

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, SPI
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	15
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	4V ~ 5.5V
Data Converters	A/D 6x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SSOP (0.209", 5.30mm Width)
Supplier Device Package	20-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16c770-e-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

FIGURE 2-3: REGISTER FILE MAP

A	File ddress	A	File ddress		File Address	Δ	File ddress
Indirect addr.(*)	00h	Indirect addr.(*)	80h	Indirect addr.(*)	100h	Indirect addr.(*)	180h
TMR0	01h	OPTION_REG	81h	TMR0	101h	OPTION REG	181h
PCL	02h	PCL	82h	PCL	102h	PCL	182h
STATUS	03h	STATUS	83h	STATUS	103h	STATUS	183h
FSR	04h	FSR	84h	FSR	104h	FSR	184h
PORTA	05h	TRISA	85h		105h	- I OIL	185h
PORTB	06h	TRISB	86h	PORTB	106h	TRISB	186h
	07h		87h		107h		187h
	08h		88h		108h		188h
	09h		89h		109h		189h
PCLATH	0Ah	PCLATH	8Ah	PCLATH	10Ah	PCLATH	18Ah
INTCON	0Bh	INTCON	8Bh	INTCON	10Bh	INTCON	18Bh
PIR1	0Ch	PIE1	8Ch	PMDATL	10Ch	PMCON1	18Ch
PIR2	0Dh	PIE2	8Dh	PMADRL	10Dh		18Dh
TMR1L	0Eh	PCON	8Eh	PMDATH	10Eh		18Eh
TMR1H	0Fh		8Fh	PMADRH	10Fh		18Fh
T1CON	10h		90h		110h		190h
TMR2	11h	SSPCON2	91h		111h		191h
T2CON	12h	PR2	92h		112h		192h
SSPBUF	13h	SSPADD	93h		113h		193h
SSPCON	14h	SSPSTAT	94h		114h		194h
CCPR1L	15h	WPUB	95h		115h		195h
CCPR1H	16h	IOCB	96h		116h		196h
CCP1CON	17h	P1DEL	97h		117h		197h
	18h		98h		118h		198h
	19h		99h		119h		199h
	1Ah		9Ah		11Ah		19Ah
	1Bh	REFCON	9Bh		11Bh		19Bh
	1Ch	LVDCON	9Ch		11Ch		19Ch
	1Dh	ANSEL	9Dh		11Dh		19Dh
ADRESH	1Eh	ADRESL	9Eh		11Eh		19Eh
ADCON0	1Fh	ADCON1	9Fh		11Fh		19Fh
	20h		A0h		120h		1A0h
General Purpose Register		General Purpose Register 80 Bytes		General Purpose Register 80 Bytes			
96 Bytes			EFh		16Fh		1EFh
-		accesses 70h-7Fh	F0h	accesses 70h - 7Fh	170h	accesses 70h - 7Fh	1F0h
Bank 0	7Fh	Bank 1	FFh	Bank 2	17Fh	Bank 3	1FFh

Unimplemented data memory locations, read as '0'.
 * Not a physical register.

PIC16C717/770/771

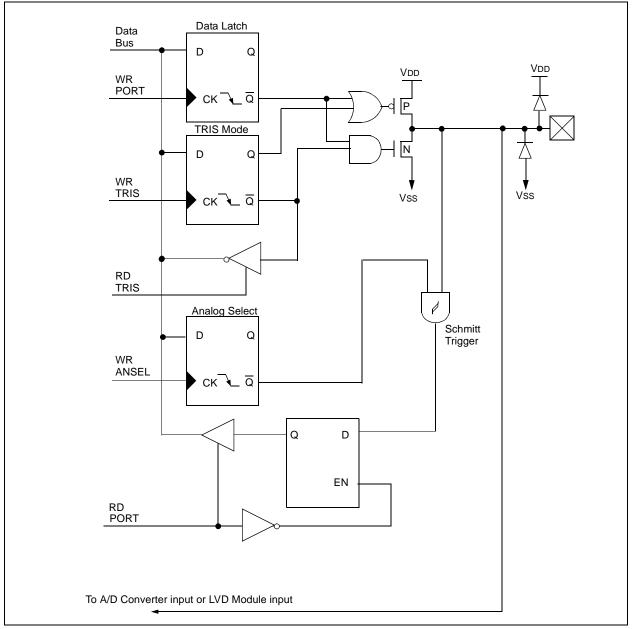
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Details on Page:
Bank 1											
80h ⁽³⁾	INDF	Addressing	this location	uses content	s of FSR to ad	dress data m	emory (not a	a physical reg	gister)	0000 0000	23
81h	OPTION_REG	RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0	1111 1111	15
82h ⁽³⁾	PCL	Program Co	ounter's (PC)	Least Signifi	cant Byte					0000 0000	22
83h ⁽³⁾	STATUS	IRP	RP1	RP0	TO	PD	Z	DC	С	0001 1xxx	14
84h ⁽³⁾	FSR	Indirect data	a memory ad	dress pointer						xxxx xxxx	23
85h	TRISA	PORTA Dat	a Direction F	legister						1111 1111	25
86h	TRISB	PORTB Dat	ta Direction F	Register						1111 1111	33
87h	—	Unimpleme	nted							_	—
88h	—	Unimpleme	nted							_	_
89h	_	Unimpleme	nted							_	—
8Ah ^(1,3)	PCLATH	— — Write Buffer for the upper 5 bits of the Program Counter				0 0000	22				
8Bh (3)	INTCON	GIE	PEIE	TOIE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	16
8Ch	PIE1	—	ADIE		—	SSPIE	CCP1IE	TMR2IE	TMR1IE	-0 0000	17
8Dh	PIE2	LVDIE	—		—	BCLIE	—	—	—	0 0	19
8Eh	PCON	—	—		—	OSCF	—	POR	BOR	1-qq	21
8Fh	_	Unimpleme	nted							_	—
90h	_	Unimpleme	nted							_	_
91h	SSPCON2	GCEN	ACKSTAT	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	0000 0000	69
92h	PR2	Timer2 Peri	od Register							1111 1111	52
93h	SSPADD	Synchronou	is Serial Port	(I ² C mode)	Address Regist	er				0000 0000	76
94h	SSPSTAT	SMP	CKE	D/A	Р	S	R/W	UA	BF	0000 0000	66
95h	WPUB	PORTB We	ak Pull-up C	ontrol						1111 1111	34
96h	IOCB	PORTB Inte	errupt on Cha	ange Control						1111 0000	34
97h	P1DEL	PWM 1 Del	ay value							0000 0000	62
98h	—	Unimpleme	nted							_	—
99h	_	Unimpleme	nted							_	—
9Ah	—	Unimpleme	nted							_	—
9Bh	REFCON	VRHEN	VRLEN	VRHOEN	VRLOEN	—	—	—	—	0000	102
9Ch	LVDCON	—	—	BGST	LVDEN	LVV3	LVV2	LVV1	LVV0	00 0101	101
9Dh	ANSEL	—	—	Analog Chai	nnel Select					11 1111	25
9Eh	ADRESL	A/D Low By	te Result Re	gister						xxxx xxxx	107
9Fh	ADCON1	ADFM	VCFG2	VCFG1	VCFG0	_				0000	107

TABLE 2-1: PIC16C717/770/771 SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)

 $\label{eq:legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented read as '0'.$

Shaded locations are unimplemented, read as '0'.

Note 1: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<12:8> whose contents are transferred to the upper byte of the program counter.


2: Other (non Power-up) Resets include external RESET through MCLR and Watchdog Timer Reset.

3: These registers can be addressed from any bank.

EXAMPLE 3-1: Initializing PORTA

	-			J
BCF	STATUS,	RP0	;	Select Bank 0
CLRF	PORTA		;	Initialize PORTA by
			;	clearing output
			;	data latches
BSF	STATUS,	RP0	;	Select Bank 1
MOVLW	0Fh		;	Value used to
			;	initialize data
			;	direction
MOVWF	TRISA		;	Set RA<3:0> as inputs
			;	RA<7:4> as outputs. RA<7:6>availability depends on oscillator selection.
MOVLW	03		;	Set RA<1:0> as analog inputs, RA<7:2> are digital I/O
MOVWF	ANSEL			
BCF	STATUS,	RP0	;	Return to Bank 0

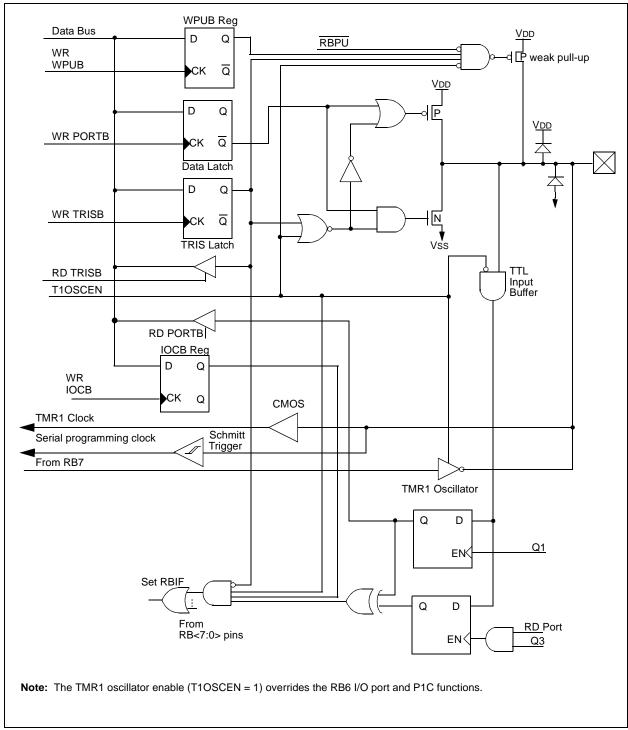
FIGURE 3-1: BLOCK DIAGRAM OF RA0/AN0, RA1/AN1/LVDIN

3.3 PORTB and the TRISB Register

PORTB is an 8-bit wide bi-directional port. The corresponding data direction register is TRISB. Setting a TRISB bit (=1) will make the corresponding PORTB pin an input (i.e., put the corresponding output driver in a Hi-impedance mode). Clearing a TRISB bit (=0) will make the corresponding PORTB pin an output (i.e., put the contents of the output latch on the selected pin).

EXAMPLE 3-2: Initializing PORTB

BCF	STATUS,	RP0;	
CLRF	PORTB	;	Initialize PORTB by
		;	clearing output
		;	data latches
BSF	STATUS,	RP0;	Select Bank 1
MOVLW	0xCF	;	Value used to
		;	initialize data
		;	direction
MOVWF	TRISB	;	Set RB<3:0> as inputs
		;	RB<5:4> as outputs
		;	RB<7:6> as inputs
MOVLW	0x30	;	Set RB<1:0> as analog
			inputs
MOVWF	ANSEL	;	
BCF	STATUS,	RP0;	Return to Bank 0


Each of the PORTB pins has an internal pull-up, which can be individually enabled from the WPUB register. A single global enable bit can turn on/off the enabled pullups. Clearing the RBPU bit, (OPTION_REG<7>), enables the weak pull-up resistors. The weak pull-up is automatically turned off when the port pin is configured as an output. The pull-ups are disabled on a Power-on Reset. Each of the PORTB pins, if configured as input, also has an interrupt-on-change feature, which can be individually selected from the IOCB register. The RBIE bit in the INTCON register functions as a global enable bit to turn on/off the interrupt-on-change feature. The selected inputs are compared to the old value latched on the last read of PORTB. The "mismatch" outputs are OR'ed together to generate the RB Port Change Interrupt with flag bit RBIF (INTCON<0>).

This interrupt can wake the device from SLEEP. The user, in the interrupt service routine, can clear the interrupt in the following manner:

- a) Any read or write of PORTB. This will end the mismatch condition.
- a) Clear flag bit RBIF.

A mismatch condition will continue to set flag bit RBIF. Reading PORTB will end the mismatch condition and allow flag bit RBIF to be cleared.

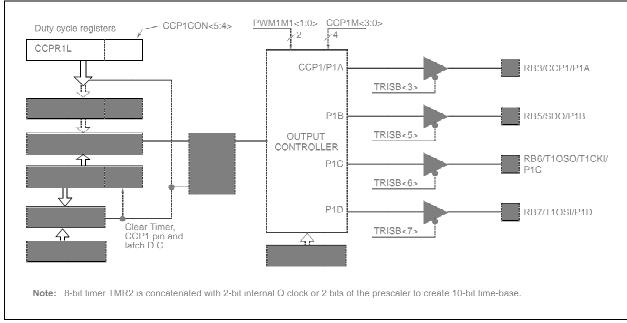
The interrupt-on-change feature is recommended for wake-up on key depression operation and operations where PORTB is only used for the interrupt-on-change feature. Polling of PORTB is not recommended while using the interrupt-on-change feature.

FIGURE 3-9: BLOCK DIAGRAM OF RB6/T1OSO/T1CKI/P1C

Name	Function	Input Type	Output Type	Description
	RB0	TTL	CMOS	Bi-directional I/O ⁽¹⁾
RB0/AN4/INT	AN4	AN		A/D input
	INT	ST		Interrupt input
	RB1	TTL	CMOS	Bi-directional I/O ⁽¹⁾
RB1/AN5/SS	AN5	AN		A/D input
	SS	ST		SSP slave select input
	RB2	TTL	CMOS	Bi-directional I/O ⁽¹⁾
RB2/SCK/SCL	SCK	ST	CMOS	Serial clock I/O for SPI
	SCL	ST	OD	Serial clock I/O for I ² C
	RB3	TTL	CMOS	Bi-directional I/O ⁽¹⁾
RB3/CCP1/P1A	CCP1	ST	CMOS	Capture 1 input/Compare 1 output
	P1A		CMOS	PWM P1A output
	RB4	TTL	CMOS	Bi-directional I/O ⁽¹⁾
RB4/SDI/SDA	SDI	ST		Serial data in for SPI
	SDA	ST	OD	Serial data I/O for I ² C
	RB5	TTL	CMOS	Bi-directional I/O ⁽¹⁾
RB5/SDO/P1B	SDO		CMOS	Serial data out for SPI
	P1B		CMOS	PWM P1B output
	RB6	TTL	CMOS	Bi-directional I/O ⁽¹⁾
	T1OSO		XTAL	Crystal/Resonator
RB6/T1OSO/T1CKI/P1C	T1CKI	CMOS		TMR1 clock input
	P1C		CMOS	PWM P1C output
	RB7	TTL	CMOS	Bi-directional I/O ⁽¹⁾
RB7/T1OSI/P1D	T1OSI	XTAL		TMR1 crystal/resonator
	P1D		CMOS	PWM P1D output

TABLE 3-3: PORTB FUNCTIONS

Note 1: Bit programmable pull-ups.


TABLE 3-4: SUMMARY OF REGISTERS ASSOCIATED WITH PORTB

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other RESETS
06h, 106h	PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	xxxx xx11	uuuu uull
86h, 186h	TRISB	PORTE	B Data Dire	ction Reg	jister					1111 1111	1111 1111
81h, 181h	OPTION_REG	RBPU	INTEDG	TOCS	T0SE	PSA	PS2	PS1	PS0	1111 1111	1111 1111
95h	WPUB	PORTE	8 Weak Pul	I-up Cont	rol					1111 1111	1111 1111
96h	IOCB	PORTE	ORTB Interrupt on Change Control							1111 0000	1111 0000
9Dh	ANSEL	_	_	ANS5	ANS4	ANS3	ANS2	ANS1	ANS0	11 1111	11 1111

Legend: x = unknown, u = unchanged. Shaded cells are not used by PORTB.

8.3 PWM Mode

In Pulse Width Modulation (PWM) mode, the ECCP module produces up to a 10-bit resolution PWM output. Figure 8-3 shows the simplified PWM block diagram.

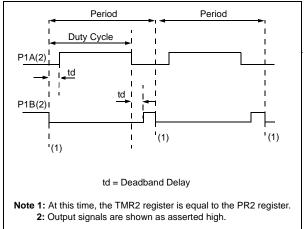
FIGURE 8-3: SIMPLIFIED PWM BLOCK DIAGRAM

8.3.1 PWM PERIOD

The PWM period is specified by writing to the PR2 register. The PWM period can be calculated using the following formula:

 $PWM PERIOD = [(PR2) + 1] \cdot 4 \cdot TOSC \cdot (TMR2 PRESCALE VALUE)$

PWM frequency is defined as 1 / [PWM period].


When TMR2 is equal to PR2, the following three events occur on the next increment cycle:

- TMR2 is cleared
- The CCP1 pin is set (exception: if PWM duty cycle = 0%, the CCP1 pin will not be set)
- The PWM duty cycle is latched from CCPR1L into CCPR1H

Note: The Timer2 postscaler (see Section 7.0) is not used in the determination of the PWM frequency. The postscaler could be used to have a servo update rate at a different frequency than the PWM output.

8.3.4 OUTPUT POLARITY CONFIGURATION

The CCP1M<1:0> bits in the CCP1CON register allow user to choose the logic conventions (asserted high/ low) for each of the outputs. See Register 8-1 for further details.

The PWM output polarities must be selected before the PWM outputs are enabled. Charging the polarity configuration while the PWM outputs are active is not recommended, since it may result in unpredictable operation.

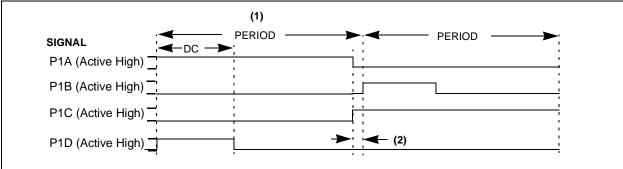
8.3.5 PROGRAMMABLE DEADBAND DELAY

In half-bridge or full-bridge applications, driven by halfbridge outputs (see Figure 8-7), the power switches normally require longer time to turn off than to turn on. If both the upper and lower power switches are switched at the same time (one turned on, and the other turned off), both switches will be on for a short period of time, until one switch completely turns off. During this time, a very high current, called shootthrough current, will flow through both power switches, shorting the bridge supply. To avoid this potentially destructive shoot-through current from flowing during switching, turning on the power switch is normally delayed to allow the other switch to completely turn off.

In the Half-Bridge Output mode, a digitally programmable deadband delay is available to avoid shootthrough current from destroying the bridge power switches. The delay occurs at the signal transition from the non-active state to the active state. See Figure 8-6 for illustration. The P1DEL register sets the amount of delay.

REGISTER 8-2: PWM DELAY REGISTER (P1DEL: 97H)

| R/W-0 |
|--------|--------|--------|--------|--------|--------|--------|--------|
| P1DEL7 | P1DEL6 | P1DEL5 | P1DEL4 | P1DEL3 | P1DEL2 | P1DEL1 | P1DEL0 |
| bit 7 | | | | | | | bit 0 |


bit 7-0 **P1DEL<7:0>: PWM Delay Count for Half-Bridge Output Mode:** Number of Fosc/4 (Tosc•4) cycles between the P1A transition and the P1B transition.

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared $x = Bit$ is unknown

8.3.6 DIRECTION CHANGE IN FULL-BRIDGE OUTPUT MODE

In the Full-Bridge Output mode, the PWM1M1 bit in the CCP1CON register allows user to control the Forward/ Reverse direction. When the application firmware changes this direction control bit, the ECCP module will assume the new direction on the next PWM cycle. The current PWM cycle still continues, however, the nonmodulated outputs, P1A and P1C signals, will transition to the new direction TOSC, $4 \cdot TOSC$ or $16 \cdot TOSC$ (for Timer2 prescale T2CKRS<1:0> = 00, 01 and 1x respectively) earlier, before the end of the period. During this transition cycle, the modulated outputs, P1B and P1D, will go to the inactive state. See Figure 8-10 for illustration.

Note 1: The Direction bit in the ECCP Control Register (CCP1CON<PWM1M1>) is written anytime during the PWM cycle.
 2: The P1A and P1C signals switch Tosc, 4*Tosc or 16*Tosc, depending on the Timer2 prescaler value, earlier when changing direction. The modulated P1B and P1D signals are inactive at this time.

For more information about these SSP modes see Section 15 of the *PIC Mid-Range MCU Family Reference Manual (DS33023).*

9.2.2 SLAVE MODE

When an address is matched or the data transfer after an address match is received, the hardware automatically will generate the Acknowledge (\overline{ACK}) pulse. Then, it loads the SSPBUF register with the received value currently in the SSPSR register.

Any combination of the following conditions will cause the \underline{MSSP} module to generate a NACK pulse in lieu of the \overline{ACK} pulse:

- a) The buffer full bit BF (SSPSTAT<0>) is set before the transfer is received.
- b) The overflow bit SSPOV (SSPCON<6>) is set before the transfer is received.

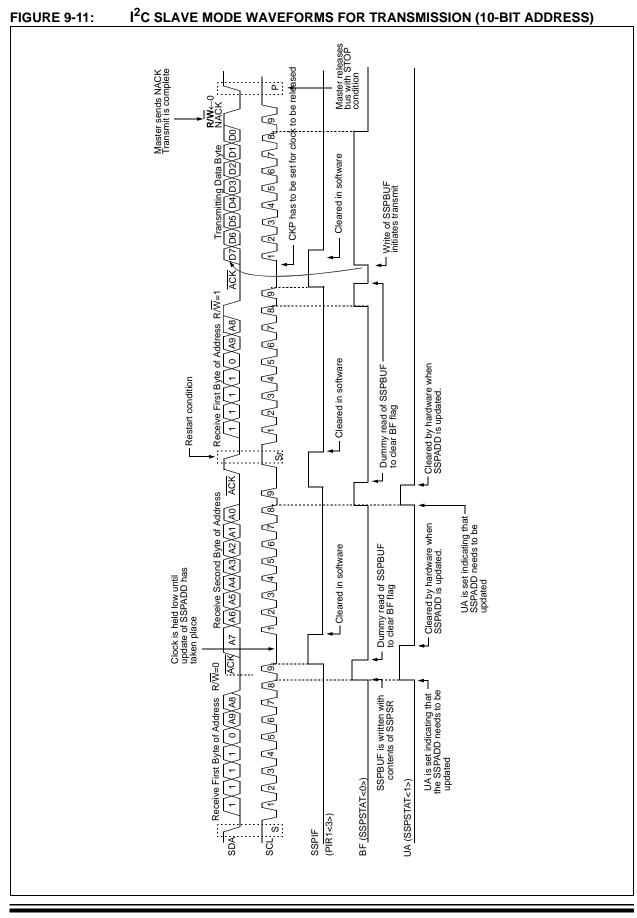
If the BF bit is set, the SSPSR register value is not loaded into the SSPBUF. However, both the SSPIF and SSPOV bits are set. Table 9-2 shows what happens when a data transfer byte is received, given the status of bits BF and SSPOV. The shaded cells show the condition where user software did not properly clear the overflow condition. The BF flag bit is cleared by reading the SSPBUF register. The SSPOV flag bit is cleared through software.

The SCL clock input must have a minimum high and low time for proper operation. The high and low times of the I^2C specification as well as the requirements of the MSSP module are shown in timing parameters #100 and #101 of the Electrical Specifications.

9.2.2.1 7-BIT ADDRESSING

Once the MSSP module has been enabled (SSPEN=1), the slave module waits for a START condition to occur. Following the START condition, eight bits are shifted into the SSPSR register. All incoming bits are sampled on the rising edge of the clock (SCL) line. The received address (register SSPSR<7:1>) is compared to the stored address (register SSPADD<7:1>). SSPSR<0> is the R/W bit and is not considered in the comparison. Comparison is made on the falling edge of the eighth clock (SCL) pulse. If the addresses match, and the BF and SSPOV bits are clear, the following events occur:

- a) The SSPSR register value is transferred to the SSPBUF register on the falling edge of the eighth SCL pulse.
- b) The buffer full bit; BF is set on the falling edge of the eighth SCL pulse.
- c) An ACK pulse is generated during the ninth clock cycle.
- d) SSP interrupt flag bit; SSPIF (PIR1<3>) is set (interrupt is generated if enabled) - on the falling edge of the ninth SCL pulse.


9.2.2.2 10-BIT ADDRESSING

In 10-bit mode, the basic receive and transmit operations are the same as in the 7-bit mode. However, the criteria for address match are more complex.

Two address bytes need to be received by the slave. The five Most Significant bits (MSbs) of the first address byte specify that this is a 10-bit address. The LSb of the first received address byte is the R/W bit, which must be zero, specifying a write so the slave device will receive the second address byte. For a 10-bit address, the first byte equals '11110 A9 A8 0', where A9 and A8 are the two MSbs of the address. The sequence of events for a 10-bit address is as follows, with steps 7 through 9 applicable only to the slave-transmitter:

- 1. Receive first (high) byte of Address (bits SSPIF, BF, and bit UA (SSPSTAT<1>) are set).
- 2. Update the SSPADD register with second (low) byte of Address (clears bit UA and releases the SCL line).
- 3. Read the SSPBUF register (clears bit BF) and clear flag bit SSPIF.
- 4. Receive second (low) byte of Address (bits SSPIF, BF, and UA are set).
- 5. Update the SSPADD register with the first (high) byte of Address. This will clear bit UA and release the SCL line.
- 6. Read the SSPBUF register (clears bit BF) and clear flag bit SSPIF.
- 7. Receive Repeated START condition.
- Receive first (high) byte of Address with R/W bit set to 1 (bits SSPIF and BF are set). This also puts the MSSP module in the Slave-transmit mode.
- 9. Read the SSPBUF register (clears bit BF) and clear flag bit SSPIF.

Note: Following the Repeated START condition (step 7) in 10-bit mode, the user only needs to match the first 7-bit address. The user does not update the SSPADD for the second half of the address.

	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0				
	VRHEN	VRLEN	VRHOEN	VRLOEN	_	—	—	_				
	bit 7							bit 0				
bit 7	VRHEN: Vo	oltage Refer	ence High E	Enable bit (V	RH = 4.096	V nominal)						
		· •	p reference Iown referen	generator ice generato	or if unused b	by LVD, BOI	R, or VRL					
bit 6	VRLEN: Vo	ltage Refer	ence Low E	nable bit (VF	RL = 2.048V	nominal)						
		· •	p reference Iown referen	generator ice generato	or if unused b	oy LVD, BOI	R, or VRH					
bit 5	VRHOEN:	High Voltage	e Reference	Output Ena	ble bit ⁽¹⁾							
				e is output o ised internal		abled (VRHE	EN = 1)					
bit 4	VRLOEN:	Low Voltage	Reference	Output Enal	ole bit							
		 1 = Enabled, VRL analog reference is output on RA2 if enabled (VRLEN = 1) 0 = Disabled, analog reference is used internally only 										
bit 3-0	Unimplemented: Read as '0'											
				configured a EL on page 2	• •	outs when th	e VREF outpu	ut functions				

REGISTER 10-2: VOLTAGE REFERENCE CONTROL REGISTER (REFCON: 9BH)

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	l bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

12.0 SPECIAL FEATURES OF THE CPU

These devices have a host of features intended to maximize system reliability, minimize cost through elimination of external components, provide power saving operating modes and offer code protection. These are:

- Oscillator Selection
- RESET
 - Power-on Reset (POR)
 - Power-up Timer (PWRT)
 - Oscillator Start-up Timer (OST)
- Brown-out Reset (BOR)
- Interrupts
- Watchdog Timer (WDT)
- Low-voltage detection
- SLEEP
- Code protection
- ID locations
- In-circuit serial programming (ICSP)

These devices have a Watchdog Timer, which can be shut off only through configuration bits. It runs off its own RC oscillator for added reliability. There are two timers that offer necessary delays on power-up. One is the Oscillator Start-up Timer (OST), intended to keep the chip in RESET until the crystal oscillator is stable. The other is the Power-up Timer (PWRT), which provides a fixed delay of 72 ms (nominal) on power-up type RESETS only (POR, BOR), designed to keep the part in RESET while the power supply stabilizes. With these two timers on-chip, most applications need no external RESET circuitry.

SLEEP mode is designed to offer a very low current Power-down mode. The user can wake-up from SLEEP through external RESET, Watchdog Timer Wake-up, or through an interrupt. Several oscillator options are also made available to allow the part to fit the application. The INTRC and ER oscillator options save system cost while the LP crystal option saves power. A set of configuration bits are used to select various options.

Additional information on special features is available in the PIC Mid-Range MCU Family Reference Manual, (DS33023).

12.1 Configuration Bits

The configuration bits can be programmed (read as '0') or left unprogrammed (read as '1') to select various device configurations. These bits are mapped in program memory location 2007h.

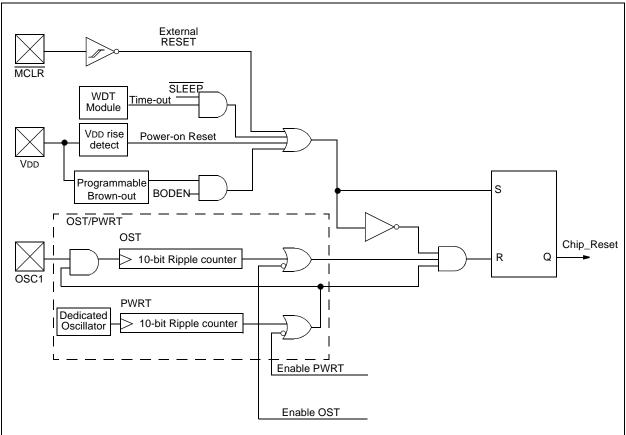
The user will note that address 2007h is beyond the user program memory space.

Some of the core features provided may not be necessary to each application that a device may be used for. The configuration word bits allow these features to be configured/enabled/disabled as necessary. These features include code protection, Brown-out Reset and its trip point, the Power-up Timer, the watchdog timer and the devices Oscillator mode. As can be seen in Register 12-1, some additional configuration word bits have been provided for Brown-out Reset trip point selection.

12.3 RESET

The PIC16C717/770/771 devices have several different RESETS. These RESETS are grouped into two classifications; power-up and non-power-up. The power-up type RESETS are the Power-on and Brownout Resets which assume the device VDD was below its normal operating range for the device's configuration. The non power-up type RESETS assume normal operating limits were maintained before/during and after the RESET.

- Power-on Reset (POR)
- Programmable Brown-out Reset (PBOR)
- MCLR Reset during normal operation
- MCLR Reset during SLEEP
- WDT Reset (during normal operation)


Some registers are not affected in any RESET condition. Their status is unknown on a Power-up Reset and unchanged in any other RESET. Most other registers are placed into an initialized state upon RESET, however they are not affected by a WDT Reset during SLEEP, because this is considered a WDT Wake-up, which is viewed as the resumption of normal operation.

Several status bits have been provided to indicate which RESET occurred (see Table 12-4). See Table 12-6 for a full description of RESET states of all registers.

A simplified block diagram of the On-Chip Reset circuit is shown in Figure 12-4.

These devices have a MCLR noise filter in the MCLR Reset path. The filter will detect and ignore small pulses.

It should be noted that a WDT Reset does not drive $\overline{\text{MCLR}}$ pin low.

FIGURE 12-4: SIMPLIFIED BLOCK DIAGRAM OF ON-CHIP RESET CIRCUIT

12.8 Time-out Sequence

On power-up, the time-out sequence is as follows: First PWRT time-out is invoked by the POR pulse. When the PWRT delay expires, the Oscillator Start-up Timer is activated. The total time-out will vary based on oscillator configuration and the status of the PWRT. For example, in RC mode with the PWRT disabled, there will be no time-out at all. Figure 12-6, Figure 12-7, Figure 12-8 and Figure 12-9 depict time-out sequences on power-up.

Since the time-outs occur from the POR pulse, if MCLR is kept low long enough, the time-outs will expire. Then bringing MCLR high will begin execution immediately (Figure 12-8). This is useful for testing purposes or to synchronize more than one PIC[®] microcontroller operating in parallel.

Table 12-5 shows the RESET conditions for some special function registers, while Table 12-6 shows the RESET conditions for all the registers.

12.9 Power Control/STATUS Register (PCON)

The Power Control/STATUS Register, PCON, has two status bits that provide indication of which power-up type RESET occurred.

Bit0 is Brown-out Reset Status bit, BOR. The BOR bit is unknown upon a POR. BOR must be set by the user and checked on subsequent RESETS to see if bit BOR cleared, indicating a BOR occurred.

Bit1 is POR (Power-on Reset Status bit). It is cleared on a Power-on Reset and unaffected otherwise. The user must set this bit following a Power-on Reset.

Occillator Configuration	Power-up		Brown-out	Wake-up from	
Oscillator Configuration	PWRTE = 0	PWRTE = 1	Brown-out	SLEEP	
XT, HS, LP	TPWRT + 1024Tosc	1024Tosc	TPWRT + 1024Tosc	1024Tosc	
EC, ER, INTRC	TPWRT	_	TPWRT	_	

TABLE 12-3: TIME-OUT IN VARIOUS SITUATIONS

TABLE 12-4: STATUS BITS AND THEIR SIGNIFICANCE

POR	BOR	то	PD		
0	x	1	1	Power-on Reset	
0	x	0	x	Illegal, TO is set on POR	
0	x	x	0	Illegal, PD is set on POR	
1	0	1	1	Brown-out Reset	
1	1	0	1	WDT Reset	
1	1	0	0	WDT Wake-up	
1	1	u	u	MCLR Reset during normal operation	
1	1	1	0	MCLR Reset during SLEEP or interrupt wake-up from SLEEP	

TABLE 12-5: RESET CONDITION FOR SPECIAL REGISTERS

Condition	Program Counter	STATUS Register	PCON Register	
Power-on Reset	000h	0001 1xxx	1-0x	
MCLR Reset during normal operation	000h	000u uuuu	1-uu	
MCLR Reset during SLEEP	000h	0001 0uuu	1-uu	
WDT Reset	000h	0000 luuu	1-uu	
WDT Wake-up	PC + 1	uuu0 0uuu	u-uu	
Brown-out Reset	000h	0001 luuu	1-u0	
Interrupt wake-up from SLEEP, GIE = 0	PC + 1	uuul Ouuu	u-uu	
Interrupt wake-up from SLEEP, GIE = 1	0004h	uuul 0uuu	u-uu	

Legend: u = unchanged, x = unknown, - = unimplemented bit read as '0'.

PIC16C717/770/771

SUBLW	Subtract W from Literal				
Syntax:	[<i>label</i>] SUBLW k				
Operands:	$0 \leq k \leq 255$				
Operation:	$k \text{ - } (W) \to (W)$				
Status Affected:	C, DC, Z				
Description:	The W register is subtracted (2's complement method) from the eight bit literal 'k'. The result is placed in the W register.				

XORLW	Exclusive OR Literal with W				
Syntax:	[<i>label</i>] XORLW k				
Operands:	$0 \le k \le 255$				
Operation:	(W) .XOR. $k \rightarrow (W)$				
Status Affected:	Z				
Description:	The contents of the W register are XOR'ed with the eight bit lit- eral 'k'. The result is placed in the W register.				

SUBWF	Subtract W from f				
Syntax:	[<i>label</i>] SUBWF f,d				
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$				
Operation:	(f) - (W) \rightarrow (destination)				
Status Affected:	C, DC, Z				
Description:	h: Subtract (2's complement method) W register from register 'f'. If 'd' is 0, the result is stored in the W regis- ter. If 'd' is 1, the result is stored back in register 'f'.				

XORWF	Exclusive OR W with f			
Syntax:	[<i>label</i>] XORWF f,d			
Operands:	$\begin{array}{l} 0\leq f\leq 127\\ d\in [0,1] \end{array}$			
Operation:	(W) .XOR. (f) \rightarrow (destination)			
Status Affected:	Z			
Description:	Exclusive OR the contents of the W register with register 'f'. If 'd' is 0, the result is stored in the W register. If 'd' is 1, the result is stored back in register 'f'.			

SWAPF	Swap Nybbles in f				
Syntax:	[label] SWAPF f,d				
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$				
Operation:	$(f<3:0>) \rightarrow (destination<7:4>),$ $(f<7:4>) \rightarrow (destination<3:0>)$				
Status Affected:	None				
Description:	The upper and lower nybbles of register 'f' are exchanged. If 'd' is 0, the result is placed in W regis- ter. If 'd' is 1, the result is placed in register 'f'.				

14.0 DEVELOPMENT SUPPORT

The PIC[®] microcontrollers are supported with a full range of hardware and software development tools:

- Integrated Development Environment
 - MPLAB[®] IDE Software
- Assemblers/Compilers/Linkers
 - MPASM[™] Assembler
 - MPLAB C17 and MPLAB C18 C Compilers
 - MPLINK[™] Object Linker/
 - MPLIB[™] Object Librarian
- Simulators
 - MPLAB SIM Software Simulator
- Emulators
 - MPLAB ICE 2000 In-Circuit Emulator
 - ICEPIC™ In-Circuit Emulator
- In-Circuit Debugger
 - MPLAB ICD
- Device Programmers
 - PRO MATE® II Universal Device Programmer
 - PICSTART[®] Plus Entry-Level Development Programmer
- Low Cost Demonstration Boards
 - PICDEMTM 1 Demonstration Board
 - PICDEM 2 Demonstration Board
 - PICDEM 3 Demonstration Board
 - PICDEM 17 Demonstration Board
 - KEELOQ[®] Demonstration Board

14.1 MPLAB Integrated Development Environment Software

The MPLAB IDE software brings an ease of software development previously unseen in the 8-bit microcontroller market. The MPLAB IDE is a Windows[®]-based application that contains:

- An interface to debugging tools
 - simulator
 - programmer (sold separately)
 - emulator (sold separately)
 - in-circuit debugger (sold separately)
- A full-featured editor
- A project manager
- Customizable toolbar and key mapping
- A status bar
- On-line help

The MPLAB IDE allows you to:

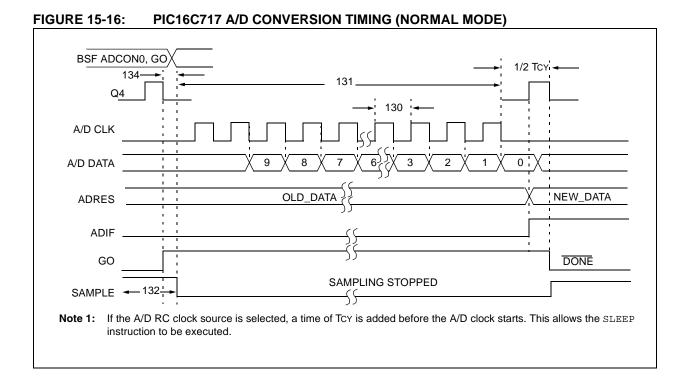
- Edit your source files (either assembly or 'C')
- One touch assemble (or compile) and download to PIC MCU emulator and simulator tools (automatically updates all project information)
- Debug using:
 - source files
 - absolute listing file
 - machine code

The ability to use MPLAB IDE with multiple debugging tools allows users to easily switch from the cost-effective simulator to a full-featured emulator with minimal retraining.

14.2 MPASM Assembler

The MPASM assembler is a full-featured universal macro assembler for all PIC MCUs.

The MPASM assembler has a command line interface and a Windows shell. It can be used as a stand-alone application on a Windows 3.x or greater system, or it can be used through MPLAB IDE. The MPASM assembler generates relocatable object files for the MPLINK object linker, Intel[®] standard HEX files, MAP files to detail memory usage and symbol reference, an absolute LST file that contains source lines and generated machine code, and a COD file for debugging.


The MPASM assembler features include:

- Integration into MPLAB IDE projects.
- User-defined macros to streamline assembly code.
- Conditional assembly for multi-purpose source files.
- Directives that allow complete control over the assembly process.

14.3 MPLAB C17 and MPLAB C18 C Compilers

The MPLAB C17 and MPLAB C18 Code Development Systems are complete ANSI 'C' compilers for Microchip's PIC17CXXX and PIC18CXXX family of microcontrollers, respectively. These compilers provide powerful integration capabilities and ease of use not found with other compilers.

For easier source level debugging, the compilers provide symbol information that is compatible with the MPLAB IDE memory display.

TABLE 15-15: PIC16C717 AND PIC16LC717 A/D CONVERSION REQUIREMENT (NORMAL MODE)

Parameter No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
130* (3)	TAD	A/D clock period	1.6	_	—	μS	Tosc based, VREF $\ge 2.5V$
			3.0	—	_	μS	Tosc based, VREF full range
			3.0	6.0	9.0	μs	ADCS<1:0> = 11 (A/D RC mode) At VDD = 2.5V
			2.0	4.0	6.0	μS	At VDD = $5.0V$
131*	ΤΟΝΥ	Conversion time (not including acquisition time) (Note 1)	_	11 Tad	_	Tad	
132*	TACQ	Acquisition Time	(Note 2)	11.5	—	μS	
			5*	_	_	μs	The minimum time is the amplifier settling time. This may be used if the "new" input voltage has not changed by more than 1LSb (i.e., 1mV @ 4.096V) from the last sam- pled voltage (as stated on CHOLD).
134*	Tgo	Q4 to A/D clock start	_	Tosc/2	_	_	

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: ADRES register may be read on the following TCY cycle.

2: See Section 11.6 for minimum conditions.

3: These numbers multiplied by 8 if VRH or VRL is selected as A/D reference.

16.0 DC AND AC CHARACTERISTICS GRAPHS AND TABLES

The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore outside the warranted range.

"Typical" represents the mean of the distribution at 25°C. "Maximum" or "minimum" represents (mean + 3σ) or (mean - 3σ) respectively, where σ is a standard deviation, over the whole temperature range.

The FOSC IDD was determined using an external sinusoidal clock source with a peak amplitude ranging from VSS to VDD.

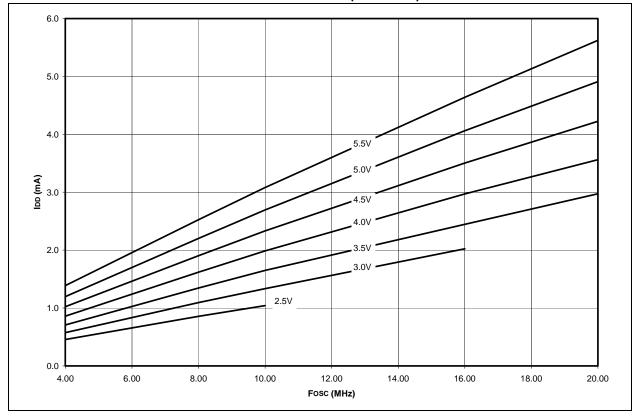


FIGURE 16-1: MAXIMUM IDD VS. FOSC OVER VDD (HS MODE)

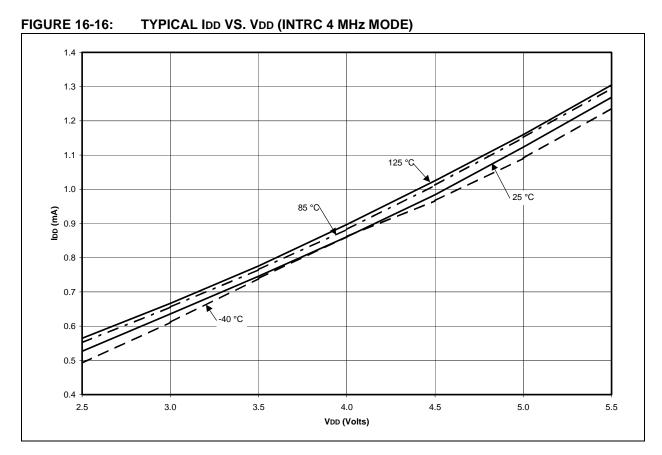
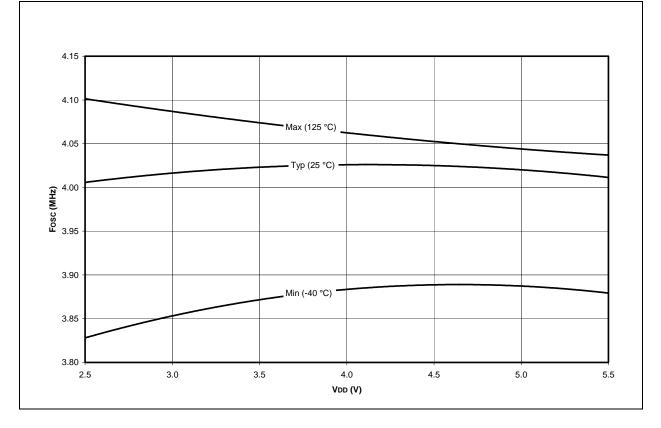



FIGURE 16-17: INTERNAL RC Fosc VS. VDD OVER TEMPERATURE (4 MHz)

