

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, SPI
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	15
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	4V ~ 5.5V
Data Converters	A/D 6x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SSOP (0.209", 5.30mm Width)
Supplier Device Package	20-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16c770-i-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams

Key Features PICmicro [™] Mid-Range MCU Family Reference Manual, (DS33023)	PIC16C717	PIC16C770	PIC16C771
Operating Frequency	DC - 20 MHz	DC - 20 MHz	DC - 20 MHz
RESETS (and Delays)	POR, BOR, MCLR, WDT (PWRT, OST)	POR, BOR, MCLR, WDT (PWRT, OST)	POR, BOR, MCLR, WDT (PWRT, OST)
Program Memory (14-bit words)	2K	2K	4K
Data Memory (bytes)	256	256	256
Interrupts	10	10	10
I/O Ports	Ports A,B	Ports A,B	Ports A,B
Timers	3	3	3
Enhanced Capture/Compare/PWM (ECCP) modules	1	1	1
Serial Communications	MSSP	MSSP	MSSP
12-bit Analog-to-Digital Module	-	6 input channels	6 input channels
10-bit Analog-to-Digital Module	6 input channels	-	-
Instruction Set	35 Instructions	35 Instructions	35 Instructions

2.2.2 SPECIAL FUNCTION REGISTERS

The Special Function Registers are registers used by the CPU and Peripheral Modules for controlling the desired operation of the device. These registers are implemented as static RAM. A list of these registers is given in Table 2-1. The special function registers can be classified into two sets; core (CPU) and peripheral. Those registers associated with the core functions are described in detail in this section. Those related to the operation of the peripheral features are described in detail in that peripheral feature section.

TABLE 2-1:	PIC16C717/770/771 SPECIAL FUNCTION REGISTER SUMMARY
------------	---

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Details on Page:
Bank 0											
00h ⁽³⁾	INDF	Addressing	this location	uses content	s of FSR to ad	dress data m	emory (not a	physical reg	gister)	0000 0000	23
01h	TMR0	Timer0 mod	lule's registe	r						xxxx xxxx	45
02h ⁽³⁾	PCL	Program Co	ounter's (PC)	Least Signifi	cant Byte					0000 0000	22
03h ⁽³⁾	STATUS	IRP	RP1	RP0	то	PD	Z	DC	С	0001 1xxx	14
04h ⁽³⁾	FSR	Indirect data	a memory ac	ldress pointer						xxxx xxxx	23
05h	PORTA	RA7	RA6	RA5	RA4	RA3	RA2	RA1	RA0	xxxx 0000	25
06h	PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	xxxx xx11	33
07h	—	Unimpleme	nted							—	—
08h	—	Unimpleme	nted							—	-
09h	—	Unimpleme	nted							—	_
0Ah ^(1,3)	PCLATH	_	_	—	Write Buffer f	or the upper	5 bits of the I	Program Cou	Inter	0 0000	22
0Bh ⁽³⁾	INTCON	GIE	PEIE	TOIE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	16
0Ch	PIR1	—	ADIF	—	—	SSPIF	CCP1IF	TMR2IF	TMR1IF	-00000	18
0Dh	PIR2	LVDIF	—	—	—	BCLIF	—		—	0 0	20
0Eh	TMR1L	Holding reg	ister for the l	_east Significa	ant Byte of the	16-bit TMR1	register			xxxx xxxx	47
0Fh	TMR1H	Holding reg	ister for the I	Most Significa	int Byte of the	16-bit TMR1	register			xxxx xxxx	47
10h	T1CON	—	—	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR1ON	00 0000	47
11h	TMR2	Timer2 mod	lule's registe	r						0000 0000	51
12h	T2CON	—	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000 0000	51
13h	SSPBUF	Synchronou	is Serial Por	t Receive Buf	fer/Transmit R	egister				xxxx xxxx	70
14h	SSPCON	WCOL	SSPOV	SSPEN	СКР	SSPM3	SSPM2	SSPM1	SSPM0	0000 0000	67
15h	CCPR1L	Capture/Co	mpare/PWM	Register1 (L	SB)					xxxx xxxx	54
16h	CCPR1H	Capture/Co	mpare/PWM	Register1 (M	ISB)	-				xxxx xxxx	54
17h	CCP1CON	PWM1M1	PWM1M0	DC1B1	DC1B0	CCP1M3	CCP1M2	CCP1M1	CCP1M0	0000 0000	53
18h	—	Unimpleme	nted							—	—
19h	_	Unimpleme	nted							—	—
1Ah	_	Unimpleme	nted							—	—
1Bh	—	Unimpleme	nted							—	—
1Ch	—	Unimpleme	nted							—	—
1Dh	_	Unimpleme	nted							_	_
1Eh	ADRESH	A/D High B	yte Result Re	egister						xxxx xxxx	107
1Fh	ADCON0	ADCS1	ADCS0	CHS2	CHS1	CHS0	GO/DONE	CHS3	ADON	0000 0000	107

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented read as '0'. Shaded locations are unimplemented, read as '0'.

Note 1: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<12:8> whose contents are transferred to the upper byte of the program counter.

2: Other (non Power-up) Resets include external RESET through MCLR and Watchdog Timer Reset.

3: These registers can be addressed from any bank.

4.3 READING THE EPROM PROGRAM MEMORY

To read a program memory location, the user must write 2 bytes of the address to the PMADRH and PMADRL registers, then set control bit RD (PMCON1<0>). Once the read control bit is set, the Program Memory Read (PMR) controller will use the second instruction cycle after to read the data. This causes the second instruction immediately following the "BSF PMCON1,RD" instruction to be ignored. The data is available, in the very next cycle, in the PMDATH and PMDATL registers; therefore it can be read as 2 bytes in the following instructions. PMDATH and PMDATL registers will hold this value until another Program Memory Read or until it is written to by the user.

Note: The two instructions that follow setting the PMCON1 read bit must be NOPs.

EXAMPLE 4-1: OTP PROGRAM MEMORY Read

BSF	SIAIUS, RPI	/	
BCF	STATUS, RPO	; Bank 2	
MOVLW	MS_PROG_PM_ADDR	;	
MOVWF	PMADRH	; MS Byte of Program Memory Address to read	
MOVLW	LS_PROG_PM_ADDR	;	
MOVWF	PMADRL	; LS Byte of Program Memory Address to read	
BSF	STATUS, RPO	; Bank 3	
BSF	PMCON1, RD	; Program Memory Read	
NOP		; This instruction must be an NOP	
NOP		; This instruction must be an NOP	
next in	struction	; PMDATH:PMDATL now has the data	

4.4 OPERATION DURING CODE PROTECT

When the device is code protected, the CPU can still perform the Program Memory Read function.

	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	GCEN	ACKSTAT	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN
	bit 7							bit 0
				· ² ~ ~				
bit 7	GUEN: General Gall Enable bit (In FC Slave mode only)							
	1 = Enable 0 = Gener:	al call addres	s disabled.		3S (000011) is	3 receiveu ii	1 the Soron	ζ.
bit 6	ACKSTAT: Acknowledge Status bit (In I ² C Master mode only)							
	In Master	Transmit mod	<u>le</u> :	l fram alava				
	1 = ACKNOV 0 = ACKNOV	wledge was n wledge was r	not received received fro	m slave				
bit 5	ACKDT: A	cknowledge	Data bit (In	I ² C Master I	mode only)			
	In Master	Receive mod	<u>ie</u> :					
	Value that	will be transr	mitted when	the user ini	tiates an Ac	knowledge	sequence at	t the end of
	1 = Not Ac	ve. knowledge (I	NACK)					
	0 = Acknov	wledge (ACK	.)					
bit 4	ACKEN: A	cknowledge	Sequence I	Enable bit (Ir	n I ² C Master	r mode only).	
	<u>In Master I</u> 1 = Initiate	Acknowledg	<u>e:</u> e sequence	on SDA an د	d SCL pins	and transm	it ACKDT da	ata hit
	Autom	atically cleare	ed by hardw	/are.				
	0 = Acknow	wledge seque	ence IDLE					
bit 3	RCEN: Re	ceive Enable	⇒bit (In I ² C I	Master mode	ə only).			
	1 = Enable 0 = Receiv	⊮s Receive m ∕e IDLE	ode for I ² C					
bit 2	PEN: STO	P Condition	Enable bit (In I ² C Maste	r mode only).		
	SCK Relea	<u>ase Control</u>	Han on SD/	and SCI n	ing Automa		ad by bardw	~~~
	1 = 11111210 0 = STOP	condition IDL	LE		Ins. Automa	lically cleare	30 Dy Haruw	are.
bit 1	RSEN: Re	peated STAF	RT Condition	n Enabled bi	t (In I ² C Ma	ster mode o	nly)	
	1 = Initiate	Repeated S	TART condi	ition on SDA	and SCL pi	ns. Automa	tically cleare	ed by
	narowa 0 = Repea	are. ated START c	condition IDI	F				
bit 0	SEN: STA	RT Condition	1 Enabled bi	t (In I ² C Ma	ster mode or	nly)		
	1 = Initiate	START conc	dition on SD	A and SCL	pins. Autom	atically clea	red by hard	ware.
	0 = START	Г condition ID)LE					
	Note:	For bits ACK	KEN, RCEN	I, PEN, RSE	EN, SEN: If	the I ² C more	dule is not i	in the IDLE
		mode, this bi writes to the	it may not be SSPBUF a	e set (no spo re disabled).	ooling) and t	he SSPBUF	⁻ may not be	e written (or
	Legend:							
	R = Reada	able bit	W = W	/ritable bit	U = Unim	plemented	bit, read as	'0'

'1' = Bit is set

'0' = Bit is cleared

REGISTER 9-3: SYNC SERIAL PORT CONTROL REGISTER2 (SSPCON2: 91h)

- n = Value at POR

x = Bit is unknown

For more information about these SSP modes see Section 15 of the *PIC Mid-Range MCU Family Reference Manual (DS33023).*

9.2.2 SLAVE MODE

When an address is matched or the data transfer after an address match is received, the hardware automatically will generate the Acknowledge (\overline{ACK}) pulse. Then, it loads the SSPBUF register with the received value currently in the SSPSR register.

Any combination of the following conditions will cause the \underline{MSSP} module to generate a NACK pulse in lieu of the \overline{ACK} pulse:

- a) The buffer full bit BF (SSPSTAT<0>) is set before the transfer is received.
- b) The overflow bit SSPOV (SSPCON<6>) is set before the transfer is received.

If the BF bit is set, the SSPSR register value is not loaded into the SSPBUF. However, both the SSPIF and SSPOV bits are set. Table 9-2 shows what happens when a data transfer byte is received, given the status of bits BF and SSPOV. The shaded cells show the condition where user software did not properly clear the overflow condition. The BF flag bit is cleared by reading the SSPBUF register. The SSPOV flag bit is cleared through software.

The SCL clock input must have a minimum high and low time for proper operation. The high and low times of the I^2C specification as well as the requirements of the MSSP module are shown in timing parameters #100 and #101 of the Electrical Specifications.

9.2.2.1 7-BIT ADDRESSING

Once the MSSP module has been enabled (SSPEN=1), the slave module waits for a START condition to occur. Following the START condition, eight bits are shifted into the SSPSR register. All incoming bits are sampled on the rising edge of the clock (SCL) line. The received address (register SSPSR<7:1>) is compared to the stored address (register SSPADD<7:1>). SSPSR<0> is the R/W bit and is not considered in the comparison. Comparison is made on the falling edge of the eighth clock (SCL) pulse. If the addresses match, and the BF and SSPOV bits are clear, the following events occur:

- a) The SSPSR register value is transferred to the SSPBUF register on the falling edge of the eighth SCL pulse.
- b) The buffer full bit; BF is set on the falling edge of the eighth SCL pulse.
- c) An ACK pulse is generated during the ninth clock cycle.
- d) SSP interrupt flag bit; SSPIF (PIR1<3>) is set (interrupt is generated if enabled) - on the falling edge of the ninth SCL pulse.

9.2.2.2 10-BIT ADDRESSING

In 10-bit mode, the basic receive and transmit operations are the same as in the 7-bit mode. However, the criteria for address match are more complex.

Two address bytes need to be received by the slave. The five Most Significant bits (MSbs) of the first address byte specify that this is a 10-bit address. The LSb of the first received address byte is the R/W bit, which must be zero, specifying a write so the slave device will receive the second address byte. For a 10-bit address, the first byte equals '11110 A9 A8 0', where A9 and A8 are the two MSbs of the address. The sequence of events for a 10-bit address is as follows, with steps 7 through 9 applicable only to the slave-transmitter:

- 1. Receive first (high) byte of Address (bits SSPIF, BF, and bit UA (SSPSTAT<1>) are set).
- 2. Update the SSPADD register with second (low) byte of Address (clears bit UA and releases the SCL line).
- 3. Read the SSPBUF register (clears bit BF) and clear flag bit SSPIF.
- 4. Receive second (low) byte of Address (bits SSPIF, BF, and UA are set).
- 5. Update the SSPADD register with the first (high) byte of Address. This will clear bit UA and release the SCL line.
- 6. Read the SSPBUF register (clears bit BF) and clear flag bit SSPIF.
- 7. Receive Repeated START condition.
- Receive first (high) byte of Address with R/W bit set to 1 (bits SSPIF and BF are set). This also puts the MSSP module in the Slave-transmit mode.
- 9. Read the SSPBUF register (clears bit BF) and clear flag bit SSPIF.

Note: Following the Repeated START condition (step 7) in 10-bit mode, the user only needs to match the first 7-bit address. The user does not update the SSPADD for the second half of the address.

9.2.2.3 SLAVE RECEPTION

When the R/W bit of the address byte is clear (SSPSR<0> = 0) and an address match occurs, the R/ W bit of the SSPSTAT register is cleared. The received address is loaded into the SSPBUF register on the falling edge of the eighth SCL pulse.

When the address <u>byte</u> overflow condition exists, then no Acknowledge (ACK) pulse is given. An overflow condition is defined as either bit BF (SSPSTAT<0>) or bit SSPOV (SSPCON<6>) is set. An MSSP interrupt is generated for each data transfer byte. Flag bit SSPIF (PIR1<3>) must be cleared in software. The SSPSTAT register is used to determine the status of the received byte.

Note: The SSPBUF will be loaded if the SSPOV bit is set and the BF flag is cleared. If a read of the SSPBUF was performed, but the user did not clear the state of the SSPOV bit before the next receive occurred, the ACK is not sent and the SSP-BUF is updated.

TABLE 9-2: DATA TRANSFER RECEIVED BYTE ACTIONS

Status Bits as Data Transfer is Received			Concepto ACK	Set bit SSPIF	
BF	SSPOV	$SSPSR \to SSPBUF$	Pulse	(SSP Interrupt occurs if enabled)	
0	0	Yes	Yes	Yes	
1	0	No	No	Yes	
1	1	No	No	Yes	
0	1	Yes	No	Yes	

Note 1: Shaded cells show the conditions where the user software did not properly clear the overflow condition.

FIGURE 9-8: I²C SLAVE MODE WAVEFORMS FOR RECEPTION (7-BIT ADDRESS)

9.2.11 I²C MASTER MODE REPEATED START CONDITION TIMING

A Repeated START condition occurs when the RSEN bit (SSPCON2<1>) is set high while the I^2C module is in the idle state. When the RSEN bit is set, the SCL pin is asserted low. When the SCL pin is sampled low, the baud rate generator is loaded with the contents of SSPADD<6:0> and begins counting. The SDA pin is released (brought high) for one baud rate generator count (TBRG). When the baud rate generator times out, if SDA is sampled high, the SCL pin will be de-asserted (brought high). When SCL is sampled high, the baud rate generator is reloaded with the contents of SSPADD<6:0> and begins counting. SDA and SCL must be sampled high for one TBRG period. This action is then followed by assertion of the SDA pin (SDA is low) for one TBRG period while SCL is high. As soon as a START condition is detected on the SDA and SCL pins, the S bit (SSPSTAT<3>) will be set. Following this, the baud rate generator is reloaded with the contents of SSPAD<6:0> and begins counting. When the BRG times out a third time, the RSEN bit in the SSPCON2 register is automatically cleared and SCL is pulled low. The SSPIF flag is set, which indicates the Restart sequence is complete.

- Note 1: If RSEN is set while another event is in progress, it will not take effect. Queuing of events is not allowed.
 - 2: A bus collision during the Repeated START condition occurs if either of the following is true:
 - a) SDA is sampled low when SCL goes from low to high.
 - b) SCL goes low before SDA is asserted low. This may indicate that another master is attempting to transmit a data "1".

Immediately following the SSPIF bit transition to true, the user may write the SSPBUF with the 7-bit address in 7-bit mode, or the default first address in 10-bit mode. After the first eight bits are transmitted and an ACK is received, the user may then perform one of the following:

- Transmit an additional eight bits of address (if the user transmitted the first half of a 10-bit address with $R/\overline{W} = 0$),
- Transmit eight bits of data (if the user transmitted a 7-bit address with R/W = 0), or
- Receive eight bits of data (if the user transmitted either the first half of a 10-bit address or a 7-bit address with R/W = 1).

9.2.11.1 WCOL STATUS FLAG

If the user writes the SSPBUF when a Repeated START sequence is in progress, then WCOL is set and the contents of the buffer are unchanged (the write doesn't occur).

Note: Because queueing of events is not allowed, writing of the lower five bits of SSPCON2 is disabled until the Repeated START condition is complete.

FIGURE 9-17: REPEAT START CONDITION WAVEFORM

PIC16C717/770/771

REGISTER 11-2: A/D CONTROL REGISTER 1 (ADCON1: 9Fh)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ADFM	VCFG2	VCFG1	VCFG0	Reserved	Reserved	Reserved	Reserved
bit 7							bit 0

bit 7 ADFM: A/D Result Format Select bit

1 = Right justified

0 = Left justified

```
bit 6-4
```

VCFG<2:0>: Voltage Reference Configuration bits

	A/D VREF+	A/D VREF-
000	AVDD ⁽¹⁾	AVss ⁽²⁾
001	External VREF+	External VREF-
010	Internal VRH	Internal VRL
011	External VREF+	AVss ⁽²⁾
100	Internal VRH	AVss ⁽²⁾
101	AVDD ⁽¹⁾	External VREF-
110	AVDD ⁽¹⁾	Internal VRL
111	Internal VRL	AVss

bit 3-0 Reserved: Do not use.

Note 1: This parameter is VDD for the PIC16C717.

2: This parameter is Vss for the PIC16C717.

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

The value that is in the ADRESH and ADRESL registers are not modified for a Power-on Reset. The ADRESH and ADRESL registers will contain unknown data after a Power-on Reset. The A/D conversion results can be left justified (ADFM bit cleared), or right justified (ADFM bit set). Figure 11-1 through Figure 11-2 show the A/D result data format of the PIC16C717/770/771.

FIGURE 11-1: PIC16C770/771 12-BIT A/D RESULT FORMATS

11.6 A/D Sample Requirements

11.6.1 RECOMMENDED SOURCE IMPEDANCE

The maximum recommended impedance for analog sources is 2.5 k Ω . This value is calculated based on the maximum leakage current of the input pin. The leakage current is 100 nA max., and the analog input voltage cannot be varied by more than 1/4 LSb or 250 μ V due to leakage. This places a requirement on the input impedance of 250 μ V/100 nA = 2.5 k Ω .

11.6.2 SAMPLING TIME CALCULATION

For the A/D converter to meet its specified accuracy, the charge holding capacitor (CHOLD) must be allowed to fully charge to the input channel voltage level. The analog input model is shown in Figure 11-5. The source impedance (Rs) and the internal sampling switch (Rss) impedance directly affect the time required to charge the capacitor CHOLD. The sampling switch (Rss) impedance varies over the device voltage (VDD), see Figure 11-5. **The maximum recommended impedance for analog sources is 2.5 k** Ω . After the analog input channel is selected (changed) this sampling must be done before the conversion can be started.

To calculate the minimum sampling time, Equation 11-2 may be used. This equation assumes that 1/4 LSb error is used (16384 steps for the A/D). The 1/4 LSb error is the maximum error allowed for the A/D to meet its specified resolution.

The CHOLD is assumed to be 25 pF for the 12-bit A/D.

EXAMPLE 11-2: A/D SAMPLING TIME EQUATION

Figure 11-3 shows the calculation of the minimum time required to charge CHOLD. This calculation is based on the following system assumptions:

CHOLD = 25 pF Rs = 2.5 k Ω 1/4 LSb error VDD = 5V \rightarrow Rss = 10 k Ω (worst case) Temp (system Max.) = 50°C

- Note 1:The reference voltage (VREF) has no effect on the equation, since it cancels itself out.
 - **2:**The charge holding capacitor (CHOLD) is not discharged after each conversion.
 - **3:** The maximum recommended impedance for analog sources is 2.5 k Ω . This is required to meet the pin leakage specification.

12.8 Time-out Sequence

On power-up, the time-out sequence is as follows: First PWRT time-out is invoked by the POR pulse. When the PWRT delay expires, the Oscillator Start-up Timer is activated. The total time-out will vary based on oscillator configuration and the status of the PWRT. For example, in RC mode with the PWRT disabled, there will be no time-out at all. Figure 12-6, Figure 12-7, Figure 12-8 and Figure 12-9 depict time-out sequences on power-up.

Since the time-outs occur from the POR pulse, if MCLR is kept low long enough, the time-outs will expire. Then bringing MCLR high will begin execution immediately (Figure 12-8). This is useful for testing purposes or to synchronize more than one PIC[®] microcontroller operating in parallel.

Table 12-5 shows the RESET conditions for some special function registers, while Table 12-6 shows the RESET conditions for all the registers.

12.9 Power Control/STATUS Register (PCON)

The Power Control/STATUS Register, PCON, has two status bits that provide indication of which power-up type RESET occurred.

Bit0 is Brown-out Reset Status bit, BOR. The BOR bit is unknown upon a POR. BOR must be set by the user and checked on subsequent RESETS to see if bit BOR cleared, indicating a BOR occurred.

Bit1 is POR (Power-on Reset Status bit). It is cleared on a Power-on Reset and unaffected otherwise. The user must set this bit following a Power-on Reset.

Occillator Configuration	Power	-up	Prown out	Wake-up from
	PWRTE = 0	PWRTE = 1	Brown-out	SLEEP
XT, HS, LP	TPWRT + 1024Tosc	1024Tosc	TPWRT + 1024Tosc	1024Tosc
EC, ER, INTRC	TPWRT	_	TPWRT	_

TABLE 12-3: TIME-OUT IN VARIOUS SITUATIONS

TABLE 12-4: STATUS BITS AND THEIR SIGNIFICANCE

POR	BOR	то	PD	
0	x	1	1	Power-on Reset
0	х	0	x	Illegal, TO is set on POR
0	x	x	0	Illegal, PD is set on POR
1	0	1	1	Brown-out Reset
1	1	0	1	WDT Reset
1	1	0	0	WDT Wake-up
1	1	u	u	MCLR Reset during normal operation
1	1	1	0	MCLR Reset during SLEEP or interrupt wake-up from SLEEP

TABLE 12-5: RESET CONDITION FOR SPECIAL REGISTERS

Condition	Program Counter	STATUS Register	PCON Register
Power-on Reset	000h	0001 1xxx	1-0x
MCLR Reset during normal operation	000h	000u uuuu	1-uu
MCLR Reset during SLEEP	000h	0001 0uuu	1-uu
WDT Reset	000h	0000 luuu	1-uu
WDT Wake-up	PC + 1	uuu0 0uuu	u-uu
Brown-out Reset	000h	0001 luuu	1-u0
Interrupt wake-up from SLEEP, GIE = 0	PC + 1	uuul 0uuu	u-uu
Interrupt wake-up from SLEEP, GIE = 1	0004h	uuu1 0uuu	u-uu

Legend: u = unchanged, x = unknown, - = unimplemented bit read as '0'.

12.12 Watchdog Timer (WDT)

The Watchdog Timer is a free running on-chip RC oscillator, which does not require any external components. This oscillator is independent from the processor clock. If enabled, the WDT will run even if the main clock of the device has been stopped, for example, by execution of a SLEEP instruction.

During normal operation, a WDT time-out generates a device RESET (Watchdog Timer Reset). If the device is in SLEEP mode, a WDT time-out causes the device to

wake-up and continue with normal operation (Watchdog Timer Wake-up). The \overline{TO} bit in the STATUS register will be cleared upon a Watchdog Timer time-out.

The WDT can be permanently disabled by programming the configuration bit WDTE to '0' (Section 12.1).

WDT time-out period values may be found in Table 15-4. Values for the WDT prescaler may be assigned using the OPTION_REG register.

Note: The SLEEP instruction clears the WDT and the postscaler, if assigned to the WDT, restarting the WDT period.

FIGURE 12-11: WATCHDOG TIMER BLOCK DIAGRAM

TABLE 12-7: SUMMARY OF WATCHDOG TIMER REGISTERS

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
2007h	Config. bits ⁽¹⁾	—	BODEN	MCLRE	PWRTE	WDTE	FOSC2	FOSC1	FOSC0
81h,181h	OPTION_REG	RBPU	INTEDG	TOCS	T0SE	PSA	PS2	PS1	PS0

Legend: Shaded cells are not used by the Watchdog Timer.

Note 1: See Register 12-1 for the full description of the configuration word bits.

12.13 Power-down Mode (SLEEP)

Power-down mode is entered by executing a $\ensuremath{\mathtt{SLEEP}}$ instruction.

If enabled, the Watchdog Timer will be cleared but keeps running, the PD bit (STATUS<3>) is cleared, the TO (STATUS<4>) bit is set, and the oscillator driver is turned off. The I/O ports maintain the status they had, before the SLEEP instruction was executed (driving high, low, or hi-impedance).

For lowest current consumption in this mode, place all I/O pins at either VDD, or VSS, ensure no external circuitry is drawing current from the I/O pin, power-down the A/D, disable external clocks. Pull all I/O pins, that are hi-impedance inputs, high or low externally to avoid switching currents caused by floating inputs. The TOCKI input should also be at VDD or VSS for lowest current consumption. The contribution from on-chip pull-ups on PORTB should be considered.

12.13.1 WAKE-UP FROM SLEEP

The device can wake-up from SLEEP through one of the following events:

- 1. External RESET input on $\overline{\text{MCLR}}$ pin.
- 2. Watchdog Timer Wake-up (if WDT was enabled).
- 3. Interrupt from INT pin, RB port change, or some Peripheral Interrupts.

External MCLR Reset will cause a device RESET. All other events are considered a continuation of program execution and cause a "wake-up". The TO and PD bits in the STATUS register can be used to determine the cause of device RESET. The PD bit, which is set on power-up, is cleared when SLEEP is invoked. The TO bit is cleared if a WDT time-out occurred (and caused wake-up).

The following peripheral interrupts can wake the device from SLEEP:

- 1. TMR1 interrupt. Timer1 must be operating as an asynchronous counter.
- 2. CCP Capture mode interrupt.
- 3. Special event trigger (Timer1 in Asynchronous mode using an external clock).
- 4. SSP (START/STOP) bit detect interrupt.
- SSP transmit or receive in Slave mode (SPI/I²C).
- 6. A/D conversion (when A/D clock source is RC).
- 7. Low Voltage detect.

Other peripherals cannot generate interrupts since during SLEEP, no on-chip clocks are present.

When the SLEEP instruction is being executed, the next instruction (PC + 1) is pre-fetched. For the device to wake-up through an interrupt event, the corresponding interrupt enable bit must be set (enabled). Wake-up is regardless of the state of the GIE bit. If the GIE bit is

clear (disabled), the device continues execution at the instruction after the SLEEP instruction. If the GIE bit is set (enabled), the device executes the instruction after the SLEEP instruction and then branches to the interrupt address (0004h). In cases where the execution of the instruction following SLEEP is not desirable, the user should have a NOP after the SLEEP instruction.

12.13.2 WAKE-UP USING INTERRUPTS

When global interrupts are disabled (GIE cleared) and any interrupt source has both its interrupt enable bit and interrupt flag bit set, one of the following will occur:

- If the interrupt occurs **before** the execution of a SLEEP instruction, the SLEEP instruction will complete as a NOP. Therefore, the WDT and WDT postscaler will not be cleared, the TO bit will not be set and PD bits will not be cleared.
- If the interrupt occurs **during or after** the execution of a SLEEP instruction, the device will immediately wake-up from SLEEP. The SLEEP instruction will be completely executed before the wake-up. Therefore, the WDT and WDT postscaler will be cleared, the TO bit will be set and the PD bit will be cleared.

Even if the flag bits were checked before executing a SLEEP instruction, it may be possible for flag bits to become set before the SLEEP instruction completes. To determine whether a SLEEP instruction executed, test the PD bit. If the PD bit is set, the SLEEP instruction was executed as a NOP.

If a peripheral can wake the device from SLEEP, then to ensure that the WDT is cleared, a CLRWDT instruction should be executed before a SLEEP instruction.

13.0 INSTRUCTION SET SUMMARY

Each PIC16CXXX instruction is a 14-bit word divided into an OPCODE which specifies the instruction type and one or more operands which further specify the operation of the instruction. The PIC16CXX instruction set summary in Table 13-2 lists **byte-oriented**, **bit-oriented**, and **literal and control** operations. Table 13-1 shows the opcode field descriptions.

For **byte-oriented** instructions, 'f' represents a file register designator and 'd' represents a destination designator. The file register designator specifies which file register is to be used by the instruction.

The destination designator specifies where the result of the operation is to be placed. If 'd' is zero, the result is placed in the W register. If 'd' is one, the result is placed in the file register specified in the instruction.

For **bit-oriented** instructions, 'b' represents a bit field designator which selects the number of the bit affected by the operation, while 'f' represents the number of the file in which the bit is located.

For **literal and control** operations, 'k' represents an eight or eleven bit constant or literal value.

TABLE 13-1: OPCODE FIELD DESCRIPTIONS

Field	Description
f	Register file address (0x00 to 0x7F)
W	Working register (accumulator)
b	Bit address within an 8-bit file register
k	Literal field, constant data or label
x	Don't care location (= 0 or 1) The assembler will generate code with $x = 0$. It is the recommended form of use for compatibility with all Microchip software tools.
d	Destination select; d = 0: store result in W, d = 1: store result in file register f. Default is d = 1
PC	Program Counter
TO	Time-out bit
PD	Power-down bit

The instruction set is highly orthogonal and is grouped into three basic categories:

- Byte-oriented operations
- Bit-oriented operations
- Literal and control operations

All instructions are executed within one single instruction cycle, unless a conditional test is true or the program counter is changed as a result of an instruction. In this case, the execution takes two instruction cycles with the second cycle executed as a NOP. One instruction cycle consists of four oscillator periods. Thus, for an oscillator frequency of 4 MHz, the normal instruction execution time is 1 μ s. If a conditional test is true or the program counter is changed as a result of an instruction, the instruction execution time is 2 μ s. Table 13-2 lists the instructions recognized by the MPASMTM assembler.

Figure 13-1 shows the general formats that the instructions can have.

Note:	То	maintain	upward	l compa	tibility	with
	futu	ire PIC160	CXXX pr	roducts,	do not	use
	the	OPTION a	nd TRIS	instructi	ions.	

All examples use the following format to represent a hexadecimal number:

0xhh

where h signifies a hexadecimal digit.

FIGURE 13-1: GENERAL FORMAT FOR INSTRUCTIONS

A description of each instruction is available in the PIC Mid-Range MCU Family Reference Manual, (DS33023).

15.2 DC Characteristics: PIC16C717/770/771 & PIC16LC717/770/771 (Commercial, Industrial, Extended)

			Standard	Opera	ting Con	ditions	s (unless otherwise stated)
			Operating	tempe	rature C	°C ≤	$T_A \leq +70^{\circ}C$ for commercial
		FRISTICS			-40	°C ≤	TA \leq +85°C for industrial
00011					-40)°C ≤	TA \leq +125°C for extended
			Operating	voltage	e VDD ran	ige as	described in Section 15.1 and
	-		Section 15	5.2. - ·			• •••
Param.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
NO.			-				
		Input Low Voltage					
	VIL	I/O ports	.,				
D030		with TTL buffer	Vss		0.15Vdd	V	For entire VDD range
D030A			Vss		0.8V	V	$4.5V \le VDD \le 5.5V$
D031		with Schmitt Trigger buffer	Vss		0.2Vdd	V	For entire VDD range
D032		MCLR	Vss		0.2Vdd	V	
D033		OSC1 (in XT, HS, LP and EC)	Vss		0.3Vdd	V	
		Input High Voltage					
	Vін	I/O ports					
		with TTL buffer					
D040			2.0		Vdd	V	$4.5V \le VDD \le 5.5V$
D040A			(0.25Vdd	—	Vdd	V	For entire VDD range
			+ 0.8V)				
D041		with Schmitt Trigger buffer	0.8Vdd	—	Vdd	V	For entire VDD range
D042		MCLR	0.8Vdd		Vdd	V	
D042A		OSC1 (XT, HS, LP and EC)	0.7Vdd	—	Vdd	V	
D070	IPURB	PORTB weak pull-up current	50	250	400	μA	VDD = 5V, VPIN = VSS
		per pin					
		Input Leakage Current (1,2)					
D060	lı∟	I/O ports (with digital functions)	—		±1	μA	Vss \leq VPIN \leq VDD, Pin at hi-impedance
D060A	lı∟	I/O ports (with analog func-	—		±100	nA	Vss \leq VPIN \leq VDD, Pin at hi-impedance
Baad		tions)			. =		
D061		RA5/MCLR/VPP	_		±5	μA	VSS ≤ VPIN ≤ VDD
D063		OSC1	—	_	±5	μA	Vss \leq VPIN \leq VDD, XI, HS, LP and EC
		Quitmut Low Voltogo					osc conliguration
080	Voi				0.6	V	$101 - 85 m^{1}$
0000	VOL	Output High Voltago			0.0	v	10L = 8.5 MA, VDD = 4.5 V
	√оц		Vpp - 0 7			V	104 - 30 mA VDD - 45 V
D030	Von	I/O ports	VDD - 0.1		10.5	V	$\mathbf{D}\mathbf{A}\mathbf{a}$ in
D150"	VOD	Open Drain High Voltage		_	10.5	V	RA4 pin
		Capacitive Loading Specs on Output Pine*					
D100	202				15	ъĘ	In XT HS and I B modes when exter
0100	CO3	0302 pm	_		15	pΓ	nal clock is used to drive OSC1
D101	Cio	All I/O pins and OSC2 (in RC	_		50	рF	
D102	Св	mode) SCL SDA in L^2 C mode			400	pF	
		Vel nin			200		
					200	рг г	
	OVRL	VKL PIII			200	рг	

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

2: Negative current is defined as current sourced by the pin.

TABLE 15-14: PIC16C717 AND PIC16LC717 A/D CONVERTER CHARACTERISTI	CS:
---	-----

Param. No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
A01	NR	Resolution		_	10 bits	bit	Min. resolution for A/D is 4.1 mV, VREF+ = AVDD = 4.096V, VREF- = AVSS = 0V, VREF- \leq VAIN \leq VREF+
A03	EIL	Integral error		_	±1	LSb	VREF+ = AVDD = 4.096V, VREF- = AVSS = 0V, $VREF- \leq VAIN \leq VREF+$
A04	Edl	Differential error	_	_	±1	LSb	No missing codes to 10 bits VREF+ = AVDD = 4.096V, VREF- = AVSS = 0V, $VREF- \le VAIN \le VREF+$
A06	EOFF	Offset error	—	_	±2	LSb	VREF+ = AVDD = 4.096V, VREF- = AVSS = 0V, VREF- ≤ VAIN ≤ VREF+
A07	Egn	Gain Error	—	_	±1	LSb	VREF+ = AVDD = 4.096V, VREF- = AVSS = 0V, VREF- ≤ VAIN ≤ VREF+
A10	—	Monotonicity		Note 3	—		$AVSS \leq VAIN \leq VREF+$
A20*	Vref	Reference voltage (VREF+ - VREF-)	4.096	_	VDD +0.3V	V	Absolute minimum electrical spec to ensure 10-bit accuracy.
A21*	VREF+	Reference V High (AVDD or VREF+)	VREF-	_	AVdd	V	Min. resolution for A/D is 4.1 mV
A22*	VREF-	Reference V Low (Avss or VREF-)	AVss	_	VREF+	V	Min. resolution for A/D is 4.1 mV
A25*	VAIN	Analog input voltage	Vrefl	_	Vrefh	V	
A30*	ZAIN	Recommended impedance of analog voltage source	_	_	2.5	kΩ	
A50*	IREF	VREF input current (Note 2)	_	_	10	μA	During VAIN acquisition. Based on differential of VHOLD to VAIN. To charge CHOLD see Section 11.0. During A/D conversion cycle.

These parameters are characterized but not tested.

Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: When A/D is off, it will not consume any current other than leakage current. The power-down current spec includes any such leakage from the A/D module.

2: VREF current is from External VREF+, or VREF-, or AVSS, or AVDD pin, whichever is selected as reference input.

3: The A/D conversion result never decreases with an increase in the input voltage and has no missing codes.

t

© 1999-2013 Microchip Technology Inc.

17.1 Package Marking Information (Cont'd)

20-Lead SSOP

	XXXXXXXXXXXX XXXXXXXXXXXX
0	S YYWWNNN

20-Lead CERDIP Windowed

Example PIC16C770 20I/SS 9917017

Example

20-Lead SOIC

Example

20-Lead Plastic Dual In-line (P) - 300 mil (PDIP) 17.5

For the most current package drawings, please see the Microchip Packaging Specification located Note: at http://www.microchip.com/packaging

	Units		INCHES*		N	IILLIMETERS	3
Dimension	Limits	MIN	NOM	MAX	MIN	NOM	MAX
Number of Pins	n		20			20	
Pitch	р		.100			2.54	
Top to Seating Plane	А	.140	.155	.170	3.56	3.94	4.32
Molded Package Thickness	A2	.115	.130	.145	2.92	3.30	3.68
Base to Seating Plane	A1	.015			0.38		
Shoulder to Shoulder Width	E	.295	.310	.325	7.49	7.87	8.26
Molded Package Width	E1	.240	.250	.260	6.10	6.35	6.60
Overall Length	D	1.025	1.033	1.040	26.04	26.24	26.42
Tip to Seating Plane	L	.120	.130	.140	3.05	3.30	3.56
Lead Thickness	С	.008	.012	.015	0.20	0.29	0.38
Upper Lead Width	B1	.055	.060	.065	1.40	1.52	1.65
Lower Lead Width	В	.014	.018	.022	0.36	0.46	0.56
Overall Row Spacing §	eB	.310	.370	.430	7.87	9.40	10.92
Mold Draft Angle Top	α	5	10	15	5	10	15
Mold Draft Angle Bottom	β	5	10	15	5	10	15

* Controlling Parameter § Significant Characteristic

Notes:

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side.

JEDEC Equivalent: MS-001

Drawing No. C04-019

PIC16C717/770/771

Select (T2CKPS Bits)51
PRO MATE II Universal Device Programmer
Program Counter
PCL Register
PCLATH Register
Reset Conditions
Interrupt Vector 9
Paging 9 22
Program Memory Map
READ (PMR)
Reset Vector
Program Verification
Programmable Brown-out Reset (PBOR) 121, 122
Programming, Device Instructions133
PWM (CCP Module)
TMR2 to PR2 Match51
TMR2 to PR2 Match Enable (TMR2IE Bit)
PWM (ECCP Module)
BIOCK Diagram
Duty Cyclo
Output Diagram 57
Pariod 56
TMR2 to PR2 Match 56
Q Clock
R
R/W
R/ <u>W</u> bit80
R/W bit
R/W DIt
R/W bit
R/W bit 77 RAM. See Data Memory 77 RCE,Receive Enable bit, RCE 69 RCREG 13 RCSTA Register 13 Read/Write bit, R/W 66 Receive Overflow Indicator bit, SSPOV 67 REFCON 102
R/W bit 77 RAM. See Data Memory 77 RCE,Receive Enable bit, RCE 69 RCREG 13 RCSTA Register 13 Read/Write bit, R/W 66 Receive Overflow Indicator bit, SSPOV 67 REFCON 102 Register File 9
R/W bit 77 RAM. See Data Memory 77 RCE,Receive Enable bit, RCE 69 RCREG 13 RCSTA Register 13 Read/Write bit, R/W 66 Receive Overflow Indicator bit, SSPOV 67 REFCON 102 Register File 9 Recister File Map 10
R/W bit 77 RAM. See Data Memory 77 RCE,Receive Enable bit, RCE 69 RCREG 13 RCSTA Register 13 Read/Write bit, R/W 66 Receive Overflow Indicator bit, SSPOV 67 REFCON 102 Register File 9 Register File Map 10 Redisters 10
R/W bit 77 RAM. See Data Memory 77 RCE,Receive Enable bit, RCE 69 RCREG 13 RCSTA Register 13 Read/Write bit, R/W 66 Receive Overflow Indicator bit, SSPOV 67 REFCON 102 Register File 9 Register File Map 10 Registers 13 FSR Summary 13
R/W bit 77 RAM. See Data Memory 77 RCE,Receive Enable bit, RCE 69 RCREG 13 RCSTA Register 13 Read/Write bit, R/W 66 Receive Overflow Indicator bit, SSPOV 67 REFCON 102 Register File 9 Register File Map 10 Registers 13 INDF Summary 13
R/W bit 77 RAM. See Data Memory 77 RCE,Receive Enable bit, RCE 69 RCREG 13 RCSTA Register 13 Read/Write bit, R/W 66 Receive Overflow Indicator bit, SSPOV 67 REFCON 102 Register File 9 Register File Map 10 Registers 13 INDF Summary 13 INTCON Summary 13
R/W bit // RAM. See Data Memory // RCE,Receive Enable bit, RCE 69 RCREG 13 RCSTA Register 13 Read/Write bit, R/W 66 Receive Overflow Indicator bit, SSPOV 67 REFCON 102 Register File 9 Register File 9 Registers 13 INDF Summary 13 INTCON Summary 13 PCL Summary 13
R/W bit // RAM. See Data Memory // RCE,Receive Enable bit, RCE 69 RCREG 13 RCSTA Register 13 Read/Write bit, R/W 66 Receive Overflow Indicator bit, SSPOV 67 REFCON 102 Register File 9 Register File Map 10 Registers 13 INDF Summary 13 INTCON Summary 13 PCL Summary 13 PCLATH Summary 13
R/W bit // RAM. See Data Memory // RCE,Receive Enable bit, RCE 69 RCREG 13 RCSTA Register 13 Read/Write bit, R/W 66 Receive Overflow Indicator bit, SSPOV 67 REFCON 102 Register File 9 Register File Map 10 Registers 13 INDF Summary 13 INTCON Summary 13 PCL Summary 13 PCLATH Summary 13 PORTB Summary 13
R/W bit // RAM. See Data Memory // RCE, Receive Enable bit, RCE 69 RCREG 13 RCSTA Register 13 Read/Write bit, R/W 66 Receive Overflow Indicator bit, SSPOV 67 REFCON 102 Register File 9 Register File 9 Registers 13 INDF Summary 13 INTCON Summary 13 PCL Summary 13 PORTB Summary 13 SSPSTAT 66, 101
R/W bit // RAM. See Data Memory // RCE, Receive Enable bit, RCE 69 RCREG 13 RCSTA Register 13 Read/Write bit, R/W 66 Receive Overflow Indicator bit, SSPOV 67 REFCON 102 Register File 9 Register File Map 10 Registers 13 INDF Summary 13 INTCON Summary 13 PCL Summary 13 PCLATH Summary 13 SSPSTAT 66, 101 STATUS Summary 13
R/W bit // RAM. See Data Memory // RCE, Receive Enable bit, RCE 69 RCREG 13 RCSTA Register 13 Read/Write bit, R/W 66 Receive Overflow Indicator bit, SSPOV 67 REFCON 102 Register File 9 Register File Map 10 Registers 13 INDF Summary 13 INTCON Summary 13 PCL Summary 13 PORTB Summary 13 SSPSTAT 66, 101 STATUS Summary 13 TMR0 Summary 13
R/W bit // RAM. See Data Memory // RCE, Receive Enable bit, RCE 69 RCREG 13 RCSTA Register 13 Read/Write bit, R/W 66 Receive Overflow Indicator bit, SSPOV 67 REFCON 102 Register File 9 Register File Map 10 Registers 13 INDF Summary 13 INTCON Summary 13 PCL Summary 13 PCLATH Summary 13 SSPSTAT 66, 101 STATUS Summary 13 TMR0 Summary 13 TRISB Summary 13
R/W bit // RAM. See Data Memory // RCE, Receive Enable bit, RCE 69 RCREG 13 RCSTA Register 13 Read/Write bit, R/W 66 Receive Overflow Indicator bit, SSPOV 67 REFCON 102 Register File 9 Register File Map 10 Registers 13 INDF Summary 13 INTCON Summary 13 PCL Summary 13 PCLATH Summary 13 SSPSTAT 66, 101 STATUS Summary 13 TMR0 Summary 13 RESEt 117, 121 Block Diagram 122
R/W bit // RAM. See Data Memory // RCE, Receive Enable bit, RCE 69 RCREG 13 RCSTA Register 13 Read/Write bit, R/W 66 Receive Overflow Indicator bit, SSPOV 67 REFCON 102 Register File 9 Register File 9 Register File Map 10 Registers 13 INDF Summary 13 INTCON Summary 13 PCL Summary 13 PORTB Summary 13 SPSTAT 66, 101 STATUS Summary 13 TMR0 Summary 13 TRISB Summary 13 Reset 117, 121 Block Diagram 121 Brown-out Reset (BOR) See Brown-out Reset (POP)
R/W bit // RAM. See Data Memory // RCE, Receive Enable bit, RCE 69 RCREG 13 Red/Write bit, R/W 66 Receive Overflow Indicator bit, SSPOV 67 REFCON 102 Register File 9 Register File 9 Register File Map 10 Register File Map 13 INDF Summary 13 INTCON Summary 13 PCL Summary 13 PCLATH Summary 13 SPSTAT 66, 101 STATUS Summary 13 TMR0 Summary 13 Reset 117, 121 Block Diagram 121 Brown-out Reset (BOR). See Brown-out Reset (BOR) MCL R Reset See MCL R
R/W bit // RAM. See Data Memory // RCE,Receive Enable bit, RCE 69 RCREG 13 Red/Write bit, R/W 66 Receive Overflow Indicator bit, SSPOV 67 REFCON 102 Register File 9 Register File 9 Register File 10 Register File Map 10 Registers 13 INDF Summary 13 INTCON Summary 13 PCL Summary 13 PCLATH Summary 13 SSPSTAT 66, 101 STATUS Summary 13 TMR0 Summary 13 Reset 117, 121 Block Diagram 121 Brown-out Reset (BOR) See Brown-out Reset (BOR) MCLR Reset. See MCLR Power-on Reset (POR)
R/W bit // RAM. See Data Memory // RCE, Receive Enable bit, RCE 69 RCREG 13 Red/Write bit, R/W 66 Receive Overflow Indicator bit, SSPOV 67 REFCON 102 Register File 9 Register File 9 Register File 10 Register File Map 10 Registers 13 INDF Summary 13 INTCON Summary 13 PCL Summary 13 PCL Summary 13 SPSTAT 66, 101 STATUS Summary 13 TMR0 Summary 13 Reset 117, 121 Block Diagram 121 Brown-out Reset (BOR). See Brown-out Reset (BOR) MCLR Reset. See MCLR Power-on Reset (POR). See Power-on Reset (POR) Reset Conditions for All Registers 124
R/W bit // RAM. See Data Memory // RCE, Receive Enable bit, RCE 69 RCREG 13 Read/Write bit, R/W 66 Receive Overflow Indicator bit, SSPOV 67 REFCON 102 Register File 9 Register File 9 Register File 10 Register File 10 Registers 13 INDF Summary 13 INTCON Summary 13 PCL Summary 13 PCL Summary 13 PORTB Summary 13 SSPSTAT 66, 101 STATUS Summary 13 TMR0 Summary 13 Reset 117, 121 Block Diagram 121 Brown-out Reset (BOR). See Brown-out Reset (BOR) MCLR Reset. See MCLR Power-on Reset (POR). See Power-on Reset (POR) Reset Conditions for All Registers 124 Reset Conditions for All Registers 124
R/W bit // RAM. See Data Memory // RCE, Receive Enable bit, RCE 69 RCREG 13 Read/Write bit, R/W 66 Receive Overflow Indicator bit, SSPOV 67 REFCON 102 Register File 9 Register File 9 Register File 10 Register File Map 10 Registers 13 INDF Summary 13 INTCON Summary 13 PCL Summary 13 PCL Summary 13 SSPSTAT 66, 101 STATUS Summary 13 TMR0 Summary 13 Reset 117, 121 Block Diagram 121 Brown-out Reset (BOR). See Brown-out Reset (BOR) MCLR Reset. See MCLR Power-on Reset (POR). See Power-on Reset (POR) Reset Conditions for All Registers 124 Reset Conditions for PCON Register 123 Reset Conditions for PCON Register 123
R/W bit // RAM. See Data Memory // RCE, Receive Enable bit, RCE 69 RCREG 13 Red/Write bit, R/W 66 Receive Overflow Indicator bit, SSPOV 67 REFCON 102 Register File 9 Register File 9 Register File 10 Register File 10 Registers 13 INDF Summary 13 INTCON Summary 13 PCL Summary 13 PCL Summary 13 PORTB Summary 13 SSPSTAT 66, 101 STATUS Summary 13 TMR0 Summary 13 Reset 117, 121 Block Diagram 121 Brown-out Reset (BOR). See Brown-out Reset (BOR) MCLR Reset. See MCLR Power-on Reset (POR). See Power-on Reset (POR) Reset Conditions for All Registers 124 Reset Conditions for PCON Register 123 Reset Conditions for Program Counter 123 Reset Conditions for STATUS Register 123
R/W bit//RAM. See Data Memory//RCE, Receive Enable bit, RCE69RCREG13Read/Write bit, R/W66Receive Overflow Indicator bit, SSPOV67REFCON102Register File9Register File9Register File Map10Registers58FSR Summary13INDF Summary13PCL Summary13PCLATH Summary13SSPSTAT66, 101STATUS Summary13TRISB Summary13TRISB Summary13Reset117, 121Block Diagram121Brown-out Reset (BOR). See Brown-out Reset (BOR)MCLR Reset. See MCLRPower-on Reset (POR). See Power-on Reset (POR)Reset Conditions for All Registers124Reset Conditions for PCON Register123Reset Conditions for PCON Register123Reset Conditions for STATUS Register123WDT Reset. See Watchdog Timer (WDT)
R/W bit//RAM. See Data Memory//RCE, Receive Enable bit, RCE69RCREG13Read/Write bit, R/W66Receive Overflow Indicator bit, SSPOV67REFCON102Register File9Register File9Register File Map10Registers58FSR Summary13INDF Summary13PCL Summary13PCL Summary13PCLATH Summary13SSPSTAT66, 101STATUS Summary13TMR0 Summary13TMR0 Summary13TRISB Summary13Reset117, 121Block Diagram121Brown-out Reset (BOR). See Brown-out Reset (BOR)MCLR Reset. See MCLRPower-on Reset (POR). See Power-on Reset (POR)Reset Conditions for All Registers123Reset Conditions for PCON Register123Reset Conditions for Program Counter123Reset Conditions for STATUS Register123WDT Reset. See Watchdog Timer (WDT)Restart Condition Enabled bit, RSERestart Condition Enabled bit, RSE69
R/W bit//RAM. See Data Memory//RCE, Receive Enable bit, RCE69RCREG13RCSTA Register13Read/Write bit, R/W66Receive Overflow Indicator bit, SSPOV67REFCON102Register File9Register File9Register File Map10Registers58FSR Summary13INDF Summary13INTCON Summary13PCL Summary13PCLATH Summary13SSPSTAT66, 101STATUS Summary13TMR0 Summary13TMR0 Summary13Reset117, 121Block Diagram121Brown-out Reset (BOR). See Brown-out Reset (BOR)MCLR Reset. See MCLRPower-on Reset (POR). See Power-on Reset (POR)Reset Conditions for All Registers123Reset Conditions for PCON Register123Reset Conditions for Program Counter123Reset Conditions for STATUS Register123WDT Reset. See Watchdog Timer (WDT)Restart Condition Enabled bit, RSERevision History207

S	
S	66
SAE	69
SCK	70
SCL	76
SDASDA	70
SDO	70
Serial Data In, SDI	70
Serial Data Out, SDO	70
Slave Select Synchronization	73
Slave Select, SS	70
SLEEP 117, 12 SMP	1, 130 66
Software Simulator (MPLAB SIM)	142
SPE	69
Special Event Trigger. See Compare	
Special Features of the CPU	117
Special Function Registers	11
PIC16C717/770/771	11
PIC16C770	11
PIC16C771	11
Speed, Operating	1
SPI	
Master Mode	72
Serial Data In	70
Serial Data Out	70
Serial Peripheral Interface (SPI)	65
Slave Select	70
SPI clock	72
SPI Mode	70
SPI Clock Edge Select CKE	66
SPI Clock Edge Select, CKE SPI Data Input Sample Phase Select, SMP	66
SPI Clock Edge Select, CKE SPI Data Input Sample Phase Select, SMP SPI Master/Slave Connection	66 66 71
SPI Clock Edge Select, CKE SPI Data Input Sample Phase Select, SMP SPI Master/Slave Connection SPI Module	66 66 71
SPI Clock Edge Select, CKE SPI Data Input Sample Phase Select, SMP SPI Master/Slave Connection SPI Module Master/Slave Connection	66 66 71 71
SPI Clock Edge Select, CKE SPI Data Input Sample Phase Select, SMP SPI Master/Slave Connection SPI Module Master/Slave Connection Slave Mode	66 66 71 71
SPI Clock Edge Select, CKE SPI Data Input Sample Phase Select, SMP SPI Master/Slave Connection SPI Module Master/Slave Connection Slave Mode Slave Select Synchronization	66 66 71 71 73 73
SPI Clock Edge Select, CKE SPI Data Input Sample Phase Select, SMP SPI Master/Slave Connection SPI Module Master/Slave Connection Slave Mode Slave Select Synchronization Slave Synch Timnig	66 66 71 71 73 73 73 73
SPI Clock Edge Select, CKE SPI Data Input Sample Phase Select, SMP SPI Master/Slave Connection SPI Module Master/Slave Connection Slave Mode Slave Select Synchronization Slave Synch Timnig SS SSP	66 66 71 71 73 73 73 70 65
SPI Clock Edge Select, CKE SPI Data Input Sample Phase Select, SMP SPI Master/Slave Connection SPI Module Master/Slave Connection Slave Mode Slave Select Synchronization Slave Synch Timnig SS SS Block Diagram (SPI Mode)	66 66 71 71 73 73 73 70 65 70
SPI Clock Edge Select, CKE SPI Data Input Sample Phase Select, SMP SPI Master/Slave Connection SPI Module Master/Slave Connection Slave Mode Slave Select Synchronization Slave Synch Timnig SSP Block Diagram (SPI Mode) Enable (SSPIE Bit)	
SPI Clock Edge Select, CKE SPI Data Input Sample Phase Select, SMP SPI Master/Slave Connection SPI Module Master/Slave Connection Slave Mode Slave Select Synchronization Slave Synch Timnig SS. SSP Block Diagram (SPI Mode) Enable (SSPIE Bit) SPI Mode	
SPI Clock Edge Select, CKE SPI Data Input Sample Phase Select, SMP SPI Master/Slave Connection SPI Module Master/Slave Connection Slave Mode Slave Select Synchronization Slave Synch Timnig SS. SSP Block Diagram (SPI Mode) Enable (SSPIE Bit) SPI Mode SSPADD SPADD	
SPI Clock Edge Select, CKE SPI Data Input Sample Phase Select, SMP SPI Master/Slave Connection SPI Module Master/Slave Connection Slave Mode Slave Select Synchronization Slave Synch Timnig SS. SSP Block Diagram (SPI Mode) Enable (SSPIE Bit) SPI Mode SSPADD SSPBUF	
SPI Clock Edge Select, CKE SPI Data Input Sample Phase Select, SMP SPI Master/Slave Connection SPI Module Master/Slave Connection Slave Mode Slave Select Synchronization Slave Synch Timnig SS SSP Block Diagram (SPI Mode) Enable (SSPIE Bit) SPI Mode SSPADD SSPADD SSPBUF SSPCON SSPCON	
SPI Clock Edge Select, CKE SPI Data Input Sample Phase Select, SMP SPI Master/Slave Connection SPI Module Master/Slave Connection Slave Mode Slave Select Synchronization Slave Synch Timnig SS SSP Block Diagram (SPI Mode) Enable (SSPIE Bit) SPI Mode SSPADD SSPADD SSPEUF SSPCON SSPCON SSPCON SSPSR	66 66 71 73 70 77 70 77 77 70 77
SPI Clock Edge Select, CKE SPI Data Input Sample Phase Select, SMP SPI Master/Slave Connection SPI Module Master/Slave Connection Slave Mode Slave Select Synchronization SIave Synch Timnig SS Block Diagram (SPI Mode) Enable (SSPIE Bit) SPI Mode SSPADD SSPCON SSPCON2 SSPSTAT	
SPI Clock Edge Select, CKE SPI Data Input Sample Phase Select, SMP SPI Master/Slave Connection SPI Module Master/Slave Connection Slave Mode Slave Select Synchronization SIave Synch Timnig SS SSP Block Diagram (SPI Mode) Enable (SSPIE Bit) SSPADD SSPCON SSPCON2 SSPSTAT SSPSTAT Sate Output for Clock Shift	
SPI Clock Edge Select, CKE SPI Data Input Sample Phase Select, SMP SPI Master/Slave Connection SPI Module Master/Slave Connection Slave Mode Slave Select Synchronization Slave Synch Timnig SS SSP Block Diagram (SPI Mode) Enable (SSPIE Bit) SPI Mode SSPADD SSPADD SSPADD SSPCON SSPCON2	
SPI Clock Edge Select, CKE SPI Data Input Sample Phase Select, SMP SPI Master/Slave Connection SPI Module Master/Slave Connection Slave Mode Slave Select Synchronization Slave Synch Timnig SS SSP Block Diagram (SPI Mode) Enable (SSPIE Bit) SPI Mode SSPADD SSPADD SSPADD SSPCON SSPCON SSPCON SSPCON SSPSR	
SPI Clock Edge Select, CKE SPI Data Input Sample Phase Select, SMP SPI Master/Slave Connection SPI Module Master/Slave Connection Slave Mode Slave Select Synchronization Slave Synch Timnig SS SSP Block Diagram (SPI Mode) Enable (SSPIE Bit) SPI Mode SSPADD SSPADD SSPCON SSPCON SSPCON SSPCON SSPCON SSPSR	
SPI Clock Edge Select, CKE SPI Data Input Sample Phase Select, SMP SPI Master/Slave Connection SI Module Master/Slave Connection Slave Mode Slave Select Synchronization Slave Synch Timnig SS SSP Block Diagram (SPI Mode) Enable (SSPIE Bit) SPI Mode SSPADD SSPADD SSPCON SSPCON SSPCON SSPCON SSPCON 2	66 66 71 71 73 73 73 73 73 73 73 73 73 75 75 70 77 77 67 67 67 67 71 76 72 72 72 72
SPI Clock Edge Select, CKE SPI Data Input Sample Phase Select, SMP SPI Master/Slave Connection SI Module Master/Slave Connection Slave Mode Slave Select Synchronization Slave Synch Timnig SS SSP Block Diagram (SPI Mode) Enable (SSPIE Bit) SPI Mode SSPADD SSPADD SSPCON SSPCON SSPCON 2	66 66 71 71 73 73 73 73 73 73 73 73 70 75 70 77 72, 76 77 69, 70 72, 77 6, 101 51, 52 76 72 71 73
SPI Clock Edge Select, CKE SPI Data Input Sample Phase Select, SMP SPI Master/Slave Connection SPI Module Master/Slave Connection Slave Mode Slave Select Synchronization Slave Synch Timnig SS SSP Block Diagram (SPI Mode) Enable (SSPIE Bit) SPI Mode SSPADD SSPCON SSPCON2 SSPSTAT SSP I ² C SSP Module SPI Mode SSP I ² C Operation SSP Module SPI Master Mode SPI Slave Mode SPI Slave Mode SPI Slave Mode	
SPI Clock Edge Select, CKE SPI Data Input Sample Phase Select, SMP SPI Master/Slave Connection SIave Mode Slave Select Synchronization Slave Synch Timnig SS SSP Block Diagram (SPI Mode) Enable (SSPIE Bit) SPI Mode SSPADD SSPADD SSPCON SSPCON SSPCON SSPCON2	
SPI Clock Edge Select, CKE SPI Data Input Sample Phase Select, SMP SPI Master/Slave Connection SIAve Mode Slave Select Synchronization Slave Synch Timnig SS SSP Block Diagram (SPI Mode) Enable (SSPIE Bit) SPI Mode SSPADD SSPADD SSPCON SSPCON SSPCON SSPCON SSPSTAT	
SPI Clock Edge Select, CKE SPI Data Input Sample Phase Select, SMP SPI Master/Slave Connection SIave Mode Slave Select Synchronization Slave Synch Timnig SS SSP Block Diagram (SPI Mode) Enable (SSPIE Bit) SPI Mode SSPADD SSPADD SSPEUF SSPCON SSPCON 2 SSPCON 2 SSPSR SSPSTAT	
SPI Clock Edge Select, CKE SPI Data Input Sample Phase Select, SMP SPI Master/Slave Connection SPI Module Master/Slave Connection Slave Mode Slave Select Synchronization Slave Synch Timnig SS SSP Block Diagram (SPI Mode) Enable (SSPIE Bit) SPI Mode SSPADD SSPCON SSPCON2 SSPSR SSPSTAT SSP I ² C SSP I ² C Operation SSP Module SPI Master /Slave Connection SPI Master Mode SPCON1 Register SSP Overflow Detect bit, SSPOV SSPADD Register SSPBUF 13, T	

PIC16C717/770/771

NOTES: