

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, SPI
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	15
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	OTP
EEPROM Size	
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	4V ~ 5.5V
Data Converters	A/D 6x10b
Oscillator Type	Internal
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	18-SOIC (0.295", 7.50mm Width)
Supplier Device Package	18-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16c717t-so

Email: info@E-XFL.COM

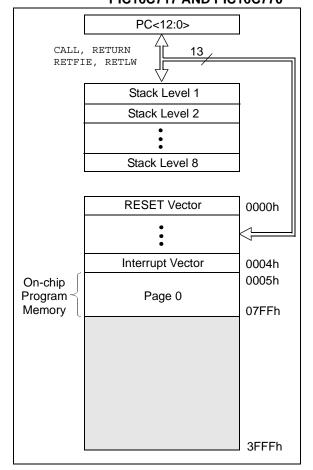
Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

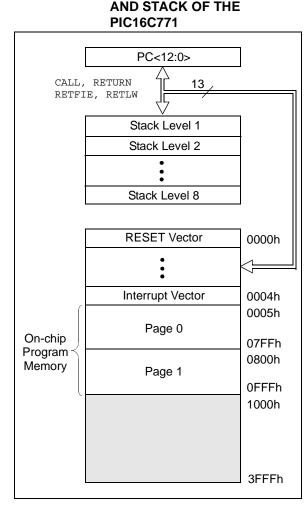
PROGRAM MEMORY MAP

FIGURE 2-2:

2.0 MEMORY ORGANIZATION

There are two memory blocks in each of these PIC[®] microcontrollers. Each block (Program Memory and Data Memory) has its own bus, so that concurrent access can occur.


Additional information on device memory may be found in the PICmicro[™] Mid-Range MCU Family Reference Manual, (DS33023).


2.1 Program Memory Organization

The PIC16C717/770/771 devices have a 13-bit program counter capable of addressing an 8K x 14 program memory space. The PIC16C717 and the PIC16C770 have 2K x 14 words of program memory. The PIC16C771 has 4K x 14 words of program memory. Accessing a location above the physically implemented address will cause a wrap-around.

The RESET vector is at 0000h and the interrupt vector is at 0004h.

FIGURE 2-1: PROGRAM MEMORY MAP AND STACK OF THE PIC16C717 AND PIC16C770

2.2 Data Memory Organization

The data memory is partitioned into multiple banks, which contain the General Purpose Registers and the Special Function Registers. Bits RP1 and RP0 are the bank select bits.

RP1	RP0	(STATUS<6:5>)
= 01	 Bank0 Bank1 Bank2 Bank3 	

Each bank extends up to 7Fh (128 bytes). The lower locations of each bank are reserved for the Special Function Registers. Above the Special Function Registers are General Purpose Registers, implemented as static RAM. All implemented banks contain special function registers. Some frequently used special function registers from one bank are mirrored in another bank for code reduction and quicker access.

2.2.1 GENERAL PURPOSE REGISTER FILE

The register file can be accessed either directly, or indirectly, through the File Select Register FSR.

2.2.2.1 STATUS REGISTER

The STATUS register, shown in Register 2-1, contains the arithmetic status of the ALU, the RESET status and the bank select bits for data memory.

The STATUS register can be the destination for any instruction, as with any other register. If the STATUS register is the destination for an instruction that affects the Z, DC or C bits, then the write to these three bits is disabled. These bits are set or cleared according to the device logic. Furthermore, the TO and PD bits are not writable. Therefore, the result of an instruction with the STATUS register as destination may be different than intended.

For example, CLRF STATUS will clear the upper-three bits and set the Z bit. This leaves the STATUS register as $000u \ u1uu$ (where u = unchanged).

It is recommended, therefore, that only BCF, BSF, SWAPF and MOVWF instructions are used to alter the STATUS register, because these instructions do not affect the Z, C or DC bits from the STATUS register. For other instructions not affecting any status bits, see the "Instruction Set Summary."

Note:	The C and DC bits operate as a borrow
	and digit borrow bit, respectively, in sub-
	traction. See the SUBLW and SUBWF
	instructions for examples.

REGISTER 2-1: STATUS REGISTER (STATUS: 03h, 83h, 103h, 183h)

	R/W-0	R/W-0	R/W-0	R-1	R-1	R/W-x	R/W-x	R/W-x	
	IRP	RP1	RP0	TO	PD	Z	DC	С	
	bit 7							bit 0	
bit 7		ter Bank Sel		d for indirect	addressing	a)			
		, 3 (100h - 1 , 1 (00h - FF							
bit 6-5		Register Ban		s (used for o	lirect addre	ssing)			
		3 (180h - 1F 2 (100h - 17							
		1 (80h - FFh							
	00 = Bank	0 (00h - 7Fh)						
		is 128 bytes	i						
bit 4	TO: Time-c			tion of at t		ion			
	-	ower-up, CLI				ION			
bit 3	PD: Power	-down bit							
		ower-up or b			n				
	-	cution of the	SLEEP inst	ruction					
bit 2	Z: Zero bit		h						
		sult of an arit sult of an arit				0			
bit 1		arry/borrow		•			(for borrow	the polarity	
	•	-out from the ry-out from th				urred			
bit 0	C: Carry/bo	orrow bit (AD	DWF, ADDLW	, SUBLW, SU	JBWF instru	ictions)			
	•	-out from the	•						
	0 = No cari	ry-out from tl	ne Most Sigi	nificant bit o	f the result	occurred			
	Note:	For borrow.	the polarity	is reversed.	A subtract	ion is execu	ted bv addin	a the two's	
	Note: For borrow, the polarity is reversed. A subtraction is executed by adding the two's complement of the second operand. For rotate (RRF, RLF) instructions, this bit is loaded with either the high or low order bit of the source register.								
	loaded with either the high or low order bit of the source register.								
	Legend:								
	R = Reada	ble bit	W = W	ritable bit	U = Unir	nplemented	bit, read as '	0'	
	- n = Value	at POR	'1' = Bi	t is set	'0' = Bit	is cleared	x = Bit is u	nknown	

Name	Function	Input Type	Output Type	Description
	RB0	TTL	CMOS	Bi-directional I/O ⁽¹⁾
RB0/AN4/INT	AN4	AN		A/D input
	INT	ST		Interrupt input
	RB1	TTL	CMOS	Bi-directional I/O ⁽¹⁾
RB1/AN5/SS	AN5	AN		A/D input
	SS	ST		SSP slave select input
	RB2	TTL	CMOS	Bi-directional I/O ⁽¹⁾
RB2/SCK/SCL	SCK	ST	CMOS	Serial clock I/O for SPI
	SCL	ST	OD	Serial clock I/O for I ² C
	RB3	TTL	CMOS	Bi-directional I/O ⁽¹⁾
RB3/CCP1/P1A	CCP1	ST	CMOS	Capture 1 input/Compare 1 output
	P1A		CMOS	PWM P1A output
	RB4	TTL	CMOS	Bi-directional I/O ⁽¹⁾
RB4/SDI/SDA	SDI	ST		Serial data in for SPI
	SDA	ST	OD	Serial data I/O for I ² C
	RB5	TTL	CMOS	Bi-directional I/O ⁽¹⁾
RB5/SDO/P1B	SDO		CMOS	Serial data out for SPI
	P1B		CMOS	PWM P1B output
	RB6	TTL	CMOS	Bi-directional I/O ⁽¹⁾
	T1OSO		XTAL	Crystal/Resonator
RB6/T1OSO/T1CKI/P1C	T1CKI	CMOS		TMR1 clock input
	P1C		CMOS	PWM P1C output
	RB7	TTL	CMOS	Bi-directional I/O ⁽¹⁾
RB7/T1OSI/P1D	T1OSI	XTAL		TMR1 crystal/resonator
	P1D		CMOS	PWM P1D output

TABLE 3-3: PORTB FUNCTIONS

Note 1: Bit programmable pull-ups.

TABLE 3-4: SUMMARY OF REGISTERS ASSOCIATED WITH PORTB

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other RESETS
06h, 106h	PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	xxxx xx11	uuuu uull
86h, 186h	TRISB	PORTE	B Data Dire	ction Reg	jister					1111 1111	1111 1111
81h, 181h	OPTION_REG	RBPU	INTEDG	TOCS	T0SE	PSA	PS2	PS1	PS0	1111 1111	1111 1111
95h	WPUB	PORTE	8 Weak Pul	Il-up Cont	rol					1111 1111	1111 1111
96h	IOCB	PORTE	PORTB Interrupt on Change Control							1111 0000	1111 0000
9Dh	ANSEL	_	_	ANS5	ANS4	ANS3	ANS2	ANS1	ANS0	11 1111	11 1111

Legend: x = unknown, u = unchanged. Shaded cells are not used by PORTB.

5.0 TIMER0 MODULE

The Timer0 module timer/counter has the following features:

- 8-bit timer/counter
- Readable and writable
- Internal or external clock select
- Edge select for external clock
- 8-bit software programmable prescaler
- Interrupt on overflow from FFh to 00h

Figure 5-1 is a simplified block diagram of the Timer0 module.

Additional information on timer modules is available in the PIC Mid-Range MCU Family Reference Manual, (DS33023).

5.1 Timer0 Operation

Timer0 can operate as a timer or as a counter.

Timer mode is selected by clearing bit TOCS (OPTION_REG<5>). In Timer mode, the Timer0 module will increment every instruction cycle (without prescaler). If the TMR0 register is written, the increment is inhibited for the following two instruction cycles. The user can work around this by writing an adjusted value to the TMR0 register.

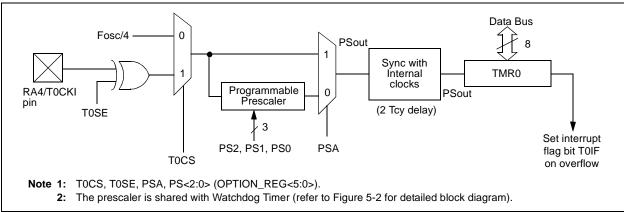
Counter mode is selected by setting bit TOCS (OPTION_REG<5>). In Counter mode, Timer0 will increment either on every rising or falling edge of pin RA4/TOCKI. The incrementing edge is determined by the Timer0 Source Edge Select bit TOSE (OPTION_REG<4>). Clearing bit TOSE selects the rising edge. Restrictions on the external clock input are discussed in below.

When an external clock input is used for Timer0, it must meet certain requirements. The requirements ensure the external clock can be synchronized with the internal phase clock (Tosc). Also, there is a delay in the actual incrementing of Timer0 after synchronization. Additional information on external clock requirements is available in the PIC Mid-Range MCU Family Reference Manual, (DS33023).

5.2 Prescaler

An 8-bit counter is available as a prescaler for the Timer0 module, or as a postscaler for the Watchdog Timer, respectively (Figure 5-2). For simplicity, this counter is being referred to as "prescaler" throughout this data sheet. Note that there is only one prescaler available which is mutually exclusively shared between the Timer0 module and the Watchdog Timer. Thus, a prescaler assignment for the Timer0 module means that there is no prescaler for the Watchdog Timer, and vice-versa.

The prescaler is not readable or writable.


The PSA and PS<2:0> bits (OPTION_REG<3:0>) determine the prescaler assignment and prescale ratio.

Clearing bit PSA will assign the prescaler to the Timer0 module. When the prescaler is assigned to the Timer0 module, prescale values of 1:2, 1:4, ..., 1:256 are selectable.

Setting bit PSA will assign the prescaler to the Watchdog Timer (WDT). When the prescaler is assigned to the WDT, prescale values of 1:1, 1:2, ..., 1:128 are selectable.

When assigned to the Timer0 module, all instructions writing to the TMR0 register (e.g. CLRF 1, MOVWF 1, BSF 1, x...etc.) will clear the prescaler. When assigned to WDT, a CLRWDT instruction will clear the prescaler along with the WDT.

Note: Writing to TMR0 when the prescaler is assigned to Timer0 will clear the prescaler count, but will not change the prescaler assignment.

FIGURE 5-1: TIMER0 BLOCK DIAGRAM

6.0 TIMER1 MODULE

The Timer1 module timer/counter has the following features:

- 16-bit timer/counter (Two 8-bit registers; TMR1H and TMR1L)
- Readable and writable (Both registers)
- · Internal or external clock select
- Interrupt on overflow from FFFFh to 0000h
- RESET from ECCP module trigger

Timer1 has a control register, shown in Register 6-1. Timer1 can be enabled/disabled by setting/clearing control bit TMR1ON (T1CON<0>).

Figure 6-2 is a simplified block diagram of the Timer1 module.

Additional information on timer modules is available in the PIC Mid-Range MCU Family Reference Manual, (DS33023).

6.1 Timer1 Operation

Timer1 can operate in one of these modes:

- As a timer
- · As a synchronous counter
- · As an asynchronous counter

The Operating mode is determined by the clock select bit, TMR1CS (T1CON<1>).

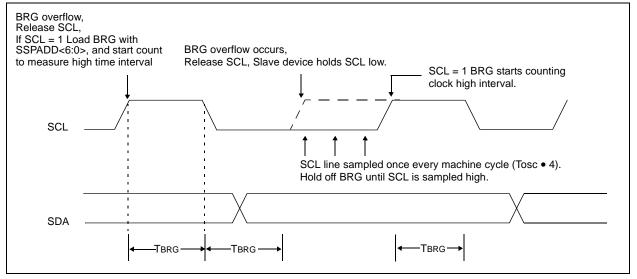
In Timer mode, Timer1 increments every instruction cycle. In Counter mode, it increments on every rising edge of the external clock input.

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_		T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N
bit 7							bit 0

bit 7-6	Unimplemented: Read as '0'
bit 5-4	T1CKPS<1:0>: Timer1 Input Clock Prescale Select bits 11 = 1:8 Prescale value 10 = 1:4 Prescale value 01 = 1:2 Prescale value 00 = 1:1 Prescale value
bit 3	T1OSCEN: Timer1 Oscillator Enable Control bit 1 = Oscillator is enabled 0 = Oscillator is shut off ⁽¹⁾
bit 2	T1SYNC: Timer1 External Clock Input Synchronization Control bitTMR1CS = 1:1 = Do not synchronize external clock input0 = Synchronize external clock inputTMR1CS = 0:This bit is ignored. Timer1 uses the internal clock when TMR1CS = 0.
bit 1	TMR1CS: Timer1 Clock Source Select bit 1 = External clock from pin RB6/T1OSO/T1CKI /P1C (on the rising edge) 0 = Internal clock (Fosc/4)
bit 0	TMR1ON: Timer1 On bit 1 = Enables Timer1 0 = Stops Timer1

Note 1: The oscillator inverter and feedback resistor are turned off to eliminate power drain.

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown


REGISTER 6-1: TIMER1 CONTROL REGISTER (T1CON: 10h)

9.2.16 CLOCK ARBITRATION

Clock arbitration occurs when the master, during any receive, transmit or repeated START/STOP condition, de-asserts the SCL pin (SCL allowed to float high). When the SCL pin is allowed to float high, the baud rate generator (BRG) is suspended from counting until the

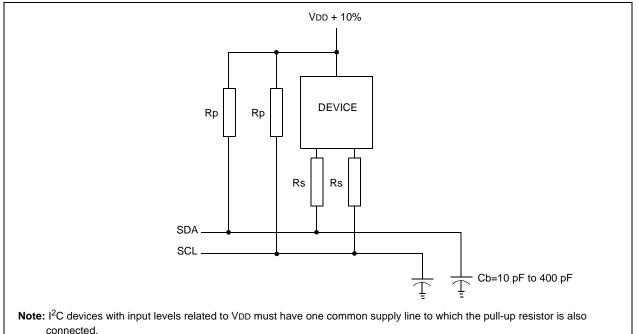
SCL pin is actually sampled high. When the SCL pin is sampled high, the baud rate generator is reloaded with the contents of SSPADD<6:0> and begins counting. This ensures that the SCL high time will always be at least one BRG rollover count in the event that the clock is held low by an external device (Figure 9-22).

FIGURE 9-22: CLOCK ARBITRATION TIMING IN MASTER TRANSMIT MODE

9.2.18 CONNECTION CONSIDERATIONS FOR I²C BUS

For Standard mode I^2C bus devices, the values of resistors R_p and R_s in Figure 9-31 depends on the following parameters

- Supply voltage
- Bus capacitance
- Number of connected devices (input current + leakage current).


The supply voltage limits the minimum value of resistor R_p due to the specified minimum sink current of 3 mA at VoL max = 0.4V for the specified output stages. For

example, with a supply voltage of VDD = $5V\pm10\%$ and VOL max = 0.4V at 3 mA, R_{p min} = (5.5-0.4)/0.003 = 1.7 k Ω . VDD as a function of R_p is shown in Figure 9-31. The desired noise margin of 0.1VDD for the low level limits the maximum value of R_s . Series resistors are optional and used to improve ESD susceptibility.

The bus capacitance is the total capacitance of wire, connections, and pins. This capacitance limits the maximum value of R_p due to the specified rise time (Figure 9-31).

The SMP bit is the slew rate control enabled bit. This bit is in the SSPSTAT register, and controls the slew rate of the I/O pins when in I^2C mode (master or slave).

FIGURE 9-31: SAMPLE DEVICE CONFIGURATION FOR I²C BUS

TABLE 9-3:	REGISTERS ASSOCIATED WITH I²C OPERATION

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	POR, BOR	MCLR, WDT
0Bh, 8Bh, 10Bh,18Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	—	ADIF	—	—	SSPIF	CCP1IF	TMR2IF	TMR1IF	-0 0000	-0 0000
8Ch	PIE1	—	ADIE	_	-	SSPIE	CCP1IE	TMR2IE	TMR1IE	-0 0000	-0 0000
0Dh	PIR2	LVDIF	-	_	-	BCLIF	-	—	CCP2IF	0 00	000
8Dh	PIE2	LVDIE	—	—	—	BCLIE	—	—	CCP2IE	0 00	0 00
13h	SSPBUF		Synch	ronous Ser	ial Port Re	ceive Buffe	er/Transmit F	Register		XXXX XXXX	uuuu uuuu
14h	SSPCON	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	0000 0000	0000 0000
91h	SSPCON2	GCEN	ACKSTAT	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	0000 0000	0000 0000
94h	SSPSTAT	SMP	CKE	D/A	Р	S	R/W	UA	BF	0000 0000	0000 0000
93h	SSPADD		Synchronous Serial Port (I ² C Mode) Address Register								0000 0000

Legend: x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used by the MSSP in I²C mode.

11.0 ANALOG-TO-DIGITAL CONVERTER (A/D) MODULE

The analog-to-digital (A/D) converter module has six inputs for the PIC16C717/770/771.

The PIC16C717 analog-to-digital converter (A/D) allows conversion of an analog input signal to a corresponding 10-bit digital value, while the A/D converter in the PIC16C770/771 allows conversion to a corresponding 12-bit digital value. The A/D module has up to 6 analog inputs, which are multiplexed into one sample and hold. The output of the sample and hold is the input into the converter, which generates the result via successive approximation. The analog reference voltages are software selectable to either the device's analog positive and negative supply voltages (AVDD/AVSS), the voltage level on the VREF+ and VREF- pins, or internal voltage references if enabled (VRH, VRL).

The A/D converter can be triggered by setting the GO/ DONE bit, or by the special event Compare mode of the ECCP module. When conversion is complete, the GO/DONE bit returns to '0', the ADIF bit in the PIR1 register is set, and an A/D interrupt will occur, if enabled.

The A/D converter has a unique feature of being able to operate while the device is in SLEEP mode. To operate in SLEEP, the A/D conversion clock must be derived from the A/D's internal RC oscillator. The A/D module has four registers. These registers are:

- A/D Result Register Low ADRESL
- A/D Result Register High ADRESH
- A/D Control Register 0 (ADCON0)
- A/D Control Register 1 (ADCON1)

A device RESET forces all registers to their RESET state. This forces the A/D module to be turned off and any conversion is aborted.

11.1 Control Registers

The ADCON0 register, shown in Register 11-1, controls the operation of the A/D module. The ADCON1 register, shown in Register 11-2, configures the functions of the port pins, the voltage reference configuration and the result format. The ANSEL register, shown in Register 3-1, selects between the Analog or Digital Port Pin modes. The port pins can be configured as analog inputs or as digital I/O.

The combination of the ADRESH and ADRESL registers contain the result of the A/D conversion. The register pair is referred to as the ADRES register. When the A/D conversion is complete, the result is loaded into ADRES, the GO/DONE bit (ADCON0<2>) is cleared, and the A/D interrupt flag ADIF is set. The block diagram of the A/D module is shown in Figure 11-3. After the A/D module has been configured as desired and the analog input channels have their corresponding TRIS bits selected for port inputs, the selected channel must be acquired before conversion is started. The A/D conversion cycle can be initiated by setting the GO/DONE bit. The A/D conversion begins and lasts for 13TAD. The following steps should be followed for performing an A/D conversion:

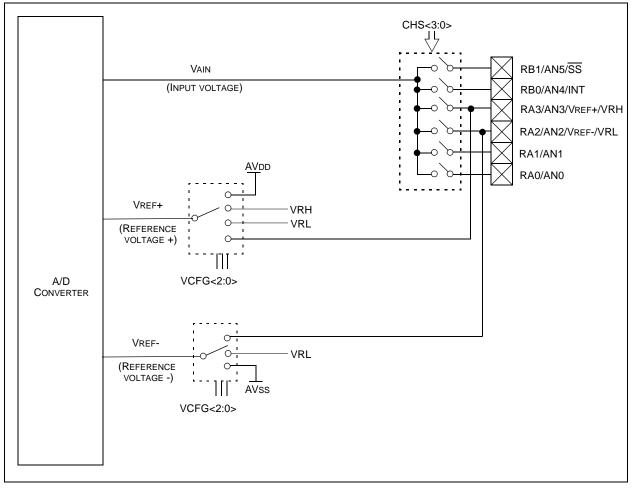

- 1. Configure port pins:
 - Configure Analog Input mode (ANSEL)
 - Configure pin as input (TRISA or TRISB)
- 2. Configure the A/D module
 - Configure A/D Result Format / voltage reference (ADCON1)
 - Select A/D input channel (ADCON0)
 - Select A/D conversion clock (ADCON0)
 - Turn on A/D module (ADCON0)
- 3. Configure A/D interrupt (if required)
 - Clear ADIF bit
 - Set ADIE bit
 - Set PEIE bit
 - Set GIE bit

FIGURE 11-3: A/D BLOCK DIAGRAM

- 4. Wait the required acquisition time.
- 5. START conversion
 - Set GO/DONE bit (ADCON0)
- 6. Wait 13TAD until A/D conversion is complete, by either:
 - Polling for the GO/DONE bit to be cleared OR
 - Waiting for the A/D interrupt
- 7. Read A/D Result registers (ADRESH and ADRESL), clear ADIF if required.
- 8. For next conversion, go to step 1, step 2 or step 3 as required.

Clearing the GO/DONE bit during a conversion will abort the current conversion. The ADRESH and ADRESL registers will be updated with the partially completed A/D conversion value. That is, the ADRESH and ADRESL registers will contain the value of the current incomplete conversion.

Note: Do not set the ADON bit and the GO/ DONE bit in the same instruction. Doing so will cause the GO/DONE bit to be automatically cleared.

11.7 Use of the ECCP Trigger

An A/D conversion can be started by the "special event trigger" of the CCP module. This requires that the CCP1M<3:0> bits be programmed as 1011b and that the A/D module is enabled (ADON is set). When the trigger occurs, the GO/DONE bit will be set on Q2 to start the A/D conversion and the Timer1 counter will be reset to zero. Timer1 is RESET to automatically repeat the A/D conversion cycle, with minimal software overhead (moving the ADRESH and ADRESL to the desired location). The appropriate analog input channel must be selected before the "special event trigger" sets the GO/DONE bit (starts a conversion cycle).

If the A/D module is not enabled (ADON is cleared), then the "special event trigger" will be ignored by the A/D module, but will still RESET the Timer1 counter.

11.8 Effects of a RESET

A device RESET forces all registers to their RESET state. This forces the A/D module to be turned off, and any conversion is aborted. The value that is in the ADRESH and ADRESL registers are not modified. The ADRESH and ADRESL registers will contain unknown data after a Power-on Reset.

11.9 Faster Conversion - Lower Resolution Trade-off

Not all applications require a result with 12 bits of resolution, but may instead require a faster conversion time. The A/D module allows users to make the tradeoff of conversion speed to resolution. Regardless of the resolution required, the acquisition time is the same. To speed up the conversion, the A/D module may be halted by clearing the GO/DONE bit after the desired number of bits in the result have been converted. Once the GO/DONE bit has been cleared, all of the remaining A/D result bits are '0'. The equation to determine the time before the GO/DONE bit can be switched is as follows:

Conversion time = (N+1)TAD

Where: N = number of bits of resolution required, and 1TAD is the amplifier settling time.

Since TAD is based from the device oscillator, the user must use some method (a timer, software loop, etc.) to determine when the A/D GO/DONE bit may be cleared. Table 11-4 shows a comparison of time required for a conversion with 4 bits of resolution, versus the normal 12-bit resolution conversion. The example is for devices operating at 20 MHz. The A/D clock is programmed for 32 Tosc.

EXAMPLE 11-4: 4-BIT vs. 12-BIT CONVERSION TIME Example

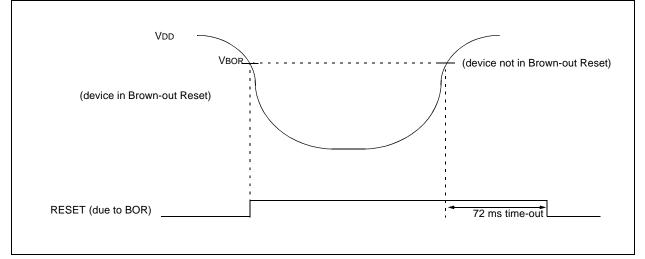
4-Bit Example:
Conversion Time = $(N + 1)$ TAD
= (4 + 1) TAD
= (5)(1.6 μS)
= 8 µS
12-Bit Example:
Conversion Time = $(N + 1)$ TAD
= (12 + 1) TAD
= (13)(1.6 μS)
= 20.8 μS

15.3 AC Characteristics: PIC16C717/770/771 & PIC16LC717/770/771 (Commercial, Industrial, Extended)

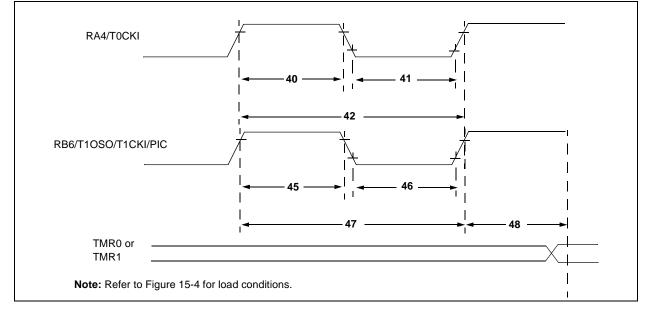
15.3.1 TIMING PARAMETER SYMBOLOGY

The timing parameter symbols have been created using one of the following formats:

1. TppS2p	pS	3. TCC:ST	(I ² C specifications only)
2. TppS		4. Ts	(I ² C specifications only)
Т			
F	Frequency	Т	Time
Lowerca	ase letters (pp) and their meanings:		
рр			
сс	CCP1	osc	OSC1
ck	CLKOUT	rd	RD
CS	CS	rw	RD or WR
di	SDI	sc	SCK
do	SDO	SS	SS
dt	Data in	tO	TOCKI
io	I/O port	t1	T1CKI
mc	MCLR	wr	WR
Upperca	ase letters and their meanings:		
S			
F	Fall	Р	Period
Н	High	R	Rise
I	Invalid (Hi-impedance)	V	Valid
L	Low	Z	Hi-impedance
I²C (I ² C	specifications only)		
AA	output access		
BUF	Bus free		
High	High		
Low	Low		
Tcc:st (I ² C specifications only)	·	
CC	1		
HD	Hold	SU	Setup
ST			
DAT	DATA input hold	STO	STOP condition
	•		


TABLE 15-4:RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER,
AND BROWN-OUT RESET REQUIREMENTS

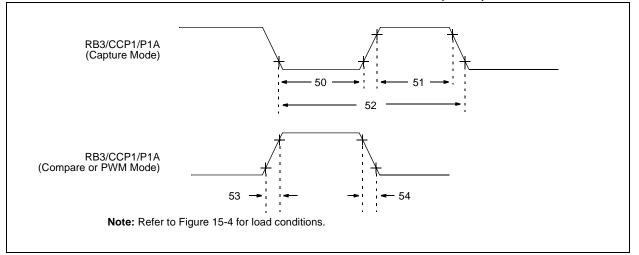
Parameter No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
30*	TMCL	MCLR Pulse Width (low)	2	—	—	μs	VDD = 5V, -40°C to +85°C
31*	Twdt	Watchdog Timer Time-out Period (No Prescaler)	7	18	33	ms	VDD = 5V, -40°C to +85°C
32*	Tost	Oscillation Start-up Timer Period		1024 Tosc		—	Tosc = OSC1 period
33*	TPWRT	Power up Timer Period	28	72	132	ms	VDD = 5V, -40°C to +85°C
34*	TIOZ	I/O Hi-impedance from MCLR Low or Watchdog Timer Reset	_	—	2.1	μs	
35*	TBOR	Brown-out Reset pulse width	100	—	—	μS	$VDD \le VBOR (D005)$

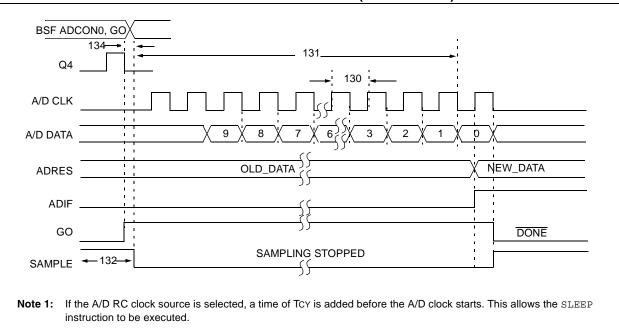

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 15-9: BROWN-OUT RESET CHARACTERISTICS

FIGURE 15-10: TIMER0 AND TIMER1 EXTERNAL CLOCK TIMINGS


Param. No.	Sym	Characteristic			Min	Тур†	Мах	Units	Conditions	
40*	Tt0H	T0CKI High Pulse W	/idth	No Prescaler	0.5TCY + 20	-	_	ns	Must also meet	
				With Prescaler	10	_	_	ns	parameter 42	
41*	Tt0L			No Prescaler	0.5Tcy + 20	—	—	ns	Must also meet	
				With Prescaler	10	—	—	ns	parameter 42	
42*	Tt0P T0CKI Period			No Prescaler	TCY + 40	—	—	ns		
				With Prescaler	Greater of: 20 or <u>TcY + 40</u> N	_	—	ns	N = prescale value (2, 4,, 256)	
45*	Tt1H	T1CKI High Time	Synchronous, F	Prescaler = 1	0.5TCY + 20	—	—	ns	Must also meet	
		-	Synchronous,	PIC16C717/770/771	15	—	—	ns	parameter 47	
			Prescaler = 2,4,8	PIC16 LC 717/770/771	25	-	—	ns		
			Asynchronous	PIC16C717/770/771	30	—	_	ns		
				PIC16LC717/770/771	50	—	—	ns		
46*	Tt1L	T1CKI Low Time	Synchronous, Prescaler = 1		0.5TCY + 20	—	—	ns	Must also meet	
			Synchronous,	PIC16 C 717/770/771	15	—	—	ns	parameter 47	
			Prescaler = 2,4,8	PIC16 LC 717/770/771	25	—	—	ns		
			Asynchronous	PIC16 C 717/770/771	30	—	—	ns		
				PIC16LC717/770/771	50	—	—	ns		
47*	Tt1P	T1CKI input period	Synchronous	PIC16 C 717/770/771	<u>Greater of:</u> 30 OR <u>TCY + 40</u> N	—	—	ns	N = prescale value (1, 2, 4, 8)	
				PIC16 LC 717/770/771	<u>Greater of:</u> 50 OR <u>TCY + 40</u> N	—	—	ns	N = prescale value (1, 2, 4, 8)	
			Asynchronous	PIC16C717/770/771	60	—	—	ns		
				PIC16LC717/770/771	100	—	—	ns		
	Ft1	Timer1 oscillator inp (oscillator enabled b			DC	—	50	kHz		
48	Tcke2tmr	1 Delay from external	clock edge to tim	ner increment	2Tosc	- 1	7Tosc	—		


TABLE 15-5:	TIMER0 AND TIMER1 EXTERNAL CLOCK REQUIREMENTS
-------------	---

These parameters are characterized but not tested.

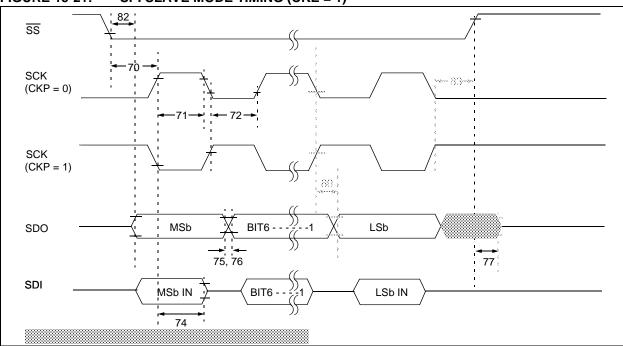
Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not t tested.

FIGURE 15-11: ENHANCED CAPTURE/COMPARE/PWM TIMINGS (ECCP)

FIGURE 15-17: PIC16C717 A/D CONVERSION TIMING (SLEEP MODE)

TABLE 15-16: PIC16C717 AND PIC16LC717 A/D CONVERSION REQUIREMENT (SLEEP MODE)

Parameter No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
130* ⁽³⁾	TAD	A/D clock period	3.0	6.0	9.0	μS	ADCS<1:0> = 11 (A/D RC mode) At VDD = 3.0V
			2.0	4.0	6.0	μS	At VDD = 5.0V
131*	ΤΟΝΥ	Conversion time (not including acquisition time) (Note 1)	_	11Tad	_	_	
132*	TACQ	Acquisition Time	(Note 2)	11.5	_	μs	
			5*	_	_	μS	The minimum time is the amplifier settling time. This may be used if the "new" input voltage has not changed by more than 1LSb (i.e., 1mV @ 4.096V) from the last sam- pled voltage (as stated on CHOLD).
134*	TGO	Q4 to A/D clock start		Tosc/2 + Tcy		_	If the A/D RC clock source is selected, a time of TCY is added before the A/D clock starts. This allows the SLEEP instruction to be executed.


* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: ADRES register may be read on the following TCY cycle.

2: See Section 11.6 for minimum conditions.

3: These numbers multiplied by 8 if VRH or VRL is selected as A/D reference.

FIGURE 15-21: SPI SLAVE MODE TIMING (CKE = 1)

TABLE 15-20: SPI SLAVE MODE REQUIREMENTS (CKE = 1)

Param. No.	Symbol	Characteristic	Min	Тур†	Max	Units	Conditions	
70*	TssL2scH, TssL2scL	$\overline{SS}\downarrow$ to SCK \downarrow or SCK \uparrow input	Тсү	—		ns		
71*	TscH	SCK input high time	SCK input high time Continuous		—	_	ns	
71A*		(Slave mode)	Single Byte	40	—	_	ns	Note 1
72*	TscL	SCK input low time	Continuous	1.25Tcy + 30	—	_	ns	
72A*		(Slave mode)	Single Byte	40	—		ns	Note 1
73A*	Тв2в	Last clock edge of Byte1 to edge of Byte2	1.5Tcy + 40	-	—	ns	Note 1	
74*	TscH2diL, TscL2diL	Hold time of SDI data input	100	-	—	ns		
75*	TdoR	SDO data output rise time	PIC16 C XXX	_	10	25	ns	
			PIC16LCXXX		20	45	ns	
76*	TdoF	SDO data output fall time		_	10	25	ns	
77*	TssH2doZ	SS↑ to SDO output hi-impe	dance	10	—	50	ns	
78*	TscR	SCK output rise time (Mas-	PIC16 C XXX	_	10	25	ns	
		ter mode)	PIC16LCXXX	_	20	45	ns	
79*	TscF	SCK output fall time (Maste	r mode)	_	10	25	ns	
80*	TscH2doV,	SDO data output valid after	PIC16 C XXX	_	_	50	ns	
	TscL2doV	SCK edge	PIC16LCXXX	_	—	100	ns	
82*	TssL2doV	SDO data output valid after	PIC16CXXX	_	_	50	ns	
		SS↓ edge	PIC16LCXXX	_	_	100	ns	
83*	TscH2ssH, TscL2ssH	$\overline{\text{SS}}$ \uparrow after SCK edge		1.5Tcy + 40	_		ns	

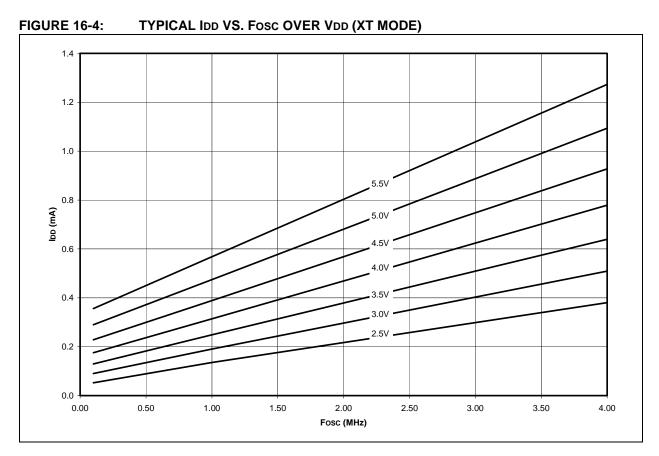
These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

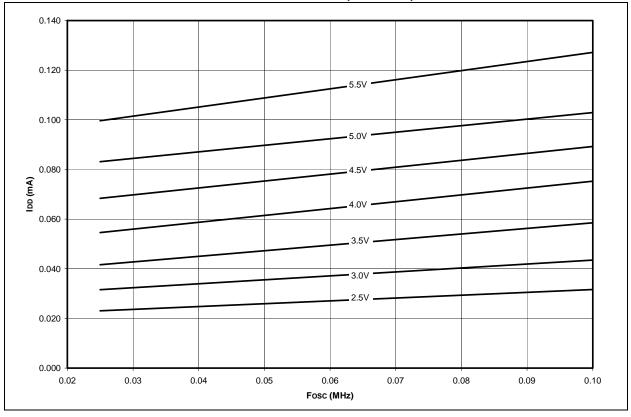
Note 1: Specification 73A is only required if specifications 71A and 72A are used.

Param. No.	Symbol	Characteristic		Min	Max	Units	Conditions
100*	Thigh	Clock high time	100 kHz mode	2(Tosc)(BRG + 1)	_	ms	
			400 kHz mode	2(Tosc)(BRG + 1)	_	ms	
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)	—	ms	
101*	TLOW	Clock low time	100 kHz mode	2(Tosc)(BRG + 1)	—	ms	
			400 kHz mode	2(Tosc)(BRG + 1)		ms	
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)	—	ms	
102*	TR	SDA and SCL	100 kHz mode	_	1000	ns	Cb is specified to be from
		rise time	400 kHz mode	20 + 0.1Cb	300	ns	10 to 400 pF
			1 MHz mode ⁽¹⁾	_	300	ns	
103*	TF	SDA and SCL	100 kHz mode	_	300	ns	Cb is specified to be from
		fall time	400 kHz mode	20 + 0.1Cb	300	ns	10 to 400 pF
			1 MHz mode ⁽¹⁾	_	100	ns	
90*	TSU:STA	START condition	100 kHz mode	2(Tosc)(BRG + 1)	—	ms	Only relevant for Repeated
		setup time	400 kHz mode	2(Tosc)(BRG + 1)	_	ms	START
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)	—	ms	condition
91*	THD:STA	START condition	100 kHz mode	2(Tosc)(BRG + 1)	_	ms	After this period the first clock
		hold time	400 kHz mode	2(Tosc)(BRG + 1)	—	ms	pulse is generated
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)	—	ms	
106*	THD:DAT	Data input	100 kHz mode	0	—	ns	
		hold time	400 kHz mode	0	0.9	ms]
			1 MHz mode ⁽¹⁾	TBD	—	ns	
107*	TSU:DAT	Data input	100 kHz mode	250	—	ns	Note 2
		setup time	400 kHz mode	100	—	ns	1
			1 MHz mode ⁽¹⁾	TBD	-	ns	
92*	Tsu:sto	STOP condition	100 kHz mode	2(Tosc)(BRG + 1)	—	ms	
		setup time	400 kHz mode	2(Tosc)(BRG + 1)		ms]
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)	—	ms	
109*	TAA	Output valid from	100 kHz mode	_	3500	ns	
		clock	400 kHz mode	—	1000	ns	
			1 MHz mode ⁽¹⁾	—	—	ns	
110	TBUF	Bus free time	100 kHz mode	4.7 ‡	—	ms	Time the bus must be free
			400 kHz mode	1.3 ‡	—	ms	before a new transmission
			1 MHz mode ⁽¹⁾	TBD‡	—	ms	can start
D102 ‡	Cb	Bus capacitive load		—	400	pF	

TABLE 15-22: MASTER SSP I²C BUS DATA REQUIREMENTS


* These parameters are characterized but not tested. For the value required by the I²C specification, please refer to the PICmicroTM Mid-Range MCU Family Reference Manual (DS33023).

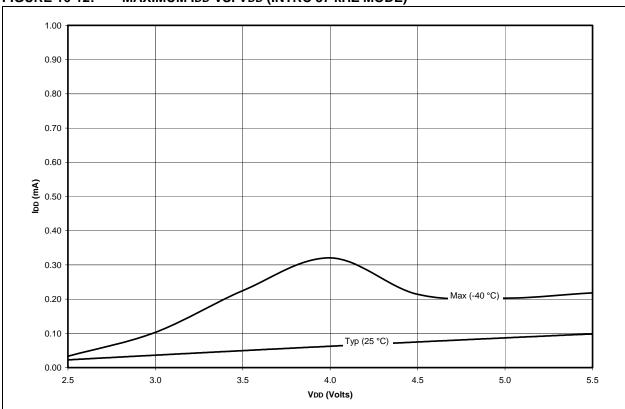
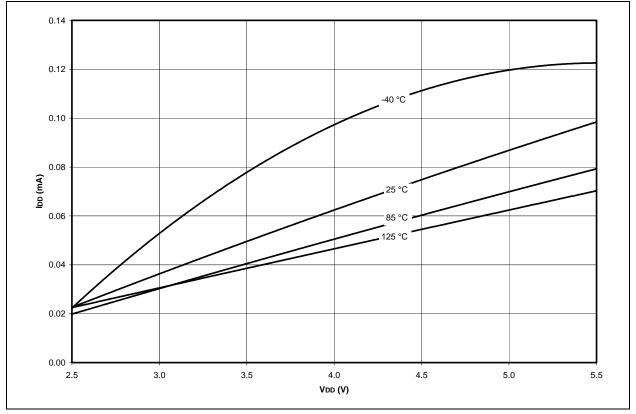
‡ These parameters are for design guidance only and are not tested, nor characterized.

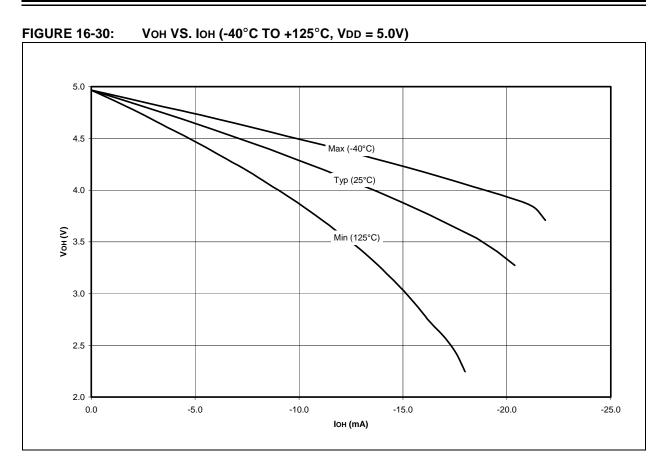

Note 1: Maximum pin capacitance = 10 pF for all I^2C pins.

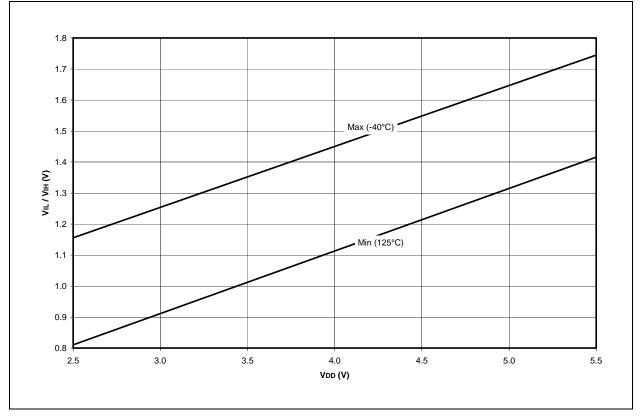
2: A Fast mode l^2C bus device can be used in a Standard mode l^2C bus system, but $(TSU:DAT) \ge 250$ ns must then be met. This will automatically be the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line.

[(TR) + (TSU:DAT) = 1000 + 250 = 1250 ns], for 100 kHz mode, before the SCL line is released.

© 1999-2013 Microchip Technology Inc.

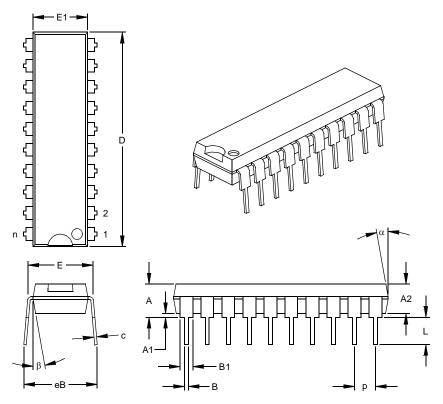




FIGURE 16-12: MAXIMUM IDD VS. VDD (INTRC 37 kHZ MODE)



© 1999-2013 Microchip Technology Inc.

PIC16C717/770/771



© 1999-2013 Microchip Technology Inc.

20-Lead Plastic Dual In-line (P) - 300 mil (PDIP) 17.5

For the most current package drawings, please see the Microchip Packaging Specification located Note: at http://www.microchip.com/packaging

Units		INCHES*		MILLIMETERS			
Dimension Limits				MIN	NOM	MAX	
n		20			20		
р		.100			2.54		
А	.140	.155	.170	3.56	3.94	4.32	
A2	.115	.130	.145	2.92	3.30	3.68	
A1	.015			0.38			
Е	.295	.310	.325	7.49	7.87	8.26	
E1	.240	.250	.260	6.10	6.35	6.60	
D	1.025	1.033	1.040	26.04	26.24	26.42	
L	.120	.130	.140	3.05	3.30	3.56	
С	.008	.012	.015	0.20	0.29	0.38	
B1	.055	.060	.065	1.40	1.52	1.65	
В	.014	.018	.022	0.36	0.46	0.56	
eB	.310	.370	.430	7.87	9.40	10.92	
α	5	10	15	5	10	15	
β	5	10	15	5	10	15	
	n Limits n P A A2 A1 E E1 D L C B1 B eB α	Limits MIN n P A .140 A2 .115 A1 .015 E .295 E1 .240 D 1.025 L .120 c .008 B1 .055 B .014 eB .310 α 5	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	

* Controlling Parameter § Significant Characteristic

Notes:

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side.

JEDEC Equivalent: MS-001

Drawing No. C04-019