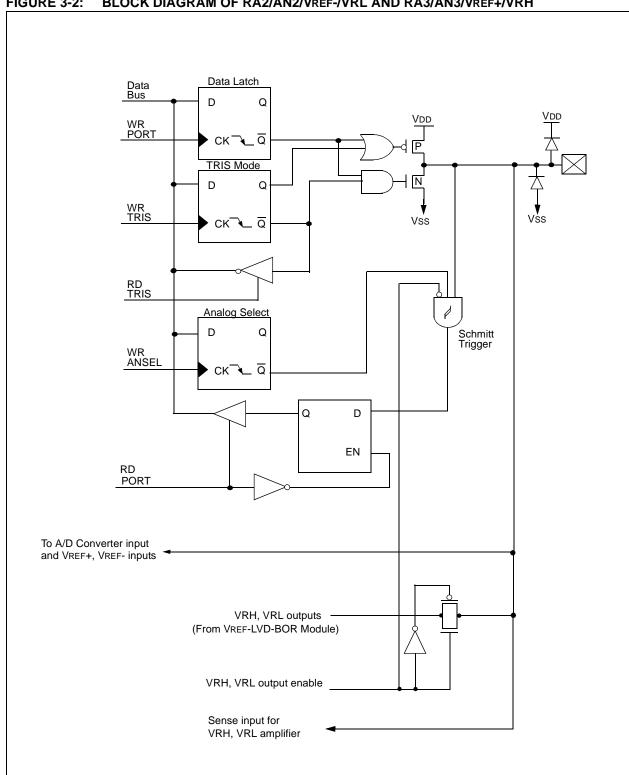


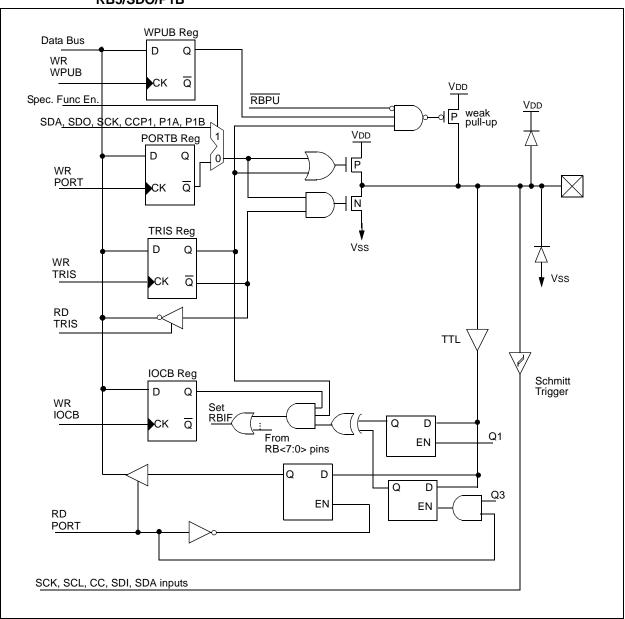
Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.


Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details


Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, SPI
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	15
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	OTP
EEPROM Size	- ·
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	4V ~ 5.5V
Data Converters	A/D 6x10b
Oscillator Type	Internal
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SSOP (0.209", 5.30mm Width)
Supplier Device Package	20-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16c717-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

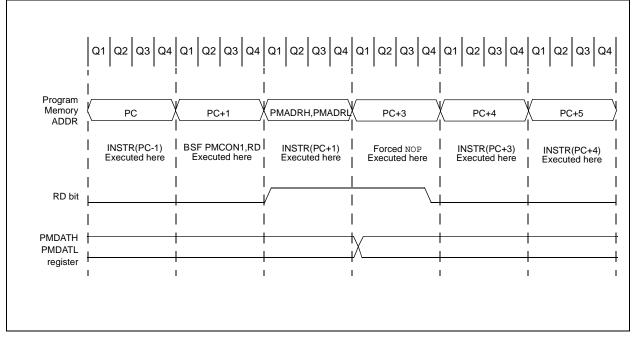
FIGURE 3-2: BLOCK DIAGRAM OF RA2/AN2/VREF-/VRL AND RA3/AN3/VREF+/VRH

FIGURE 3-8: BLOCK DIAGRAM OF RB2/SCK/SCL, RB3/CCP1/P1A, RB4/SDI/SDA, RB5/SDO/P1B

4.3 READING THE EPROM PROGRAM MEMORY

To read a program memory location, the user must write 2 bytes of the address to the PMADRH and PMADRL registers, then set control bit RD (PMCON1<0>). Once the read control bit is set, the Program Memory Read (PMR) controller will use the second instruction cycle after to read the data. This causes the second instruction immediately following the "BSF PMCON1,RD" instruction to be ignored. The data is available, in the very next cycle, in the PMDATH and PMDATL registers; therefore it can be read as 2 bytes in the following instructions. PMDATH and PMDATL registers will hold this value until another Program Memory Read or until it is written to by the user.

Note: The two instructions that follow setting the PMCON1 read bit must be NOPS.


EXAMPLE 4-1: OTP PROGRAM MEMORY Read

BSF	STATUS, RPI	i	
BCF	STATUS, RPO	; Bank 2	
MOVLW	MS_PROG_PM_ADDR	;	
MOVWF	PMADRH	; MS Byte of Program Memory Address to read	
MOVLW	LS_PROG_PM_ADDR	;	
MOVWF	PMADRL	; LS Byte of Program Memory Address to read	
BSF	STATUS, RPO	; Bank 3	
BSF	PMCON1, RD	; Program Memory Read	
NOP		; This instruction must be an NOP	
NOP		; This instruction must be an NOP	
next in	struction	; PMDATH:PMDATL now has the data	

4.4 OPERATION DURING CODE PROTECT

When the device is code protected, the CPU can still perform the Program Memory Read function.

6.0 TIMER1 MODULE

The Timer1 module timer/counter has the following features:

- 16-bit timer/counter (Two 8-bit registers; TMR1H and TMR1L)
- Readable and writable (Both registers)
- · Internal or external clock select
- Interrupt on overflow from FFFFh to 0000h
- RESET from ECCP module trigger

Timer1 has a control register, shown in Register 6-1. Timer1 can be enabled/disabled by setting/clearing control bit TMR1ON (T1CON<0>).

Figure 6-2 is a simplified block diagram of the Timer1 module.

Additional information on timer modules is available in the PIC Mid-Range MCU Family Reference Manual, (DS33023).

6.1 Timer1 Operation

Timer1 can operate in one of these modes:

- As a timer
- · As a synchronous counter
- · As an asynchronous counter

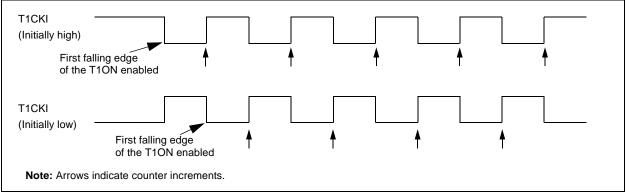
The Operating mode is determined by the clock select bit, TMR1CS (T1CON<1>).

In Timer mode, Timer1 increments every instruction cycle. In Counter mode, it increments on every rising edge of the external clock input.

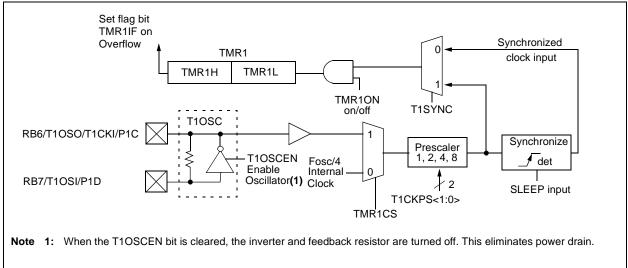
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_		T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N
bit 7							bit 0

bit 7-6	Unimplemented: Read as '0'
bit 5-4	T1CKPS<1:0>: Timer1 Input Clock Prescale Select bits 11 = 1:8 Prescale value 10 = 1:4 Prescale value 01 = 1:2 Prescale value 00 = 1:1 Prescale value
bit 3	T1OSCEN: Timer1 Oscillator Enable Control bit 1 = Oscillator is enabled 0 = Oscillator is shut off ⁽¹⁾
bit 2	T1SYNC: Timer1 External Clock Input Synchronization Control bitTMR1CS = 1:1 = Do not synchronize external clock input0 = Synchronize external clock inputTMR1CS = 0:This bit is ignored. Timer1 uses the internal clock when TMR1CS = 0.
bit 1	TMR1CS: Timer1 Clock Source Select bit 1 = External clock from pin RB6/T1OSO/T1CKI /P1C (on the rising edge) 0 = Internal clock (Fosc/4)
bit 0	TMR1ON: Timer1 On bit 1 = Enables Timer1 0 = Stops Timer1

Note 1: The oscillator inverter and feedback resistor are turned off to eliminate power drain.


Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

REGISTER 6-1: TIMER1 CONTROL REGISTER (T1CON: 10h)


6.1.1 TIMER1 COUNTER OPERATION

In this mode, Timer1 is being incremented via an external source. Increments occur on a rising edge. After Timer1 is enabled in Counter mode, the module must first have a falling edge before the counter begins to increment.

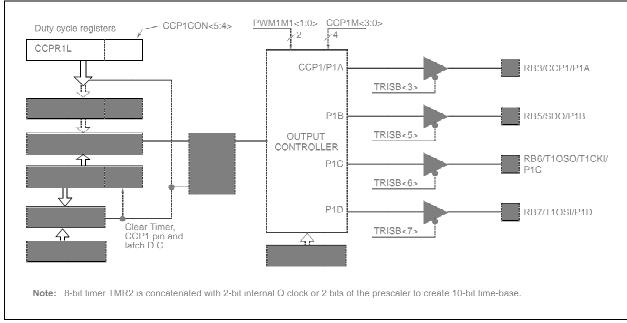


FIGURE 6-2: TIMER1 BLOCK DIAGRAM

8.3 PWM Mode

In Pulse Width Modulation (PWM) mode, the ECCP module produces up to a 10-bit resolution PWM output. Figure 8-3 shows the simplified PWM block diagram.

FIGURE 8-3: SIMPLIFIED PWM BLOCK DIAGRAM

8.3.1 PWM PERIOD

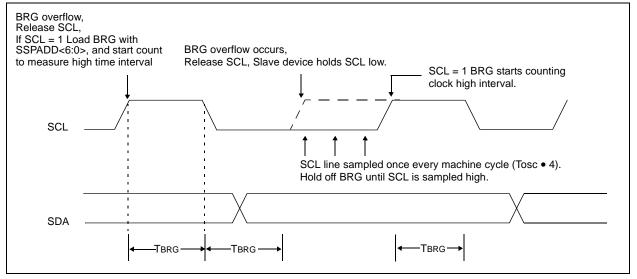
The PWM period is specified by writing to the PR2 register. The PWM period can be calculated using the following formula:

 $PWM PERIOD = [(PR2) + 1] \cdot 4 \cdot TOSC \cdot (TMR2 PRESCALE VALUE)$

PWM frequency is defined as 1 / [PWM period].

When TMR2 is equal to PR2, the following three events occur on the next increment cycle:

- TMR2 is cleared
- The CCP1 pin is set (exception: if PWM duty cycle = 0%, the CCP1 pin will not be set)
- The PWM duty cycle is latched from CCPR1L into CCPR1H


Note: The Timer2 postscaler (see Section 7.0) is not used in the determination of the PWM frequency. The postscaler could be used to have a servo update rate at a different frequency than the PWM output.

9.2.16 CLOCK ARBITRATION

Clock arbitration occurs when the master, during any receive, transmit or repeated START/STOP condition, de-asserts the SCL pin (SCL allowed to float high). When the SCL pin is allowed to float high, the baud rate generator (BRG) is suspended from counting until the

SCL pin is actually sampled high. When the SCL pin is sampled high, the baud rate generator is reloaded with the contents of SSPADD<6:0> and begins counting. This ensures that the SCL high time will always be at least one BRG rollover count in the event that the clock is held low by an external device (Figure 9-22).

FIGURE 9-22: CLOCK ARBITRATION TIMING IN MASTER TRANSMIT MODE

11.0 ANALOG-TO-DIGITAL CONVERTER (A/D) MODULE

The analog-to-digital (A/D) converter module has six inputs for the PIC16C717/770/771.

The PIC16C717 analog-to-digital converter (A/D) allows conversion of an analog input signal to a corresponding 10-bit digital value, while the A/D converter in the PIC16C770/771 allows conversion to a corresponding 12-bit digital value. The A/D module has up to 6 analog inputs, which are multiplexed into one sample and hold. The output of the sample and hold is the input into the converter, which generates the result via successive approximation. The analog reference voltages are software selectable to either the device's analog positive and negative supply voltages (AVDD/AVSS), the voltage level on the VREF+ and VREF- pins, or internal voltage references if enabled (VRH, VRL).

The A/D converter can be triggered by setting the GO/ DONE bit, or by the special event Compare mode of the ECCP module. When conversion is complete, the GO/DONE bit returns to '0', the ADIF bit in the PIR1 register is set, and an A/D interrupt will occur, if enabled.

The A/D converter has a unique feature of being able to operate while the device is in SLEEP mode. To operate in SLEEP, the A/D conversion clock must be derived from the A/D's internal RC oscillator. The A/D module has four registers. These registers are:

- A/D Result Register Low ADRESL
- A/D Result Register High ADRESH
- A/D Control Register 0 (ADCON0)
- A/D Control Register 1 (ADCON1)

A device RESET forces all registers to their RESET state. This forces the A/D module to be turned off and any conversion is aborted.

11.1 Control Registers

The ADCON0 register, shown in Register 11-1, controls the operation of the A/D module. The ADCON1 register, shown in Register 11-2, configures the functions of the port pins, the voltage reference configuration and the result format. The ANSEL register, shown in Register 3-1, selects between the Analog or Digital Port Pin modes. The port pins can be configured as analog inputs or as digital I/O.

The combination of the ADRESH and ADRESL registers contain the result of the A/D conversion. The register pair is referred to as the ADRES register. When the A/D conversion is complete, the result is loaded into ADRES, the GO/DONE bit (ADCON0<2>) is cleared, and the A/D interrupt flag ADIF is set. The block diagram of the A/D module is shown in Figure 11-3.

11.7 Use of the ECCP Trigger

An A/D conversion can be started by the "special event trigger" of the CCP module. This requires that the CCP1M<3:0> bits be programmed as 1011b and that the A/D module is enabled (ADON is set). When the trigger occurs, the GO/DONE bit will be set on Q2 to start the A/D conversion and the Timer1 counter will be reset to zero. Timer1 is RESET to automatically repeat the A/D conversion cycle, with minimal software overhead (moving the ADRESH and ADRESL to the desired location). The appropriate analog input channel must be selected before the "special event trigger" sets the GO/DONE bit (starts a conversion cycle).

If the A/D module is not enabled (ADON is cleared), then the "special event trigger" will be ignored by the A/D module, but will still RESET the Timer1 counter.

11.8 Effects of a RESET

A device RESET forces all registers to their RESET state. This forces the A/D module to be turned off, and any conversion is aborted. The value that is in the ADRESH and ADRESL registers are not modified. The ADRESH and ADRESL registers will contain unknown data after a Power-on Reset.

11.9 Faster Conversion - Lower Resolution Trade-off

Not all applications require a result with 12 bits of resolution, but may instead require a faster conversion time. The A/D module allows users to make the tradeoff of conversion speed to resolution. Regardless of the resolution required, the acquisition time is the same. To speed up the conversion, the A/D module may be halted by clearing the GO/DONE bit after the desired number of bits in the result have been converted. Once the GO/DONE bit has been cleared, all of the remaining A/D result bits are '0'. The equation to determine the time before the GO/DONE bit can be switched is as follows:

Conversion time = (N+1)TAD

Where: N = number of bits of resolution required, and 1TAD is the amplifier settling time.

Since TAD is based from the device oscillator, the user must use some method (a timer, software loop, etc.) to determine when the A/D GO/DONE bit may be cleared. Table 11-4 shows a comparison of time required for a conversion with 4 bits of resolution, versus the normal 12-bit resolution conversion. The example is for devices operating at 20 MHz. The A/D clock is programmed for 32 Tosc.

EXAMPLE 11-4: 4-BIT vs. 12-BIT CONVERSION TIME Example

4-Bit Example:
Conversion Time = $(N + 1)$ TAD
= (4 + 1) TAD
= (5)(1.6 μS)
= 8 µS
12-Bit Example:
Conversion Time = $(N + 1)$ TAD
= (12 + 1) TAD
= (13)(1.6 μS)
= 20.8 μS

13.1 Instruction Descriptions

ADDLW	Add Literal and W
Syntax:	[<i>label</i>] ADDLW k
Operands:	$0 \le k \le 255$
Operation:	$(W) + k \to (W)$
Status Affected:	C, DC, Z
Description:	The contents of the W register are added to the eight bit literal 'k' and the result is placed in the W register.

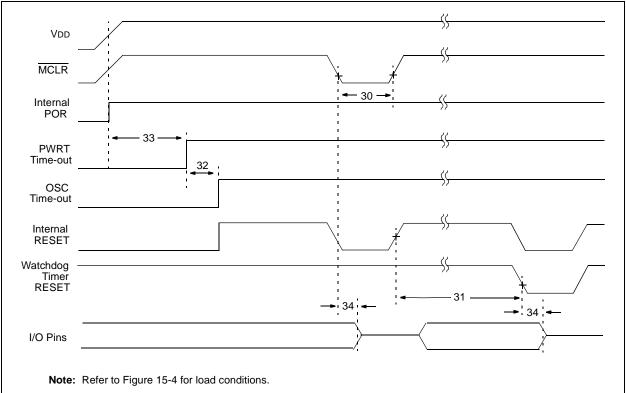
ANDWF	AND W with f
Syntax:	[<i>label</i>] ANDWF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	(W) .AND. (f) \rightarrow (destination)
Status Affected:	Z
Description:	AND the W register with register 'f'. If 'd' is 0, the result is stored in the W register. If 'd' is 1, the result is stored back in register 'f'.

ADDWF	Add W and f
Syntax:	[<i>label</i>] ADDWF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	(W) + (f) \rightarrow (destination)
Status Affected:	C, DC, Z
Description:	Add the contents of the W register with register 'f'. If 'd' is 0, the result is stored in the W register. If 'd' is 1, the result is stored back in reg- ister 'f'.

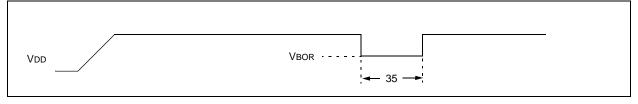
BCF	Bit Clear f
Syntax:	[<i>label</i>] BCF f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$
Operation:	$0 \rightarrow (f < b >)$
Status Affected:	None
Description:	Bit 'b' in register 'f' is cleared.

ANDLW	AND Literal with W
Syntax:	[<i>label</i>] ANDLW k
Operands:	$0 \leq k \leq 255$
Operation:	(W) .AND. (k) \rightarrow (W)
Status Affected:	Z
Description:	The contents of W register are AND'ed with the eight bit literal 'k'. The result is placed in the W register.

BSF	Bit Set f
Syntax:	[<i>label</i>] BSF f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$
Operation:	$1 \rightarrow (f < b >)$
Status Affected:	None
Description:	Bit 'b' in register 'f' is set.


TABLE 15-3: CALIBRATED INTERNAL RC FREQUENCIES - PIC16C717/770/771 AND PIC16LC717/770/771

AC Chara	cteristics	$\begin{array}{llllllllllllllllllllllllllllllllllll$						
Parameter No.	Sym Characteristic		Min	Тур ^{(1)*}	Max	Units	Conditions	
	Firc	Internal Calibrated RC Frequency	3.65	4.00	4.28	MHz	VDD = 5.0V	
	TIRC	Internal RC Frequency*	3.55	4.00	4.31	MHz	VDD = 2.5V	


These parameters are characterized but not tested.

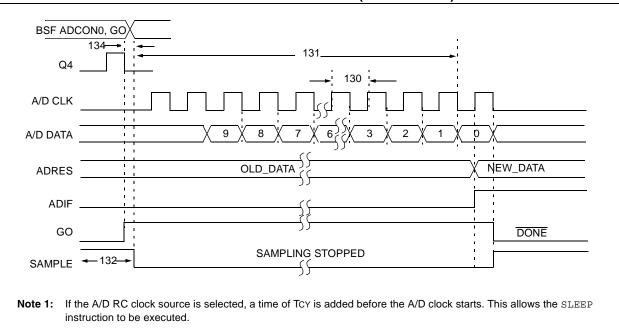

Note 1: Data in the Typical ("Typ") column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

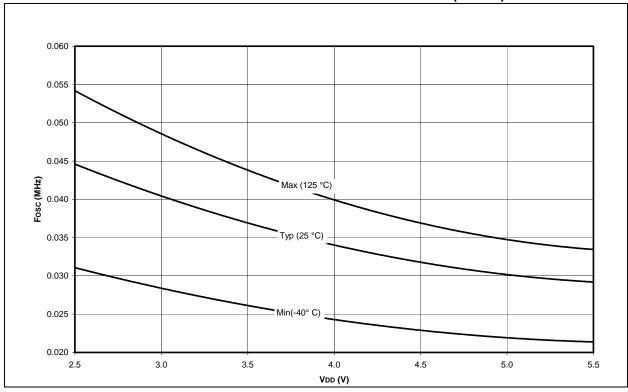
FIGURE 15-7: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP TIMER TIMING

FIGURE 15-8: BROWN-OUT RESET TIMING

FIGURE 15-17: PIC16C717 A/D CONVERSION TIMING (SLEEP MODE)

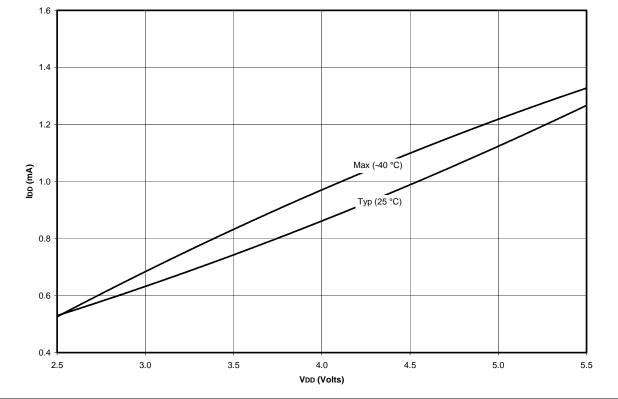
TABLE 15-16: PIC16C717 AND PIC16LC717 A/D CONVERSION REQUIREMENT (SLEEP MODE)

Parameter No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
130* ⁽³⁾	TAD	A/D clock period	3.0	6.0	9.0	μS	ADCS<1:0> = 11 (A/D RC mode) At VDD = 3.0V
			2.0	4.0	6.0	μS	At VDD = 5.0V
131*	ΤΟΝΥ	Conversion time (not including acquisition time) (Note 1)	_	11Tad	_	_	
132*	TACQ	Acquisition Time	(Note 2)	11.5	_	μs	
			5*	_	_	μS	The minimum time is the amplifier settling time. This may be used if the "new" input voltage has not changed by more than 1LSb (i.e., 1mV @ 4.096V) from the last sam- pled voltage (as stated on CHOLD).
134*	TGO	Q4 to A/D clock start		Tosc/2 + Tcy		_	If the A/D RC clock source is selected, a time of TCY is added before the A/D clock starts. This allows the SLEEP instruction to be executed.


* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: ADRES register may be read on the following TCY cycle.


2: See Section 11.6 for minimum conditions.

3: These numbers multiplied by 8 if VRH or VRL is selected as A/D reference.

FIGURE 16-14: INTERNAL RC Fosc VS. VDD OVER TEMPERATURE (37 kHZ)

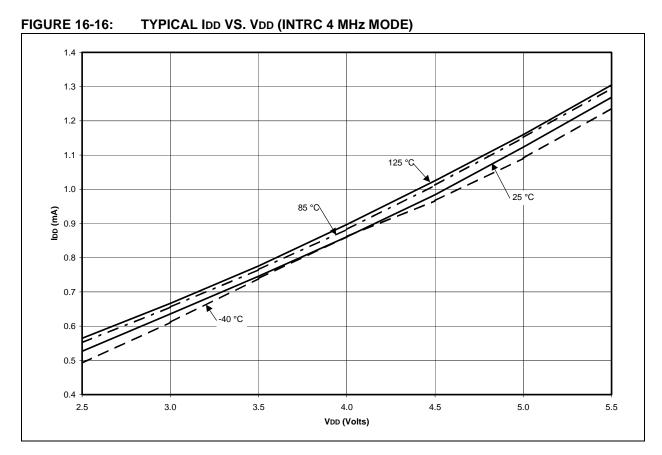
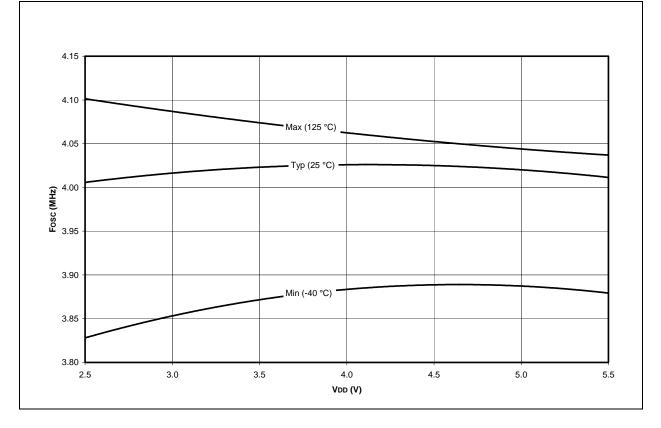
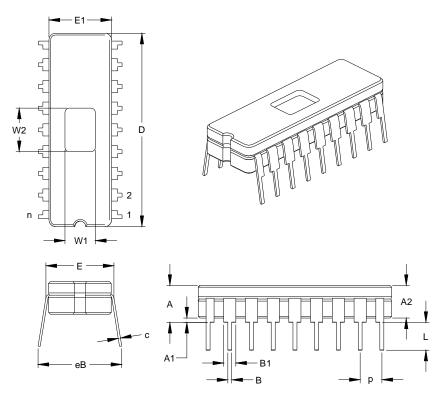
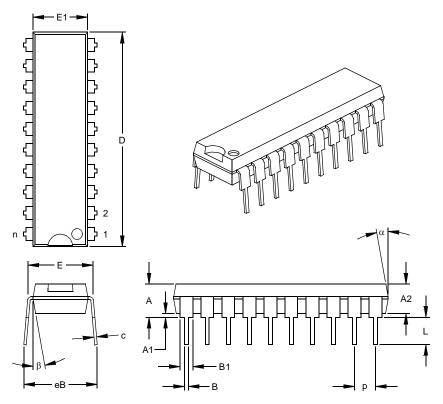




FIGURE 16-17: INTERNAL RC Fosc VS. VDD OVER TEMPERATURE (4 MHz)

18-Lead Ceramic Dual In-line with Window (JW) – 300 mil (CERDIP) 17.3

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging



	INCHES*			MILLIMETERS			
Dimension	Limits	MIN	NOM	MAX	MIN	NOM	MAX
Number of Pins	n		18			18	
Pitch	р		.100			2.54	
Top to Seating Plane	Α	.170	.183	.195	4.32	4.64	4.95
Ceramic Package Height	A2	.155	.160	.165	3.94	4.06	4.19
Standoff	A1	.015	.023	.030	0.38	0.57	0.76
Shoulder to Shoulder Width	Е	.300	.313	.325	7.62	7.94	8.26
Ceramic Pkg. Width	E1	.285	.290	.295	7.24	7.37	7.49
Overall Length	D	.880	.900	.920	22.35	22.86	23.37
Tip to Seating Plane	L	.125	.138	.150	3.18	3.49	3.81
Lead Thickness	С	.008	.010	.012	0.20	0.25	0.30
Upper Lead Width	B1	.050	.055	.060	1.27	1.40	1.52
Lower Lead Width	В	.016	.019	.021	0.41	0.47	0.53
Overall Row Spacing	eB	.345	.385	.425	8.76	9.78	10.80
Window Width	W1	.130	.140	.150	3.30	3.56	3.81
Window Length	W2	.190	.200	.210	4.83	5.08	5.33

*Controlling Parameter JEDEC Equivalent: MO-036 Drawing No. C04-010

20-Lead Plastic Dual In-line (P) - 300 mil (PDIP) 17.5

For the most current package drawings, please see the Microchip Packaging Specification located Note: at http://www.microchip.com/packaging

Units			INCHES*			MILLIMETERS			
n Limits	MIN	NOM	MAX	MIN	NOM	MAX			
n		20			20				
р		.100			2.54				
А	.140	.155	.170	3.56	3.94	4.32			
A2	.115	.130	.145	2.92	3.30	3.68			
A1	.015			0.38					
Е	.295	.310	.325	7.49	7.87	8.26			
E1	.240	.250	.260	6.10	6.35	6.60			
D	1.025	1.033	1.040	26.04	26.24	26.42			
L	.120	.130	.140	3.05	3.30	3.56			
С	.008	.012	.015	0.20	0.29	0.38			
B1	.055	.060	.065	1.40	1.52	1.65			
В	.014	.018	.022	0.36	0.46	0.56			
eB	.310	.370	.430	7.87	9.40	10.92			
α	5	10	15	5	10	15			
β	5	10	15	5	10	15			
	n Limits n P A A2 A1 E E1 D L C B1 B eB α	Limits MIN n P A .140 A2 .115 A1 .015 E .295 E1 .240 D 1.025 L .120 c .008 B1 .055 B .014 eB .310 α 5	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $			

* Controlling Parameter § Significant Characteristic

Notes:

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side.

JEDEC Equivalent: MS-001

Drawing No. C04-019

PIC16C717/770/771

1	
I/O Ports	
I ² C	
I ² C Master Mode Reception	. 89
I ² C Master Mode Restart Condition	
I ² C Mode Selection I ² C Module	.76
Acknowledge Sequence timing	Q1
Addressing	
Baud Rate Generator	
Block Diagram	
BRG Block Diagram	
BRG Reset due to SDA Collision	.96
BRG Timing	
Bus Arbitration	
Bus Collision	
Acknowledge	
Restart Condition	
Restart Condition Timing (Case1) Restart Condition Timing (Case2)	
Start Condition	
Start Condition Timing	
Stop Condition	
Stop Condition Timing (Case1)	
Stop Condition Timing (Case2)	
Transmit Timing	
Bus Collision timing	
Clock Arbitration	
Clock Arbitration Timing (Master Transmit)	
Conditions to not give ACK Pulse	
General Call Address Support	
Master Mode	
Master Mode 7-bit Reception timing	
Master Mode Operation Master Mode Start Condition	.84
Master Mode Start Condition	
Master Mode Transmit Sequence	
Multi-Master Communication	.04
Multi-master Mode	
Operation	
Repeat Start Condition timing	. 86
Slave Mode	
Slave Reception	
Slave Transmission	
SSPBUF	
Stop Condition Receive or Transmit timing	. 92
Stop Condition timing	
Waveforms for 7-bit Reception	
Waveforms for 7-bit Transmission I ² C Slave Mode	
ICEPIC In-Circuit Emulator	142
ID Locations	
In-Circuit Serial Programming (ICSP)	
INDF	
INDF Register	
Indirect Addressing	
FSR Register	
Instruction Format	133
Instruction Set	133
ADDLW	
ADDWF	
ANDLW	
ANDWF	
BCF	
BSF BTFSC	
	100

BTFSS	
CALL	
CLRF	
CLRW	
CLRWDT 136	
COMF	
DECF	
DECFSZ	
INCF	
INCF	
IORLW	
IORWF	
MOVF	
MOVLW	
MOVWF	
NOP	
RETFIE	
RETLW	
RETURN	
RLF	
RRF	
SLEEP	
SUBLW	
SUBWF	
SWAPF	
XORLW	
XORWF	,
Summary Table	
INT Interrupt (RB0/INT). See Interrupt Sources	
INTCON	,
INTCON Register	
GIE Bit	
INTE Bit 16	;
INTE Bit	
	;
INTF Bit 16	;
INTF Bit	5
INTF Bit	5
INTF Bit	;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
INTF Bit 16 PEIE Bit 16 RBIE Bit 16 RBIF Bit 16, 33 TOIE Bit 16 INTF Bit 16 INTER 16 TOIF Bit 16 Inter-Integrated Circuit (I ² C) 65	;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
INTF Bit 16 PEIE Bit 16 RBIE Bit 16 RBIF Bit 16, 33 TOIE Bit 16 TOIF Bit 16 Inter-Integrated Circuit (I ² C) 65 internal sampling switch (Rss) impedence 113	;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
INTF Bit 16 PEIE Bit 16 RBIE Bit 16 RBIF Bit 16, 33 TOIE Bit 16 INTF Bit 16 INTER 16 TOIF Bit 16 Inter-Integrated Circuit (I ² C) 65	;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
INTF Bit 16 PEIE Bit 16 RBIE Bit 16 RBIF Bit 16, 33 TOIE Bit 16 TOIF Bit 16 Inter-Integrated Circuit (I ² C) 65 internal sampling switch (Rss) impedence 113 Interrupt Sources 117, 127 Block Diagram 127	* * * * * * * * *
INTF Bit 16 PEIE Bit 16 RBIE Bit 16 RBIF Bit 16, 33 TOIE Bit 16 TOIF Bit 16 Inter-Integrated Circuit (I ² C) 65 internal sampling switch (Rss) impedence 113 Interrupt Sources 117, 127 Block Diagram 127 Capture Complete (ECCP) 54	
INTF Bit 16 PEIE Bit 16 RBIE Bit 16 RBIF Bit 16, 33 TOIE Bit 16 TOIF Bit 16 Inter-Integrated Circuit (I ² C) 65 internal sampling switch (Rss) impedence 113 Interrupt Sources 117, 127 Block Diagram 127	
INTF Bit 16 PEIE Bit 16 RBIE Bit 16 RBIF Bit 16, 33 TOIE Bit 16 TOIF Bit 16 Inter-Integrated Circuit (I ² C) 65 internal sampling switch (Rss) impedence 113 Interrupt Sources 117, 127 Block Diagram 127 Capture Complete (ECCP) 54 Compare Complete (ECCP) 55 RB0/INT Pin, External 128	
INTF Bit 16 PEIE Bit 16 RBIE Bit 16 RBIF Bit 16, 33 TOIE Bit 16 TOIF Bit 16 Inter-Integrated Circuit (I ² C) 65 internal sampling switch (Rss) impedence 113 Interrupt Sources 117, 127 Block Diagram 127 Capture Complete (ECCP) 54 Compare Complete (ECCP) 55 RB0/INT Pin, External 128 TMR0 Overflow 46, 128	
INTF Bit 16 PEIE Bit 16 RBIE Bit 16 RBIF Bit 16, 33 TOIE Bit 16 TOIF Bit 16 Inter-Integrated Circuit (I ² C) 65 internal sampling switch (Rss) impedence 113 Interrupt Sources 117, 127 Block Diagram 127 Capture Complete (ECCP) 54 Compare Complete (ECCP) 55 RB0/INT Pin, External 128 TMR0 Overflow 46, 128 TMR1 Overflow 47, 49	
INTF Bit 16 PEIE Bit 16 RBIE Bit 16 RBIF Bit 16, 33 TOIE Bit 16 TOIF Bit 16 Inter-Integrated Circuit (I ² C) 65 internal sampling switch (Rss) impedence 113 Interrupt Sources 117, 127 Block Diagram 127 Capture Complete (ECCP) 54 Compare Complete (ECCP) 55 RB0/INT Pin, External 128 TMR0 Overflow 46, 128 TMR1 Overflow 47, 49 TMR2 to PR2 Match 52	
INTF Bit 16 PEIE Bit 16 RBIE Bit 16 RBIF Bit 16, 33 TOIE Bit 16 TOIF Bit 16 Inter-Integrated Circuit (I ² C) 65 internal sampling switch (Rss) impedence 113 Interrupt Sources 117, 127 Block Diagram 127 Capture Complete (ECCP) 54 Compare Complete (ECCP) 55 RB0/INT Pin, External 128 TMR0 Overflow 46, 128 TMR1 Overflow 47, 49 TMR2 to PR2 Match 52 TMR2 to PR2 Match (PWM) 51, 56	
INTF Bit 16 PEIE Bit 16 RBIE Bit 16 RBIF Bit 16, 33 TOIE Bit 16 TOIF Bit 16 Inter-Integrated Circuit (I ² C) 65 internal sampling switch (Rss) impedence 113 Interrupt Sources 117, 127 Block Diagram 127 Capture Complete (ECCP) 54 Compare Complete (ECCP) 55 RB0/INT Pin, External 128 TMR0 Overflow 46, 128 TMR1 Overflow 47, 49 TMR2 to PR2 Match (PWM) 51, 56 Interrupts 51, 56	
INTF Bit 16 PEIE Bit 16 RBIE Bit 16 RBIF Bit 16, 33 TOIE Bit 16 TOIF Bit 16 Inter-Integrated Circuit (I ² C) 65 internal sampling switch (Rss) impedence 113 Interrupt Sources 117, 127 Block Diagram 127 Capture Complete (ECCP) 54 Compare Complete (ECCP) 55 RB0/INT Pin, External 128 TMR0 Overflow 46, 128 TMR1 Overflow 47, 49 TMR2 to PR2 Match 52 TMR2 to PR2 Match (PWM) 51, 56 Interrupts Synchronous Serial Port Interrupt 18	
INTF Bit 16 PEIE Bit 16 RBIE Bit 16 RBIF Bit 16, 33 TOIE Bit 16 TOIF Bit 16 Inter-Integrated Circuit (I ² C) 65 internal sampling switch (Rss) impedence 113 Interrupt Sources 117, 127 Block Diagram 127 Capture Complete (ECCP) 54 Compare Complete (ECCP) 55 RB0/INT Pin, External 128 TMR0 Overflow 46, 128 TMR1 Overflow 47, 49 TMR2 to PR2 Match 52 TMR2 to PR2 Match (PWM) 51, 56 Interrupts Synchronous Serial Port Interrupt. 18 Interrupts, Context Saving During 128	
INTF Bit 16 PEIE Bit 16 RBIE Bit 16 RBIF Bit 16, 33 TOIE Bit 16 TOIF Bit 16 Inter-Integrated Circuit (I ² C) 65 internal sampling switch (Rss) impedence 113 Interrupt Sources 117, 127 Block Diagram 127 Capture Complete (ECCP) 54 Compare Complete (ECCP) 55 RB0/INT Pin, External 128 TMR0 Overflow 46, 128 TMR1 Overflow 47, 49 TMR2 to PR2 Match (PWM) 51, 56 Interrupts Synchronous Serial Port Interrupt. 18 Interrupts, Context Saving During 128 Interrupts, Enable Bits 128	
INTF Bit 16 PEIE Bit 16 RBIE Bit 16 RBIF Bit 16, 33 TOIE Bit 16 TOIF Bit 16 Inter-Integrated Circuit (I ² C) 65 internal sampling switch (Rss) impedence 113 Interrupt Sources 117, 127 Block Diagram 127 Capture Complete (ECCP) 54 Compare Complete (ECCP) 55 RB0/INT Pin, External 128 TMR0 Overflow 46, 128 TMR1 Overflow 47, 49 TMR2 to PR2 Match 52 TMR2 to PR2 Match (PWM) 51, 56 Interrupts Synchronous Serial Port Interrupt 18 Interrupts, Context Saving During 128 A/D Converter Enable (ADIE Bit) 17	
INTF Bit 16 PEIE Bit 16 RBIE Bit 16 RBIF Bit 16, 33 TOIE Bit 16 TOIF Bit 16 Inter-Integrated Circuit (I ² C) 65 internal sampling switch (Rss) impedence 113 Interrupt Sources 117, 127 Block Diagram 127 Capture Complete (ECCP) 54 Compare Complete (ECCP) 55 RB0/INT Pin, External 128 TMR0 Overflow 46, 128 TMR1 Overflow 47, 49 TMR2 to PR2 Match 52 TMR2 to PR2 Match (PWM) 51, 56 Interrupts Synchronous Serial Port Interrupt 18 Interrupts, Context Saving During 128 A/D Converter Enable (ADIE Bit) 17 CCP1 Enable (CCP1IE Bit) 17, 54	
INTF Bit 16 PEIE Bit 16 RBIE Bit 16 RBIF Bit 16, 33 TOIE Bit 16 TOIF Bit 16 Inter-Integrated Circuit (I ² C) 65 internal sampling switch (Rss) impedence 113 Interrupt Sources 117, 127 Block Diagram 127 Capture Complete (ECCP) 54 Compare Complete (ECCP) 55 RB0/INT Pin, External 128 TMR0 Overflow 46, 128 TMR1 Overflow 47, 49 TMR2 to PR2 Match 52 TMR2 to PR2 Match (PWM) 51, 56 Interrupts Synchronous Serial Port Interrupt 18 Interrupts, Context Saving During 128 A/D Converter Enable (ADIE Bit) 17 CCP1 Enable (CCP1IE Bit) 17, 54 Global Interrupt Enable (GIE Bit) 16, 127	
INTF Bit 16 PEIE Bit 16 RBIE Bit 16 RBIF Bit 16, 33 TOIE Bit 16 TOIF Bit 16 Inter-Integrated Circuit (I ² C) 65 internal sampling switch (Rss) impedence 113 Interrupt Sources 117, 127 Block Diagram 127 Capture Complete (ECCP) 54 Compare Complete (ECCP) 55 RB0/INT Pin, External 128 TMR0 Overflow 46, 128 TMR1 Overflow 47, 49 TMR2 to PR2 Match 52 TMR2 to PR2 Match (PWM) 51, 56 Interrupts Synchronous Serial Port Interrupt. 18 Interrupts, Context Saving During. 128 Interrupts, Enable Bits A/D Converter Enable (ADIE Bit) 17 A/D Converter Enable (ADIE Bit) 17, 54 Global Interrupt Enable (GIE Bit) 16, 127 Interrupt-on-Change (RB7:RB4) Enable 16, 127	
INTF Bit 16 PEIE Bit 16 RBIE Bit 16 RBIF Bit 16, 33 TOIE Bit 16 TOIF Bit 16 Inter-Integrated Circuit (I ² C) 65 internal sampling switch (Rss) impedence 113 Interrupt Sources 117, 127 Block Diagram 127 Capture Complete (ECCP) 54 Compare Complete (ECCP) 55 RB0/INT Pin, External 128 TMR0 Overflow 46, 128 TMR1 Overflow 47, 49 TMR2 to PR2 Match 52 TMR2 to PR2 Match 52 TMR2 to PR2 Match (PWM) 51, 56 Interrupts Synchronous Serial Port Interrupt. 18 Interrupts, Context Saving During 128 A/D Converter Enable (ADIE Bit) 17 A/D Converter Enable (ADIE Bit) 17 A/D Converter Enable (GIE Bit) 16, 127 Interrupt-on-Change (RB7:RB4) Enable 16, 128	
INTF Bit 16 PEIE Bit 16 RBIE Bit 16 RBIF Bit 16, 33 TOIE Bit 16 TOIF Bit 16 Inter-Integrated Circuit (I ² C) 65 internal sampling switch (Rss) impedence 113 Interrupt Sources 117, 127 Block Diagram 127 Capture Complete (ECCP) 54 Compare Complete (ECCP) 55 RB0/INT Pin, External 128 TMR0 Overflow 46, 128 TMR1 Overflow 47, 49 TMR2 to PR2 Match 52 TMR2 to PR2 Match (PWM) 51, 56 Interrupts Synchronous Serial Port Interrupt. 18 Interrupts, Context Saving During. 128 Interrupts, Enable Bits A/D Converter Enable (ADIE Bit) 17 A/D Converter Enable (ADIE Bit) 17, 54 Global Interrupt Enable (GIE Bit) 16, 127 Interrupt-on-Change (RB7:RB4) Enable 16, 128 Peripheral Interrupt Enable (PEIE Bit) 16, 128	
INTF Bit 16 PEIE Bit 16 RBIE Bit 16 RBIF Bit 16, 33 TOIE Bit 16 TOIF Bit 16 Inter-Integrated Circuit (I ² C) 65 internal sampling switch (Rss) impedence 113 Interrupt Sources 117, 127 Block Diagram 127 Capture Complete (ECCP) 54 Compare Complete (ECCP) 54 Compare Complete (ECCP) 55 RB0/INT Pin, External 128 TMR0 Overflow 46, 128 TMR1 Overflow 47, 49 TMR2 to PR2 Match 52 TMR2 to PR2 Match (PWM) 51, 56 Interrupts Synchronous Serial Port Interrupt. 18 Interrupts, Context Saving During 128 Interrupts, Enable Bits A/D Converter Enable (ADIE Bit) 17 CCP1 Enable (CCP1IE Bit) 17, 54 Global Interrupt Enable (GIE Bit) 16, 127 Interrupt-on-Change (RB7:RB4) Enable (RBIE Bit) 16, 128 Peripheral Interrupt Enable (PSPIE Bit) 16 PSP Read/Write Enable	
INTF Bit 16 PEIE Bit 16 RBIE Bit 16 RBIF Bit 16, 33 TOIE Bit 16 TOIF Bit 16 Inter-Integrated Circuit (I ² C) 65 internal sampling switch (Rss) impedence 113 Interrupt Sources 117, 127 Block Diagram 127 Capture Complete (ECCP) 54 Compare Complete (ECCP) 55 RB0/INT Pin, External 128 TMR0 Overflow 46, 128 TMR1 Overflow 47, 49 TMR2 to PR2 Match 52 TMR2 to PR2 Match (PWM) 51, 56 Interrupts Synchronous Serial Port Interrupt 18 Interrupts, Context Saving During 128 A/D Converter Enable (ADIE Bit) 17 CCP1 Enable (CCP1IE Bit) 16, 127 Interrupts, Enable Bits 16, 127 A/D Converter Enable (ADIE Bit) 16, 128 Peripheral Interrupt Enable (PEIE Bit) 16, 128 Peripheral Interrupt Enable (PSPIE Bit) 16 PSP Read/Write Enable (PSPIE Bit) 17	
INTF Bit 16 PEIE Bit 16 RBIE Bit 16 RBIF Bit 16, 33 TOIE Bit 16 TOIF Bit 16 Inter-Integrated Circuit (I ² C) 65 internal sampling switch (Rss) impedence 113 Interrupt Sources 117, 127 Block Diagram 127 Capture Complete (ECCP) 54 Compare Complete (ECCP) 55 RB0/INT Pin, External 128 TMR0 Overflow 46, 128 TMR1 Overflow 47, 49 TMR2 to PR2 Match 52 TMR2 to PR2 Match (PWM) 51, 56 Interrupts Synchronous Serial Port Interrupt Synchronous Serial Port Interrupt 18 Interrupts, Context Saving During 128 Interrupts, Context Saving During 128 Interrupts, Enable Bits 17 A/D Converter Enable (ADIE Bit) 17 CCP1 Enable (CCP1IE Bit) 16, 127 Interrupt-on-Change (RB7:RB4) Enable 16, 128 Peripheral Interrupt Enable (PSPIE Bit) 16 PSP Read/Write Enable (
INTF Bit 16 PEIE Bit 16 RBIE Bit 16 RBIF Bit 16, 33 TOIE Bit 16 TOIF Bit 16 Inter-Integrated Circuit (I ² C) 65 internal sampling switch (Rss) impedence 113 Interrupt Sources 117, 127 Block Diagram 127 Capture Complete (ECCP) 54 Compare Complete (ECCP) 55 RB0/INT Pin, External 128 TMR0 Overflow 46, 128 TMR1 Overflow 47, 49 TMR2 to PR2 Match 52 TMR2 to PR2 Match (PWM) 51, 56 Interrupts Synchronous Serial Port Interrupt 18 Interrupts, Context Saving During 128 A/D Converter Enable (ADIE Bit) 17 CCP1 Enable (CCP1IE Bit) 16, 127 Interrupts, Enable Bits 16, 127 A/D Converter Enable (ADIE Bit) 16, 128 Peripheral Interrupt Enable (PEIE Bit) 16, 128 Peripheral Interrupt Enable (PSPIE Bit) 16 PSP Read/Write Enable (PSPIE Bit) 17	

READER RESPONSE

It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.

Please list the following information, and use this outline to provide us with your comments about this document.

TO: RE:	Technical Publications Manager Reader Response	Total Pages Sent
	: Name	
1 IOII	Company	
	Address	
	City / State / ZIP / Country	
	Telephone: ()	FAX: ()
Appli	cation (optional):	
Woul	d you like a reply?YN	
Devi	ce:	Literature Number: DS41120C
Ques	itions:	
1. V	Vhat are the best features of this document?	
-		
_ 2. ⊦	low does this document meet your hardware and softwar	e development needs?
_		
_		
3. E	Do you find the organization of this document easy to follo	ow? If not, why?
_		
-		
4. V	Vhat additions to the document do you think would enhar	ice the structure and subject?
_		
5. V	Vhat deletions from the document could be made without	affecting the overall usefulness?
_		
_		
6. Is	s there any incorrect or misleading information (what and	where)?
-		
_ 7. ⊦	low would you improve this document?	
1. 1		
-		
_		

NOTES:

PIC16C717/770/771

NOTES: