E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, SPI
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	15
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	4V ~ 5.5V
Data Converters	A/D 6x12b
Oscillator Type	Internal
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SSOP (0.209", 5.30mm Width)
Supplier Device Package	20-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16c770t-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

4.0 PROGRAM MEMORY READ (PMR)

Program memory is readable during normal operation (full VDD range). It is indirectly addressed through the Special Function Registers:

- PMCON1
- PMDATH
- PMDATL
- PMADRH
- PMADRL

When interfacing the program memory block, the PMDATH & PMDATL registers form a 2-byte word, which holds the 14-bit data. The PMADRH & PMADRL registers form a 2-byte word, which holds the 12-bit address of the program memory location being accessed. Mid-range devices have up to 8K words of program EPROM with an address range from 0h to 3FFFh. When the device contains less memory than the full address range of the PMADRH:PMARDL registers, the Most Significant bits of the PMADRH register are ignored.

4.1 PMCON1 REGISTER

PMCON1 is the control register for program memory accesses.

Control bit RD initiates a read operation. This bit cannot be cleared, only set, in software. It is cleared in hardware at completion of the read operation.

REGISTER 4-1: PROGRAM MEMORY READ CONTROL REGISTER 1 (PMCON1: 18Ch)

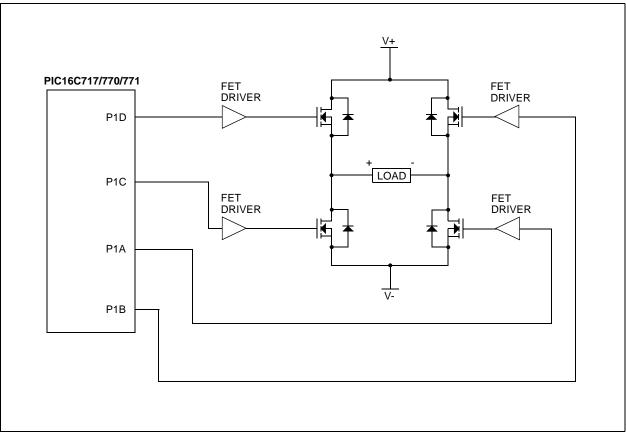
R-1	U-0	U-0	U-0	U-0	U-0	U-0	R/S-0
Reserved	—	—	—	—	—	—	RD
bit 7							bit 0
Reserved:	Read as '1'						
Unimpleme	Unimplemented: Read as '0'						

bit 0 **RD**: Read Control bit

1 = Initiates a Program memory read (read takes 2 cycles). RD is cleared in hardware.

0 = Reserved

Legend:		S = Settable (cleared	d in hardware)
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown


4.2 PMDATH AND PMDATL REGISTERS

bit 7 bit 6-1

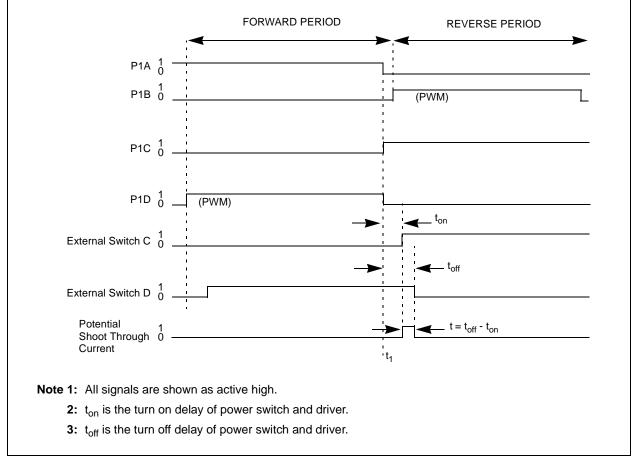
The PMDATH:PMDATL registers are loaded with the contents of program memory addressed by the PMADRH and PMADRL registers upon completion of a Program Memory Read command.

PIC16C717/770/771

FIGURE 8-9: EXAMPLE OF FULL-BRIDGE APPLICATION

Note that in the Full-Bridge Output mode, the ECCP module does not provide any deadband delay. In general, since only one output is modulated at a time, deadband delay is not required. However, there is a situation where a deadband delay might be required. This situation occurs when all of the following conditions are true:

- 1. The direction of the PWM output changes when the duty cycle of the output is at or near 100%.
- 2. The turn off time of the power switch, including the power device and driver circuit, is greater than turn on time.

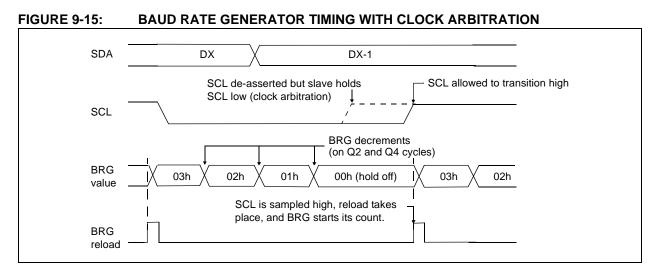

Figure 8-11 shows an example, where the PWM direction changes from forward to reverse at a near 100% duty cycle. At time t1, the output P1A and P1D become inactive, while output P1C becomes active. In this

example, since the turn off time of the power devices is longer than the turn on time, a shoot-through current flows through the power devices, QB and QD, for the duration of $t = t_{off}-t_{on}$. The same phenomenon will occur to power devices, QC and QB, for PWM direction change from reverse to forward.

If changing PWM direction at high duty cycle is required for the user's application, one of the following requirements must be met:

- 1. Avoid changing PWM output direction at or near 100% duty cycle.
- 2. Use switch drivers that compensate for the slow turn off of the power devices. The total turn off time (t_{off}) of the power device and the driver must be less than the turn on time (t_{on}) .

REGISTER 9-1: SYNC SERIAL PORT STATUS REGISTER (SSPSTAT: 94h)


R/W-0	R/W-0	R-0	R-0	R-0	R-0	R-0	R-0
SMP	CKE	D/A	Р	S	R/W	UA	BF
bit 7	•						bit
SMP: Sam	ple bit						
SPI Master							
	ata sampled a						
0 = Input d SPI Slave	ata sampled a	at middle of c	ata output t	me			
	be cleared wi	hen SPI is us	sed in Slave	mode			
	ter or Slave m						
	te control disa				KHz and 1 M	Hz)	
0= Slew ra	te control ena	bled for High	n Speed moo	le (400 kHz)			
	Clock Edge S	elect (Figure	9-3, Figure	9-5, and Figu	ıre 9-6)		
<u>CKP = 0</u>							
	ansmitted on						
0 = Data tr <u>CKP = 1</u>	ansmitted on	failing edge	OF SCK				
	ansmitted on	falling edge	of SCK				
	ansmitted on						
	Address bit (l2						
	es that the las		• •	nitted was da	ta		
0 = Indicat	es that the las	st byte receiv	ed or transn	nitted was ad	dress		
P: STOP b	it						
(I ² C mode	only. This bit i	is cleared wh	nen the MSS	P module is	disabled, SS	PEN is cleare	ed)
	es that a STO		en detected	last (this bit i	s '0' on RESI	ET)	
	bit was not de	etected last					
S: START				_			
	only. This bit i es that a STA						ed)
	bit was not d		en delected	i last (this bit	IS U UN REC	D⊏1)	
	Write bit info		mode only)				
	ds the R/W bi			e last addres	s match. This	s bit is only va	alid from t
	atch to the ne						
<u>In I²C Slav</u>							
1 = Read							
0 = Write In I ² C Mas	tor mode						
	nit is in progre	22					
	nit is not in pro						
	bit with SEN,		, RCEN, or a	AKEN will inc	licate if the N	ISSP is in ID	LE mode
UA: Updat	e Address (10)-bit I ² C mod	e only)				
1 = Indicate	es that the us	er needs to ι	update the a	ddress in the	SSPADD re	gister	
0 = Addres	s does not ne	ed to be upo	lated				
	Full Status bit						
	PI and I ² C mo						
	e complete, S						
	e not complet ² C mode only		is empty				
	ransmit in pro		not include t	he ACK and	STOP bits).	SSPBUF is fu	III
	ransmit compl						
Locardi							
Legend:	hla hit	\\/ _ \\/	ritabla bit		nlamontad h	it read as 'O'	
R = Reada		vv = vv	ritable bit	0 = 0.00		it, read as '0'	

- n = Value at POR

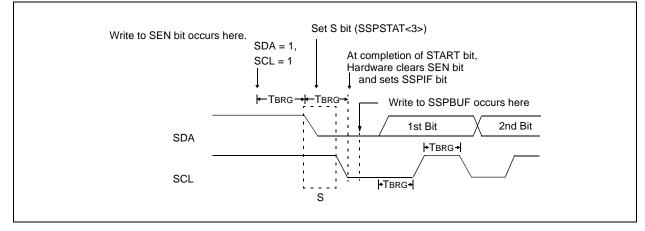
'1' = Bit is set

x = Bit is unknown

'0' = Bit is cleared

9.2.10 I²C MASTER MODE START CONDITION TIMING

To initiate a START condition, the user sets the START condition enable bit, SEN (SSPCON2<0>). If the SDA and SCL pins are sampled high, indicating that the bus is available, the baud rate generator is loaded with the contents of SSPADD<6:0> and starts its count. If SCL and SDA are both sampled high when the baud rate generator times out (TBRG) indicating the bus is still available, the SDA pin is driven low. The SDA transition from high to low while SCL is high is the START condition. This causes the S bit (SSPSTAT<3>) to be set. When the S bit is set, the baud rate generator is reloaded with the contents of SSPADD<6:0> and resumes its count. When the baud rate generator times out (TBRG) the START condition is complete, concurrent with the following events:


- The SEN bit (SSPCON2<0>) is automatically cleared by hardware,
- The baud rate generator is suspended leaving the SDA line held low.
- The SSPIF flag is set.

Note: If at the beginning of START condition, the SDA and SCL pins are already sampled low, or if during the START condition, the SCL line is sampled low before the SDA line is driven low, a bus collision occurs. Thus, the Bus Collision Interrupt Flag (BCLIF) is set, the START condition is aborted, and the I²C module is RESET into its IDLE state.

9.2.10.1 WCOL STATUS FLAG

If the user writes the SSPBUF when a START sequence is in progress, the WCOL is set and the contents of the buffer are unchanged (the write doesn't occur).

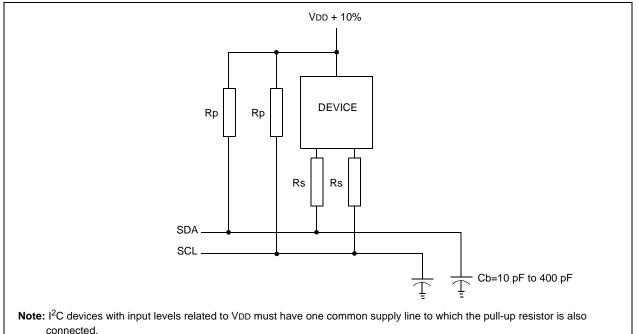
Note: Because queueing of events is not allowed, writing to the lower five bits of SSPCON2 is disabled until the START condition is complete.

FIGURE 9-16: FIRST START BIT TIMING

9.2.18 CONNECTION CONSIDERATIONS FOR I²C BUS

For Standard mode I^2C bus devices, the values of resistors R_p and R_s in Figure 9-31 depends on the following parameters

- Supply voltage
- Bus capacitance
- Number of connected devices (input current + leakage current).


The supply voltage limits the minimum value of resistor R_p due to the specified minimum sink current of 3 mA at VoL max = 0.4V for the specified output stages. For

example, with a supply voltage of VDD = $5V\pm10\%$ and VOL max = 0.4V at 3 mA, R_{p min} = (5.5-0.4)/0.003 = 1.7 k Ω . VDD as a function of R_p is shown in Figure 9-31. The desired noise margin of 0.1VDD for the low level limits the maximum value of R_s . Series resistors are optional and used to improve ESD susceptibility.

The bus capacitance is the total capacitance of wire, connections, and pins. This capacitance limits the maximum value of R_p due to the specified rise time (Figure 9-31).

The SMP bit is the slew rate control enabled bit. This bit is in the SSPSTAT register, and controls the slew rate of the I/O pins when in I^2C mode (master or slave).

FIGURE 9-31: SAMPLE DEVICE CONFIGURATION FOR I²C BUS

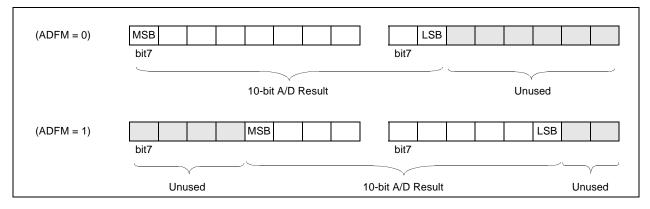


TABLE 9-3:	REGISTERS ASSOCIATED WITH I²C OPERATION

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	POR, BOR	MCLR, WDT
0Bh, 8Bh, 10Bh,18Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	—	ADIF	—	—	SSPIF	CCP1IF	TMR2IF	TMR1IF	-0 0000	-0 0000
8Ch	PIE1	—	ADIE	_	-	SSPIE	CCP1IE	TMR2IE	TMR1IE	-0 0000	-0 0000
0Dh	PIR2	LVDIF	-	_	-	BCLIF	-	—	CCP2IF	0 00	000
8Dh	PIE2	LVDIE	—	—	—	BCLIE	—	—	CCP2IE	0 00	0 00
13h	SSPBUF		Synchronous Serial Port Receive Buffer/Transmit Register xxxx xxxx uuuu					uuuu uuuu			
14h	SSPCON	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	0000 0000	0000 0000
91h	SSPCON2	GCEN	ACKSTAT	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	0000 0000	0000 0000
94h	SSPSTAT	SMP	CKE	D/A	Р	S	R/W	UA	BF	0000 0000	0000 0000
93h	SSPADD		Syne	chronous S	erial Port ((I ² C Mode)	Address Re	gister		0000 0000	0000 0000

Legend: x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used by the MSSP in I²C mode.

FIGURE 11-2: PIC16C717 10-BIT A/D RESULT FORMAT

After the A/D module has been configured as desired, the selected channel must be acquired before the conversion is started. The analog input channels must have their corresponding TRIS and ANSEL bits selected as an input. To determine acquisition time, see Section 11.6. After this acquisition time has elapsed, the A/D conversion can be started. The following steps should be followed for doing an A/D conversion:

11.2 Configuring the A/D Module

11.2.1 CONFIGURING ANALOG PORT PINS

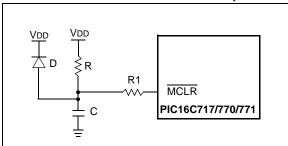
The ANSEL and TRIS registers control the operation of the A/D port pins. The port pins that are desired as analog inputs must have their corresponding TRIS bit set (input). If the TRIS bit is cleared (output), the digital output level (VOH or VOL) will be converted. The proper ANSEL bits must be set (analog input) to disable the digital input buffer.

The A/D operation is independent of the state of the TRIS bits and the ANSEL bits.

- Note 1: When reading the PORTA register, all pins configured as analog input channels will read as '0'.
 - 2: When reading the PORTB register, all pins configured as analog pins on PORTB will be read as '1'.
 - **3:** Analog levels on any pin that is defined as a digital input, including the ANx pins, may cause the input buffer to consume current that is out of the devices specification.

11.2.2 CONFIGURING THE REFERENCE VOLTAGES

The VCFG bits in the ADCON1 register configure the A/D module reference inputs. The reference high input can come from an internal reference (VRH) or (VRL), an external reference (VREF+), or AVDD. The low reference input can come from an internal reference (VRL), an external reference (VREF-), or AVss. If an external reference is chosen for the reference high or reference low inputs, the port pin that multiplexes the incoming external references is configured as an analog input, regardless of the values contained in the A/D port configuration bits (PCFG<3:0>).


12.4 Power-On Reset (POR)

A Power-on Reset pulse is generated on-chip when a VDD rise is detected (in the range of 1.5V - 2.1V). Enable the internal MCLR feature to eliminate external RC components usually needed to create a Power-on Reset. A maximum rise time for VDD is specified. See Electrical Specifications for details. For a long rise time, enable external MCLR function and use circuit as shown in Figure 12-5.

Two delay timers, (PWRT on OST), have been provided which hold the device in RESET after a POR (dependent upon device configuration) so that all operational parameters have been met prior to releasing the device to resume/begin normal operation.

When the device starts normal operation (exits the RESET condition), device operating parameters (voltage, frequency, temperature,...) must be met to ensure operation. If these conditions are not met, the device must be held in RESET until the operating conditions are met. Brown-out Reset may be used to meet the start-up conditions, or if necessary an external POR circuit may be implemented to delay end of RESET for as long as needed.

- **Note 1:** External Power-on Reset circuit is required only if VDD power-up slope is too slow. The diode D helps discharge the capacitor quickly when VDD powers down.
 - **2:** R < 40 kΩ is recommended to make sure that voltage drop across R does not violate the device's electrical specification.
 - **3:** $R1 = 100\Omega$ to $1 k\Omega$ will limit any current flowing into MCLR from external capacitor C in the event of MCLR/VPP pin breakdown due to Electrostatic Discharge (ESD) or Electrical Overstress (EOS).
 - 4: External MCLR must be enabled (MCLRE = 1).

12.5 Power-up Timer (PWRT)

The Power-up Timer provides a fixed TPWRT time-out on power-up type RESETS only. For a POR, the PWRT is invoked when the POR pulse is generated. For a BOR, the PWRT is invoked when the device exits the RESET condition (VDD rises above BOR trip point). The Power-up Timer operates on an internal RC oscillator. The chip is kept in RESET as long as the PWRT is active. The PWRT's time delay is designed to allow VDD to rise to an acceptable level. A configuration bit is provided to enable/disable the PWRT for the POR only. For a BOR the PWRT is always available regardless of the configuration bit setting.

The power-up time delay will vary from chip-to-chip due to VDD, temperature and process variation. See DC parameters for details.

12.6 Oscillator Start-up Timer (OST)

The Oscillator Start-up Timer (OST) provides 1024 oscillator cycle (from OSC1 input) delay after the PWRT delay is over. This ensures that the crystal oscillator or resonator has started and stabilized.

The OST time-out is invoked only for XT, LP and HS modes and only on a power-up type RESET or a wakeup from SLEEP.

12.7 Programmable Brown-Out Reset (PBOR)

The Programmable Brown-out Reset module is used to generate a RESET when the supply voltage falls below a specified trip voltage. The trip voltage is configurable to any one of four voltages provided by the BORV<1:0> configuration word bits.

Configuration bit, BODEN, can disable (if clear/programmed) or enable (if set) the Brown-out Reset circuitry. If VDD falls below the specified trip point for longer than TBOR, (parameter #35), the brown-out situation will RESET the chip. A RESET may not occur if VDD falls below the trip point for less than TBOR. The chip will remain in Brown-out Reset until VDD rises above VBOR. The Power-up Timer will be invoked at that point and will keep the chip in RESET an additional TPWRT. If VDD drops below VBOR while the Power-up Timer is running, the chip will go back into a Brown-out Reset and the Power-up Timer will be re-initialized. Once VDD rises above VBOR, the Power-up Timer will again begin a TPWRT time delay. Even though the PWRT is always enabled when brown-out is enabled, the PWRT configuration word bit should be cleared (enabled) when brown-out is enabled.

12.10.1 INT INTERRUPT

External interrupt on RB0/INT pin is edge triggered: either rising if bit INTEDG (OPTION_REG<6>) is set, or falling, if the INTEDG bit is clear. When a valid edge appears on the RB0/INT pin, flag bit INTF (INTCON<1>) is set. This interrupt can be disabled by clearing enable bit INTE (INTCON<4>). Flag bit INTF must be cleared in software in the interrupt service routine before re-enabling this interrupt. The INT interrupt can wake-up the processor from SLEEP, if bit INTE was set prior to going into SLEEP. The status of global interrupt enable bit GIE decides whether or not the processor branches to the interrupt vector following wake-up. See Section 12.13 for details on SLEEP mode.

12.10.2 TMR0 INTERRUPT

An overflow (FFh \rightarrow 00h) in the TMR0 register will set flag bit T0IF (INTCON<2>). The interrupt can be enabled/disabled by setting/clearing enable bit T0IE (INTCON<5>). (Section 2.2.2.3)

12.10.3 PORTB INTCON CHANGE

An input change on PORTB<7:0> sets flag bit RBIF (INTCON<0>). The PORTB pin(s) which can individually generate interrupt is selectable in the IOCB register. The interrupt can be enabled/disabled by setting/ clearing enable bit RBIE (INTCON<4>). (Section 2.2.2.3)

12.11 Context Saving During Interrupts

During an interrupt, only the PC is saved on the stack. At the very least, W and STATUS should be saved to preserve the context for the interrupted program. All registers that may be corrupted by the ISR, such as PCLATH or FSR, should be saved.

Example 12-1 stores and restores the STATUS, W and PCLATH registers. The register, W_TEMP, is defined in Common RAM, the last 16 bytes of each bank that may be accessed from any bank. The STATUS_TEMP and PCLATH_TEMP are defined in bank 0.

The example:

- a) Stores the W register.
- b) Stores the STATUS register in bank 0.
- c) Stores the PCLATH register in bank 0.
- d) Executes the ISR code.
- e) Restores the PCLATH register.
- f) Restores the STATUS register
- g) Restores W.

Note that W_TEMP, STATUS_TEMP and PCLATH_TEMP are defined in the common RAM area (70h - 7Fh) to avoid register bank switching during context save and restore.

EXAMPLE 12-1: Saving STATUS, W, and PCLATH Registers in RAM

#define W TEMP 0×70 #define STATUS TEMP 0x71 #define PCLATH TEMP 0x72 orq 0x04 ; start at Interrupt Vector W TEMP MOVWF ; Save W register STATUS, w MOVF STATUS_TEMP ; save STATUS MOVWF MOVF PCLATH,w MOVWF PCLATH_TEMP ; save PCLATH (Interrupt Service Routine) MOVF PCLATH_TEMP, w MOVWF PCLATH MOVF STATUS TEMP, w MOVWF STATUS W_TEMP,f SWAPF ; swapf loads W without affecting STATUS flags SWAPF W_TEMP,w RETFIE

PIC16C717/770/771

NOTES:

13.1 Instruction Descriptions

ADDLW	Add Literal and W
Syntax:	[<i>label</i>] ADDLW k
Operands:	$0 \le k \le 255$
Operation:	$(W) + k \to (W)$
Status Affected:	C, DC, Z
Description:	The contents of the W register are added to the eight bit literal 'k' and the result is placed in the W register.

ANDWF	AND W with f
Syntax:	[<i>label</i>] ANDWF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	(W) .AND. (f) \rightarrow (destination)
Status Affected:	Z
Description:	AND the W register with register 'f'. If 'd' is 0, the result is stored in the W register. If 'd' is 1, the result is stored back in register 'f'.

ADDWF	Add W and f
Syntax:	[<i>label</i>] ADDWF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	(W) + (f) \rightarrow (destination)
Status Affected:	C, DC, Z
Description:	Add the contents of the W register with register 'f'. If 'd' is 0, the result is stored in the W register. If 'd' is 1, the result is stored back in reg- ister 'f'.

BCF	Bit Clear f
Syntax:	[<i>label</i>] BCF f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$
Operation:	$0 \rightarrow (f < b >)$
Status Affected:	None
Description:	Bit 'b' in register 'f' is cleared.

ANDLW	AND Literal with W
Syntax:	[<i>label</i>] ANDLW k
Operands:	$0 \le k \le 255$
Operation:	(W) .AND. (k) \rightarrow (W)
Status Affected:	Z
Description:	The contents of W register are AND'ed with the eight bit literal 'k'. The result is placed in the W register.

BSF	Bit Set f
Syntax:	[<i>label</i>] BSF f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$
Operation:	$1 \rightarrow (f < b >)$
Status Affected:	None
Description:	Bit 'b' in register 'f' is set.

14.0 DEVELOPMENT SUPPORT

The PIC[®] microcontrollers are supported with a full range of hardware and software development tools:

- Integrated Development Environment
 - MPLAB[®] IDE Software
- Assemblers/Compilers/Linkers
 - MPASM[™] Assembler
 - MPLAB C17 and MPLAB C18 C Compilers
 - MPLINK[™] Object Linker/
 - MPLIB[™] Object Librarian
- Simulators
 - MPLAB SIM Software Simulator
- Emulators
 - MPLAB ICE 2000 In-Circuit Emulator
 - ICEPIC™ In-Circuit Emulator
- In-Circuit Debugger
 - MPLAB ICD
- Device Programmers
 - PRO MATE® II Universal Device Programmer
 - PICSTART[®] Plus Entry-Level Development Programmer
- Low Cost Demonstration Boards
 - PICDEM[™]1 Demonstration Board
 - PICDEM 2 Demonstration Board
 - PICDEM 3 Demonstration Board
 - PICDEM 17 Demonstration Board
 - KEELOQ[®] Demonstration Board

14.1 MPLAB Integrated Development Environment Software

The MPLAB IDE software brings an ease of software development previously unseen in the 8-bit microcontroller market. The MPLAB IDE is a Windows[®]-based application that contains:

- An interface to debugging tools
 - simulator
 - programmer (sold separately)
 - emulator (sold separately)
 - in-circuit debugger (sold separately)
- A full-featured editor
- A project manager
- Customizable toolbar and key mapping
- A status bar
- On-line help

The MPLAB IDE allows you to:

- Edit your source files (either assembly or 'C')
- One touch assemble (or compile) and download to PIC MCU emulator and simulator tools (automatically updates all project information)
- Debug using:
 - source files
 - absolute listing file
 - machine code

The ability to use MPLAB IDE with multiple debugging tools allows users to easily switch from the cost-effective simulator to a full-featured emulator with minimal retraining.

14.2 MPASM Assembler

The MPASM assembler is a full-featured universal macro assembler for all PIC MCUs.

The MPASM assembler has a command line interface and a Windows shell. It can be used as a stand-alone application on a Windows 3.x or greater system, or it can be used through MPLAB IDE. The MPASM assembler generates relocatable object files for the MPLINK object linker, Intel[®] standard HEX files, MAP files to detail memory usage and symbol reference, an absolute LST file that contains source lines and generated machine code, and a COD file for debugging.

The MPASM assembler features include:

- Integration into MPLAB IDE projects.
- User-defined macros to streamline assembly code.
- Conditional assembly for multi-purpose source files.
- Directives that allow complete control over the assembly process.

14.3 MPLAB C17 and MPLAB C18 C Compilers

The MPLAB C17 and MPLAB C18 Code Development Systems are complete ANSI 'C' compilers for Microchip's PIC17CXXX and PIC18CXXX family of microcontrollers, respectively. These compilers provide powerful integration capabilities and ease of use not found with other compilers.

For easier source level debugging, the compilers provide symbol information that is compatible with the MPLAB IDE memory display.

14.13 PICDEM 3 Low Cost PIC16CXXX Demonstration Board

The PICDEM 3 demonstration board is a simple demonstration board that supports the PIC16C923 and PIC16C924 in the PLCC package. It will also support future 44-pin PLCC microcontrollers with an LCD Module. All the necessary hardware and software is included to run the basic demonstration programs. The user can program the sample microcontrollers provided with the PICDEM 3 demonstration board on a PRO MATE II device programmer, or a PICSTART Plus development programmer with an adapter socket, and easily test firmware. The MPLAB ICE in-circuit emulator may also be used with the PICDEM 3 demonstration board to test firmware. A prototype area has been provided to the user for adding hardware and connecting it to the microcontroller socket(s). Some of the features include a RS-232 interface, push button switches, a potentiometer for simulated analog input, a thermistor and separate headers for connection to an external LCD module and a keypad. Also provided on the PICDEM 3 demonstration board is a LCD panel, with 4 commons and 12 segments, that is capable of displaying time, temperature and day of the week. The PICDEM 3 demonstration board provides an additional RS-232 interface and Windows software for showing the demultiplexed LCD signals on a PC. A simple serial interface allows the user to construct a hardware demultiplexer for the LCD signals.

14.14 PICDEM 17 Demonstration Board

The PICDEM 17 demonstration board is an evaluation board that demonstrates the capabilities of several Microchip microcontrollers, including PIC17C752, PIC17C756A, PIC17C762 and PIC17C766. All necessary hardware is included to run basic demo programs, which are supplied on a 3.5-inch disk. A programmed sample is included and the user may erase it and program it with the other sample programs using the PRO MATE II device programmer, or the PICSTART Plus development programmer, and easily debug and test the sample code. In addition, the PICDEM 17 demonstration board supports downloading of programs to and executing out of external FLASH memory on board. The PICDEM 17 demonstration board is also usable with the MPLAB ICE in-circuit emulator, or the PICMASTER emulator and all of the sample programs can be run and modified using either emulator. Additionally, a generous prototype area is available for user hardware.

14.15 KEELOQ Evaluation and Programming Tools

KEELOQ evaluation and programming tools support Microchip's HCS Secure Data Products. The HCS evaluation kit includes a LCD display to show changing codes, a decoder to decode transmissions and a programming interface to program test transmitters.

PIC16L0	C717/770	/771				ture C -40	ditions (unless otherwise stated) $0^{\circ}C \le TA \le +70^{\circ}C$ for commercial $0^{\circ}C \le TA \le +85^{\circ}C$ for industrial $0^{\circ}C \le TA \le +125^{\circ}C$ for extended
PIC16C	717/770/7	771				ture C -40	ditions (unless otherwise stated) $0^{\circ}C \le TA \le +70^{\circ}C$ for commercial $0^{\circ}C \le TA \le +85^{\circ}C$ for industrial $0^{\circ}C \le TA \le +125^{\circ}C$ for extended
Param. No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
	IPD	Power-down Current ⁽³⁾					
D020D		PIC16LC7XX		0.3	2.0	μA	VDD = 3V, -40°C to 85°C
D020E					5.0		VDD = 3V, -40°C to 125°C
D020F				0.1	1.5	μA	VDD = 2.5V, -40°C to 85°C
D020G					3.0		VDD = 2.5V, -40°C to 125°C
D020		PIC16C7XX		1.4	4.0	μA	VDD = 5.5V, -40°C to 85°C
D020A					8.0		VDD = 5.5V, -40°C to 125°C
D020B				1.0	3.5	μA	VDD = 4V, -40°C to 85°C
D020C					6.0		VDD = 4V, -40°C to 125°C

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in active Operation mode are:

 $\frac{OSC1}{MCLR}$ = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD $\frac{MCLR}{MCLR}$ = VDD; WDT enabled/disabled as specified.

3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD or VSS.

15.4.5 A/D CONVERTER MODULE

TABLE 15-11: PIC16C770/771 AND PIC16LC770/771 A/D CONVERTER CHARACTERISTICS:

Param. No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
A01	NR	Resolution	_		12 bits	bit	Min. resolution for A/D is 1 mV, VREF+ = AVDD = 4.096V, VREF- = AVSS = 0V, VREF- \leq VAIN \leq VREF+
A03	EIL	Integral error	—	_	±2	LSb	VREF+ = AVDD = 4.096V, VREF- = AVSS = 0V, $VREF- \le VAIN \le VREF+$
A04	Edl	Differential error	_	_	+2 -1	LSb	No missing codes to 12 bits VREF+ = AVDD = 4.096V, VREF- = AVSS = 0V, VREF- \leq VAIN \leq VREF+
A06	EOFF	Offset error	—	_	±2	LSb	VREF+ = AVDD = 4.096V, VREF- = AVSS = 0V, $VREF- \le VAIN \le VREF+$
A07	Egn	Gain Error	_	_	±2	LSb	VREF+ = AVDD = 4.096V, VREF- = AVSS = 0V, $VREF- \le VAIN \le VREF+$
A10	—	Monotonicity	_	Note 3	—	_	$AVSS \leq VAIN \leq VREF+$
A20*	Vref	Reference voltage (VREF+ - VREF-)	4.096	_	VDD +0.3V	V	Absolute minimum electrical spec to ensure 12-bit accuracy.
A21*	VREF+	Reference V High (AVDD or VREF+)	VREF-	_	AVdd	V	Min. resolution for A/D is 1 mV
A22*	VREF-	Reference V Low (Avss or VREF-)	AVss	_	VREF+	V	Min. resolution for A/D is 1 mV
A25*	Vain	Analog input volt- age	Vrefl	_	Vrefh	V	
A30*	Zain	Recommended impedance of ana- log voltage source			2.5	kΩ	
A50*	IREF	VREF input current (Note 2)		_	10	μΑ	During VAIN acquisition. Based on differential of VHOLD to VAIN. To charge CHOLD see Section 11.0. During A/D conversion cycle.

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

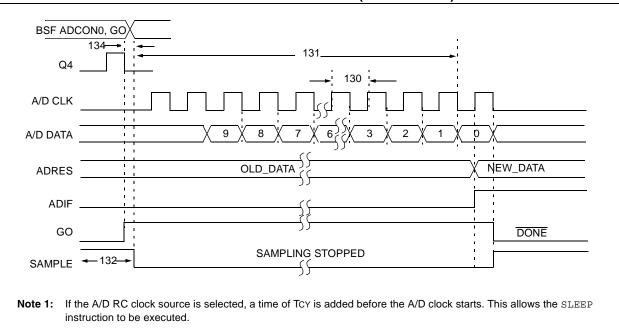
Note 1: When A/D is off, it will not consume any current other than minor leakage current. The power-down current spec includes any such leakage from the A/D module.

2: VREF input current is from External VREF+, or VREF-, or AVSS, or AVDD pin, whichever is selected as reference input.

3: The A/D conversion result never decreases with an increase in the input voltage and has no missing codes.

TABLE 15-12: PIC16C770/771 AND PIC16LC770/771 A/D CONVERSION REQUIREMENTS (NORMAL MODE)

Parameter No.	Sym	Characteristic	Min	Тур†	Мах	Units	Conditions
130* ⁽³⁾	TAD	A/D clock period	1.6	—	_	μS	Tosc based, VREF \geq 2.5V
			3.0	—	—	μS	Tosc based, VREF full range
			3.0	6.0	9.0	μS	ADCS<1:0> = 11 (A/D RC mode) At VDD = 2.5V
			2.0	4.0	6.0	μs	At VDD = 5.0V
131*	TCNV	Conversion time (not including acquisition time) (Note 1)	_	13Tad	—	TAD	
132*	TACQ	Acquisition Time	Note 2	11.5	—	μS	
			5*	_	_	μs	The minimum time is the ampli- fier settling time. This may be used if the "new" input voltage has not changed by more than 1LSb (i.e., 1mV @ 4.096V) from the last sampled voltage (as stated on CHOLD).
134*	TGO	Q4 to A/D clock start	—	Tosc/2	—	—	


* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: ADRES register may be read on the following TCY cycle.

2: See Section 11.6 for minimum conditions.

3: These numbers multiplied by 8 if VRH or VRL is selected as A/D reference.

FIGURE 15-17: PIC16C717 A/D CONVERSION TIMING (SLEEP MODE)

TABLE 15-16: PIC16C717 AND PIC16LC717 A/D CONVERSION REQUIREMENT (SLEEP MODE)

Parameter No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
130* ⁽³⁾	TAD	A/D clock period	3.0	6.0	9.0	μS	ADCS<1:0> = 11 (A/D RC mode) At VDD = 3.0V
			2.0	4.0	6.0	μS	At VDD = 5.0V
131*	ΤΟΝΥ	Conversion time (not including acquisition time) (Note 1)	_	11Tad	_	_	
132*	TACQ	Acquisition Time	(Note 2)	11.5	_	μs	
			5*	_	_	μS	The minimum time is the amplifier settling time. This may be used if the "new" input voltage has not changed by more than 1LSb (i.e., 1mV @ 4.096V) from the last sam- pled voltage (as stated on CHOLD).
134*	TGO	Q4 to A/D clock start		Tosc/2 + Tcy		_	If the A/D RC clock source is selected, a time of TCY is added before the A/D clock starts. This allows the SLEEP instruction to be executed.

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: ADRES register may be read on the following TCY cycle.

2: See Section 11.6 for minimum conditions.

3: These numbers multiplied by 8 if VRH or VRL is selected as A/D reference.

Param. No.	Symbol	Characteristic		Min	Max	Units	Conditions
100*	Thigh	Clock high time	100 kHz mode	2(Tosc)(BRG + 1)	_	ms	
			400 kHz mode	2(Tosc)(BRG + 1)	_	ms	
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)	—	ms	
101*	TLOW	Clock low time	100 kHz mode	2(Tosc)(BRG + 1)	—	ms	
			400 kHz mode	2(Tosc)(BRG + 1)		ms	
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)	—	ms	
102*	TR	SDA and SCL	100 kHz mode	_	1000	ns	Cb is specified to be from
		rise time	400 kHz mode	20 + 0.1Cb	300	ns	10 to 400 pF
			1 MHz mode ⁽¹⁾	_	300	ns	
103*	TF	SDA and SCL	100 kHz mode	_	300	ns	Cb is specified to be from
		fall time	400 kHz mode	20 + 0.1Cb	300	ns	10 to 400 pF
			1 MHz mode ⁽¹⁾	_	100	ns	
90*	TSU:STA	START condition	100 kHz mode	2(Tosc)(BRG + 1)	—	ms	Only relevant for Repeated
		setup time	400 kHz mode	2(Tosc)(BRG + 1)	_	ms	START
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)	—	ms	condition
91*	THD:STA	START condition	100 kHz mode	2(Tosc)(BRG + 1)	_	ms	After this period the first clock
		hold time	400 kHz mode	2(Tosc)(BRG + 1)	—	ms	pulse is generated
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)	—	ms	
106*	THD:DAT	Data input	100 kHz mode	0	—	ns	
		hold time	400 kHz mode	0	0.9	ms]
			1 MHz mode ⁽¹⁾	TBD	—	ns	
107*	TSU:DAT	Data input	100 kHz mode	250	—	ns	Note 2
		setup time	400 kHz mode	100	—	ns	1
			1 MHz mode ⁽¹⁾	TBD	-	ns	
92*	Tsu:sto	STOP condition	100 kHz mode	2(Tosc)(BRG + 1)	—	ms	
		setup time	400 kHz mode	2(Tosc)(BRG + 1)		ms]
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)	—	ms	
109*	TAA	Output valid from	100 kHz mode	_	3500	ns	
		clock	400 kHz mode	—	1000	ns	
			1 MHz mode ⁽¹⁾	—	—	ns	
110	TBUF	Bus free time	100 kHz mode	4.7 ‡	—	ms	Time the bus must be free
			400 kHz mode	1.3 ‡	—	ms	before a new transmission
			1 MHz mode ⁽¹⁾	TBD‡	—	ms	can start
D102 ‡	Cb	Bus capacitive load		—	400	pF	

TABLE 15-22: MASTER SSP I²C BUS DATA REQUIREMENTS

* These parameters are characterized but not tested. For the value required by the I²C specification, please refer to the PICmicroTM Mid-Range MCU Family Reference Manual (DS33023).

‡ These parameters are for design guidance only and are not tested, nor characterized.

Note 1: Maximum pin capacitance = 10 pF for all I^2C pins.

2: A Fast mode l^2C bus device can be used in a Standard mode l^2C bus system, but $(TSU:DAT) \ge 250$ ns must then be met. This will automatically be the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line.

[(TR) + (TSU:DAT) = 1000 + 250 = 1250 ns], for 100 kHz mode, before the SCL line is released.

INDEX

Α

A/D Converter Enable (ADIE Bit)	105
	17
ADCON0 Register	
ADCON1 Register1	
ADRES Register	
Block Diagram	
Configuring Analog Port	
Conversion time	
Conversions	
converter characteristics	
Faster Conversion - Lower Resolution Tradeoff.	
Internal Sampling Switch (Rss) Impedence	
Operation During Sleep	
Sampling Requirements	113
Sampling Time	113
Source Impedance	113
Special Event Trigger (ECCP)	55
A/D Conversion Clock	
<u>—</u> ACK	
Acknowledge Data bit, AKD	
Acknowledge Sequence Enable bit, AKE	
Acknowledge Status bit, AKS	09 60
ACKSTAT	
ADCON0 Register	
ADCON1 Register1	
ADRES	
ADRES Register 11, 12, 1	
AKD	69
AKE	69
AKS	69
Analog-to-Digital Converter. See A/D	
Application Note AN578, "Use of the SSP Module	
	84
in the I2C Multi-Master Environment."	84
in the I2C Multi-Master Environment." Architecture	
in the I2C Multi-Master Environment." Architecture PIC16C717/PIC16C717 Block Diagram	5
in the I2C Multi-Master Environment." Architecture PIC16C717/PIC16C717 Block Diagram PIC16C770/771/PIC16C770/771 Block Diagram	5
in the I2C Multi-Master Environment." Architecture PIC16C717/PIC16C717 Block Diagram PIC16C770/771/PIC16C770/771 Block Diagram Assembler	5 6
in the I2C Multi-Master Environment." Architecture PIC16C717/PIC16C717 Block Diagram PIC16C770/771/PIC16C770/771 Block Diagram	5 6
in the I2C Multi-Master Environment." Architecture PIC16C717/PIC16C717 Block Diagram PIC16C770/771/PIC16C770/771 Block Diagram Assembler	5 6
in the I2C Multi-Master Environment." Architecture PIC16C717/PIC16C717 Block Diagram PIC16C770/771/PIC16C770/771 Block Diagram Assembler MPASM Assembler B	5 6 141
in the I2C Multi-Master Environment." Architecture PIC16C717/PIC16C717 Block Diagram PIC16C770/771/PIC16C770/771 Block Diagram Assembler MPASM Assembler B Banking, Data Memory	5 6 141 9, 14
in the I2C Multi-Master Environment." Architecture PIC16C717/PIC16C717 Block Diagram PIC16C770/771/PIC16C770/771 Block Diagram Assembler MPASM Assembler B Banking, Data Memory Baud Rate Generator	5 6 141 9, 14 84
in the I2C Multi-Master Environment." Architecture PIC16C717/PIC16C717 Block Diagram PIC16C770/771/PIC16C770/771 Block Diagram Assembler MPASM Assembler B Banking, Data Memory Baud Rate Generator BF	5 6 141 9, 14 84
in the I2C Multi-Master Environment." Architecture PIC16C717/PIC16C717 Block Diagram PIC16C770/771/PIC16C770/771 Block Diagram Assembler MPASM Assembler B Banking, Data Memory Baud Rate Generator BF	5 6 141 9, 14 84 7, 87, 89
in the I2C Multi-Master Environment." Architecture PIC16C717/PIC16C717 Block Diagram PIC16C770/771/PIC16C770/771 Block Diagram Assembler MPASM Assembler B Banking, Data Memory Baud Rate Generator BF	
in the I2C Multi-Master Environment." Architecture PIC16C717/PIC16C717 Block Diagram PIC16C770/771/PIC16C770/771 Block Diagram Assembler MPASM Assembler B Banking, Data Memory Baud Rate Generator BF	
in the I2C Multi-Master Environment." Architecture PIC16C717/PIC16C717 Block Diagram PIC16C770/771/PIC16C770/771 Block Diagram Assembler MPASM Assembler B Banking, Data Memory Baud Rate Generator BF	
in the I2C Multi-Master Environment." Architecture PIC16C717/PIC16C717 Block Diagram PIC16C770/771/PIC16C770/771 Block Diagram Assembler MPASM Assembler B Banking, Data Memory Baud Rate Generator BF	5
in the I2C Multi-Master Environment." Architecture PIC16C717/PIC16C717 Block Diagram PIC16C770/771/PIC16C770/771 Block Diagram Assembler MPASM Assembler B Banking, Data Memory Baud Rate Generator BF	5
in the I2C Multi-Master Environment." Architecture PIC16C717/PIC16C717 Block Diagram PIC16C770/771/PIC16C770/771 Block Diagram Assembler MPASM Assembler B Banking, Data Memory Baud Rate Generator BF	5
in the I2C Multi-Master Environment." Architecture PIC16C717/PIC16C717 Block Diagram PIC16C770/771/PIC16C770/771 Block Diagram Assembler MPASM Assembler B Banking, Data Memory Baud Rate Generator BF	5
in the I2C Multi-Master Environment." Architecture PIC16C717/PIC16C717 Block Diagram PIC16C770/771/PIC16C770/771 Block Diagram Assembler MPASM Assembler B Banking, Data Memory Baud Rate Generator BF	5
in the I2C Multi-Master Environment." Architecture PIC16C717/PIC16C717 Block Diagram PIC16C770/771/PIC16C770/771 Block Diagram Assembler MPASM Assembler B Banking, Data Memory Baud Rate Generator BF	5
in the I2C Multi-Master Environment." Architecture PIC16C717/PIC16C717 Block Diagram PIC16C770/771/PIC16C770/771 Block Diagram Assembler MPASM Assembler B Banking, Data Memory Baud Rate Generator BF	5
in the I2C Multi-Master Environment." Architecture PIC16C717/PIC16C717 Block Diagram PIC16C770/771/PIC16C770/771 Block Diagram Assembler MPASM Assembler B Banking, Data Memory Baud Rate Generator BF	5
in the I2C Multi-Master Environment." Architecture PIC16C717/PIC16C717 Block Diagram PIC16C770/771/PIC16C770/771 Block Diagram Assembler MPASM Assembler B Banking, Data Memory Baud Rate Generator BF	5
in the I2C Multi-Master Environment." Architecture PIC16C717/PIC16C717 Block Diagram PIC16C770/771/PIC16C770/771 Block Diagram Assembler MPASM Assembler B Banking, Data Memory Baud Rate Generator BF	5
in the I2C Multi-Master Environment." Architecture PIC16C717/PIC16C717 Block Diagram PIC16C770/771/PIC16C770/771 Block Diagram Assembler MPASM Assembler B Banking, Data Memory Baud Rate Generator BF Bock Diagrams Baud Rate Generator I ² C Master Mode I ² C Module RA3:RA0 and RA5 Port Pins	5
in the I2C Multi-Master Environment." Architecture PIC16C717/PIC16C717 Block Diagram PIC16C770/771/PIC16C770/771 Block Diagram Assembler MPASM Assembler B Banking, Data Memory Baud Rate Generator BF Bock Diagrams Baud Rate Generator I ² C Master Mode I ² C Module RA3:RA0 and RA5 Port Pins	5
in the I2C Multi-Master Environment." Architecture PIC16C717/PIC16C717 Block Diagram PIC16C770/771/PIC16C770/771 Block Diagram Assembler MPASM Assembler B Banking, Data Memory Baud Rate Generator BF Bock Diagrams Baud Rate Generator I ² C Master Mode I ² C Module RA3:RA0 and RA5 Port Pins	5

С

Capture (ECCP Module)
Block Diagram
CCPR1H:CCPR1L Registers 54
Changing Between Capture Prescalers
ECCP Pin Configuration 54
Software Interrupt 54
Timer1 Mode Selection54
Capture/Compare/PWM (ECCP)
Capture Mode. See Capture
Compare Mode. See Compare
PWM Mode. See PWM
CCP1CON
CCP2CON
CCPR1H Register 11, 13
CCPR1L Register 13
CCPR2H Register 13
CCPR2L Register 13
CKE 66
CKP 67
Clock Polarity Select bit, CKP 67
Code Examples
Loading the SSPBUF register71
Code Protection 117, 131
Compare (ECCP Module)
Block Diagram 55
CCPR1H:CCPR1L Registers 54
ECCP Pin Configuration 54
Software Interrupt 55
Special Event Trigger 49, 55
Timer1 Mode Selection 54
Configuration Bits 117
D
D/Ā
D/A
D/A 66 Data Memory 9 Bank Select (RP Bits) 9, 14 General Purpose Registers 9 Register File Map 10 Special Function Registers 11 Data/Address bit, D/A 66 DC Characteristics PIC16C717/770/771
D/A 66 Data Memory 9 Bank Select (RP Bits) 9, 14 General Purpose Registers 9 Register File Map 10 Special Function Registers 11 Data/Address bit, D/A 66 DC Characteristics PIC16C717/770/771 Development Support 141
D/A 66 Data Memory 9 Bank Select (RP Bits) 9, 14 General Purpose Registers 9 Register File Map 10 Special Function Registers 11 Data/Address bit, D/A 66 DC Characteristics PIC16C717/770/771 Development Support 141 Device Differences 208
D/A 66 Data Memory 9 Bank Select (RP Bits) 9, 14 General Purpose Registers 9 Register File Map 10 Special Function Registers 11 Data/Address bit, D/A 66 DC Characteristics PIC16C717/770/771 Pic16C717/770/771 150, 151, 153 Development Support 141 Device Differences 206 Direct Addressing 23
D/A 66 Data Memory 9 Bank Select (RP Bits) 9, 14 General Purpose Registers 9 Register File Map 10 Special Function Registers 11 Data/Address bit, D/A 66 DC Characteristics PIC16C717/770/771 Development Support 141 Device Differences 208
D/A 66 Data Memory 9 Bank Select (RP Bits) 9, 14 General Purpose Registers 9 Register File Map 10 Special Function Registers 11 Data/Address bit, D/A 66 DC Characteristics PIC16C717/770/771 Pic16C717/770/771 150, 151, 153 Development Support 141 Device Differences 206 Direct Addressing 23
D/A 66 Data Memory 9 Bank Select (RP Bits) 9, 14 General Purpose Registers 9 Register File Map 10 Special Function Registers 11 Data/Address bit, D/A 66 DC Characteristics PIC16C717/770/771 Development Support 141 Device Differences 208 Direct Addressing 23 E 23
D/A 66 Data Memory 9 Bank Select (RP Bits) 9, 14 General Purpose Registers 9 Register File Map 10 Special Function Registers 11 Data/Address bit, D/A 66 DC Characteristics PIC16C717/770/771 PIC16C717/770/771 150, 151, 153 Development Support 141 Device Differences 206 Direct Addressing 23 E Enhanced Capture/Compare/PWM (ECCP)
D/A 66 Data Memory 9 Bank Select (RP Bits) 9, 14 General Purpose Registers 9 Register File Map 10 Special Function Registers 11 Data/Address bit, D/A 66 DC Characteristics PIC16C717/770/771 Plote Differences 206 Direct Addressing 23 E Enhanced Capture/Compare/PWM (ECCP) CCP1 CCP1
D/A 66 Data Memory 9 Bank Select (RP Bits) 9, 14 General Purpose Registers 9 Register File Map 10 Special Function Registers 11 Data/Address bit, D/A 66 DC Characteristics PIC16C717/770/771 Pice Differences 206 Direct Addressing 23 E Enhanced Capture/Compare/PWM (ECCP) CCP1 CCPR1H Register
D/A 66 Data Memory 9 Bank Select (RP Bits) 9, 14 General Purpose Registers 9 Register File Map 10 Special Function Registers 11 Data/Address bit, D/A 66 DC Characteristics PIC16C717/770/771 PIC16C717/770/771 150, 151, 153 Development Support 141 Device Differences 208 Direct Addressing 23 E E Enhanced Capture/Compare/PWM (ECCP) CCP1 CCPR1H Register 53 CCPR1L Register 53
D/A 66 Data Memory 9 Bank Select (RP Bits) 9, 14 General Purpose Registers 9 Register File Map 10 Special Function Registers 11 Data/Address bit, D/A 66 DC Characteristics PIC16C717/770/771 PIC16C717/770/771 150, 151, 153 Development Support 141 Device Differences 206 Direct Addressing 23 E E Enhanced Capture/Compare/PWM (ECCP) CCP1 CCPR1H Register 53 CCPR1L Register 53 Enable (CCP1IE Bit) 17
D/A 66 Data Memory 9 Bank Select (RP Bits) 9, 14 General Purpose Registers 9 Register File Map 10 Special Function Registers 11 Data/Address bit, D/A 66 DC Characteristics PIC16C717/770/771 PIC16C717/770/771 150, 151, 153 Development Support 141 Device Differences 208 Direct Addressing 23 E E Enhanced Capture/Compare/PWM (ECCP) CCP1 CCPR1L Register 53 CCPR1L Register 53 Enable (CCP1IE Bit) 17 Timer Resources 54
D/A 66 Data Memory 9 Bank Select (RP Bits) 9, 14 General Purpose Registers 9 Register File Map 10 Special Function Registers 11 Data/Address bit, D/A 66 DC Characteristics 91C16C717/770/771 PIC16C717/770/771 150, 151, 153 Development Support 141 Device Differences 206 Direct Addressing 23 E E Enhanced Capture/Compare/PWM (ECCP) CCP1 CCPR1L Register 53 CCPR1L Register 53 Enable (CCP11E Bit) 17 Timer Resources 54 Errata 3 External Power-on Reset Circuit 122
D/A 66 Data Memory 9 Bank Select (RP Bits) 9, 14 General Purpose Registers 9 Register File Map 10 Special Function Registers 11 Data/Address bit, D/A 66 DC Characteristics 91C16C717/770/771 PIC16C717/770/771 150, 151, 153 Development Support 141 Device Differences 206 Direct Addressing 23 E E Enhanced Capture/Compare/PWM (ECCP) CCP1 CCPR1H Register 53 CCPR1L Register 53 Enable (CCP11E Bit) 17 Timer Resources 54 Errata 3 External Power-on Reset Circuit 122 F 122
D/A 66 Data Memory 9 Bank Select (RP Bits) 9, 14 General Purpose Registers 9 Register File Map 10 Special Function Registers 11 Data/Address bit, D/A 66 DC Characteristics PIC16C717/770/771 PIC16C717/770/771 150, 151, 153 Development Support 141 Device Differences 206 Direct Addressing 23 E E Enhanced Capture/Compare/PWM (ECCP) CCP1 CCPR1H Register 53 CCPR1L Register 53 Enable (CCP11E Bit) 17 Timer Resources 54 Errata 3 External Power-on Reset Circuit 122 F Firmware Instructions 133
D/A 66 Data Memory 6 Data Memory 6 Bank Select (RP Bits) 9, 14 General Purpose Registers 6 Register File Map 10 Special Function Registers 11 Data/Address bit, D/A 66 DC Characteristics 11 PlC16C717/770/771 150, 151, 153 Development Support 141 Device Differences 206 Direct Addressing 23 E E Enhanced Capture/Compare/PWM (ECCP) CCP1 CCPR1L Register 53 CCPR1L Register 53 Enable (CCP1IE Bit) 17 Timer Resources 54 Errata 33 External Power-on Reset Circuit 122 F Firmware Instructions 133 FSR Register 11, 12, 13
D/A 66 Data Memory 9 Bank Select (RP Bits) 9, 14 General Purpose Registers 9 Register File Map 10 Special Function Registers 11 Data/Address bit, D/A 66 DC Characteristics PIC16C717/770/771 PIC16C717/770/771 150, 151, 153 Development Support 141 Device Differences 206 Direct Addressing 23 E E Enhanced Capture/Compare/PWM (ECCP) CCP1 CCPR1H Register 53 CCPR1L Register 53 Enable (CCP11E Bit) 17 Timer Resources 54 Errata 3 External Power-on Reset Circuit 122 F Firmware Instructions 133
D/A 66 Data Memory 6 Data Memory 6 Bank Select (RP Bits) 9, 14 General Purpose Registers 6 Register File Map 10 Special Function Registers 11 Data/Address bit, D/A 66 DC Characteristics 11 PlC16C717/770/771 150, 151, 153 Development Support 141 Device Differences 206 Direct Addressing 23 E E Enhanced Capture/Compare/PWM (ECCP) CCP1 CCPR1L Register 53 CCPR1L Register 53 Enable (CCP1IE Bit) 17 Timer Resources 54 Errata 33 External Power-on Reset Circuit 122 F Firmware Instructions 133 FSR Register 11, 12, 13
D/A 66 Data Memory 6 Bank Select (RP Bits) 9, 14 General Purpose Registers 9 Register File Map 10 Special Function Registers 11 Data/Address bit, D/A 66 DC Characteristics 11 PIC16C717/770/771 150, 151, 153 Development Support 141 Device Differences 206 Direct Addressing 23 E E Enhanced Capture/Compare/PWM (ECCP) CCP1 CCPR1L Register 53 CCPR1L Register 53 Enable (CCP1IE Bit) 17 Timer Resources 54 Errata 33 External Power-on Reset Circuit 122 F Firmware Instructions 133 FSR Register 11, 12, 13 G 11, 12, 13
D/A 66 Data Memory 6 Data Memory 6 Bank Select (RP Bits) 9, 14 General Purpose Registers 6 Register File Map 10 Special Function Registers 11 Data/Address bit, D/A 66 DC Characteristics 11 Development Support 141 Device Differences 206 Direct Addressing 23 E E Enhanced Capture/Compare/PWM (ECCP) CCP1 CCPR1L Register 53 CCPR1L Register 53 Enable (CCP1IE Bit) 17 Timer Resources 54 Errata 33 External Power-on Reset Circuit 122 F Firmware Instructions 133 FSR Register 11, 12, 13 G GCE 66

THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- **Product Support** Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at www.microchip.com. Under "Support", click on "Customer Change Notification" and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Field Application Engineer (FAE)
- Technical Support

Customers should contact their distributor, representative or field application engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://microchip.com/support