Assembler B Banking, Data Memory Baud Rate Generator BF Baud Rate Generator BF Block Diagrams Baud Rate Generator I ² C Module RA3:RA0 and RA5 Port Pins SSP (I ² C Mode) SSP (SPI Mode) SSP (SPI Mode) BOR. See Brown-out Reset BRG Brown-out Reset (BOR) Buffer Full bit, BF Buffer Full Status bit, BF	
Analog-to-Digital Converter. See A/D Application Note AN578, "Use of the SSP Module in the I2C Multi-Master Environment." Architecture PIC16C717/PIC16C717 Block Diagram PIC16C770/771/PIC16C770/771 Block Diagram Assembler MPASM Assembler B Banking, Data Memory Baud Rate Generator BF	
Analog-to-Digital Converter. See A/D Application Note AN578, "Use of the SSP Module in the I2C Multi-Master Environment." Architecture PIC16C717/PIC16C717 Block Diagram PIC16C770/771/PIC16C770/771 Block Diagram Assembler MPASM Assembler	
Analog-to-Digital Converter. See A/D Application Note AN578, "Use of the SSP Module in the I2C Multi-Master Environment." Architecture PIC16C717/PIC16C717 Block Diagram PIC16C770/771/PIC16C770/771 Block Diagram Assembler MPASM Assembler	
Analog-to-Digital Converter. See A/D Application Note AN578, "Use of the SSP Module in the I2C Multi-Master Environment." Architecture PIC16C717/PIC16C717 Block Diagram PIC16C770/771/PIC16C770/771 Block Diagram Assembler MPASM Assembler	
Analog-to-Digital Converter. See A/D Application Note AN578, "Use of the SSP Module in the I2C Multi-Master Environment." Architecture PIC16C717/PIC16C717 Block Diagram PIC16C770/771/PIC16C770/771 Block Diagrar Assembler MPASM Assembler	

С

Capture (ECCP Module) 54
Block Diagram
CCPR1H:CCPR1L Registers 54
Changing Between Capture Prescalers 54
ECCP Pin Configuration 54
Software Interrupt 54
Timer1 Mode Selection 54
Capture/Compare/PWM (ECCP)
Capture Mode. See Capture
Compare Mode. See Compare
PWM Mode. See PWM
CCP1CON 13
CCP2CON 13
CCPR1H Register 11, 13
CCPR1L Register 13
CCPR2H Register 13
CCPR2L Register 13
CKE
СКР 67
Clock Polarity Select bit, CKP 67
Code Examples
Loading the SSPBUF register71
Code Protection 117, 131
Compare (ECCP Module) 54
Block Diagram 55
CCPR1H:CCPR1L Registers 54
ECCP Pin Configuration 54
Software Interrupt 55
Special Event Trigger 49, 55
Timer1 Mode Selection 54
Configuration Bits 117
D
D/A
D/Ā
D/A
D/Ā
D/Ā
D/A

PIC16C717/770/771 PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

PART NO.	¥	<u>/xx</u>	<u>xxx</u>		Exa	amples:
Device	Temperature Range	Package	Pattern		a)	PIC16C771/P Commercial Temp., PDIP package, normal VDD limits
Device	PIC16C771 : PIC16C771T : PIC16LC771 : PIC16LC771T :	VDD range VDD range VDD range VDD range	4.0V to 5.5V 4.0V to 5.5V (Tape 2.5V to 5.5V 2.5V to 5.5V (Tape	e/Reel) e/Reel)		
Temperature Range:	- = 0° I = -4 E = -4	C to +70°C 0°C to +85°C 0°C to +125°C	>			
Package	JW = W SO = S0 P = P1 SS = S5	indowed CER DIC DIP SOP	DIP			
Pattern	QTP, SQTP, Co and Windowed	ode or Special devices.	Requirements. Bla	ank for OTP		

* JW Devices are UV erasable and can be programmed to any device configuration. JW Devices meet the electrical requirement of each oscillator type.

Sales and Support

Data Sheets

Products supported by a preliminary Data Sheet may have an errata sheet describing minor operational differences and recommended workarounds. To determine if an errata sheet exists for a particular device, please contact one of the following:

- 1. Your local Microchip sales office
- 2. The Microchip Worldwide Site (www.microchip.com)