

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, SPI
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	15
Program Memory Size	7KB (4K x 14)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	4V ~ 5.5V
Data Converters	A/D 6x12b
Oscillator Type	Internal
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SSOP (0.209", 5.30mm Width)
Supplier Device Package	20-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16c771-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.2.2.1 STATUS REGISTER

The STATUS register, shown in Register 2-1, contains the arithmetic status of the ALU, the RESET status and the bank select bits for data memory.

The STATUS register can be the destination for any instruction, as with any other register. If the STATUS register is the destination for an instruction that affects the Z, DC or C bits, then the write to these three bits is disabled. These bits are set or cleared according to the device logic. Furthermore, the TO and PD bits are not writable. Therefore, the result of an instruction with the STATUS register as destination may be different than intended.

For example, CLRF STATUS will clear the upper-three bits and set the Z bit. This leaves the STATUS register as $000u \ u1uu$ (where u = unchanged).

It is recommended, therefore, that only BCF, BSF, SWAPF and MOVWF instructions are used to alter the STATUS register, because these instructions do not affect the Z, C or DC bits from the STATUS register. For other instructions not affecting any status bits, see the "Instruction Set Summary."

Note:	The C and DC bits operate as a borrow
	and digit borrow bit, respectively, in sub-
	traction. See the SUBLW and SUBWF
	instructions for examples.

REGISTER 2-1: STATUS REGISTER (STATUS: 03h, 83h, 103h, 183h)

	R/W-0	R/W-0	R/W-0	R-1	R-1	R/W-x	R/W-x	R/W-x
	IRP	RP1	RP0	TO	PD	Z	DC	С
	bit 7							bit 0
bit 7	IRP: Regis	ter Bank Se	lect bit (used	d for indirect	addressing)		
	1 = Bank 2	, 3 (100h - 1 1 (00h - FF	FFh) -h)					
bit 6-5	\mathbf{BP}_{-1} \mathbf{N}_{-1} Register Bank Select hits (used for direct addressing)							
	11 = Bank	3 (180h - 1F	FFh)			Joinig/		
	10 = Bank	2 (100h - 17	′Fh)					
	01 = Bank	1 (80h - FFh	ר) א					
	Each bank	is 128 bytes	1) S					
bit 4	TO: Time-c	out bit						
	1 = After po	ower-up, CL	RWDT instruc	ction, or SLE	EP instruction	on		
	0 = A WDT	time-out oc	curred					
bit 3	PD: Power	-down bit			_			
	1 = After po 0 = By exe	ower-up or b cution of the	e SLEEP inst	T instructio	n			
bit 2	Z: Zero bit	: Zero bit						
	1 = The result of an arithmetic or logic operation is zero							
1.11.4	0 = I he result of an arithmetic or logic operation is not zero							
bit 1	DC: Digit carry/borrow bit (ADDWF, ADDLW, SUBLW, SUBWF instructions) (for borrow the po is reversed)					the polarity		
	1 = A carry-out from the 4th low order bit of the result occurred							
h it 0	0 = NO carl	ry-out from t	ne 4th Iow o	rder dit of tr				
DITU	\mathbf{L} : Carry/bo	orrow bit (AL	o Most Signi	, SUBLW , SU	JBWF INStruct	ctions)		
	0 = No carr	ry-out from t	he Most Sign	nificant bit of	f the result of	occurred		
			U					
	Note:	For borrow,	the polarity	is reversed.	A subtraction	on is execut	ted by addin	g the two's
	(complement	of the seco	nd operand gh or low or	. ⊢or rotate der bit of the	(RRF, RLF source reg) instruction: ister.	s, this dit is
			· · · · ·	,		0		
	Legend:							
	R = Reada	ble bit	W = W	ritable bit	U = Unim	nplemented	bit, read as	0'
	- n = Value	at POR	'1' = Bi	t is set	'0' = Bit i	s cleared	x = Bit is u	nknown

2.2.2.4 PIE1 REGISTER

This register contains the individual enable bits for the peripheral interrupts.

Note: Bit PEIE (INTCON<6>) must be set to enable any peripheral interrupt.

REGISTER 2-4: PERIPHERAL INTERRUPT ENABLE REGISTER 1 (PIE1: 8Ch)

	U-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	
		ADIE			SSPIE	CCP1IE	TMR2IE	TMR1IE	
	bit 7	<u> </u>		<u> </u>	<u> </u>		·	bit 0	
bit 7	Unimplemented: Read as '0'								
bit 6	ADIE: A/D	Converter I	nterrupt Ena	ble bit					
	1 = Enable 0 = Disable	s the A/D in es the A/D ir	terrupt nterrupt						
bit 5-4	Unimplem	Unimplemented: Read as '0'							
bit 3	SSPIE: Syr	nchronous S	Serial Port In	iterrupt Enal	ole bit				
	1 = Enable 0 = Disable	s the SSP ir s the SSP i	nterrupt nterrupt						
bit 2	CCP1IE: C	CP1 Interru	pt Enable bi	t					
	1 = Enable: 0 = Disable	s the CCP1 s the CCP1	interrupt interrupt						
bit 1	TMR2IE: ⊤	MR2 to PR2	2 Match Inte	rrupt Enable) bit				
	 1 = Enables the TMR2 to PR2 match interrupt 0 = Disables the TMR2 to PR2 match interrupt 								
bit 0	TMR1IE: ⊤	MR1 Overfl	ow Interrupt	Enable bit					
	 1 = Enables the TMR1 overflow interrupt 0 = Disables the TMR1 overflow interrupt 								
	Logondi								
	Legena:	61. 6 1	147 14	/	11 11.5		h.'t	101	
	R = Reada	DIE DIT	VV = VV	ritable bit	U = Unin	nplemented	bit, read as	0	
	- n = Value	at POR	'1' = B	it is set	'0' = Bit i	s cleared	x = Bit is u	nknown	

NOTES:

NOTES:

	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
	GCEN	ACKSTAT	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN				
	bit 7							bit 0				
				· ² ~ ~								
bit 7	GCEN: Ge	eneral Call En	hable bit (In	I ² C Slave m	iode only)			۰				
	1 = Enable 0 = Gener:	1 = Enable interrupt when a general call address (00000) is received in the SSPSR.0 = General call address disabled.										
bit 6	ACKSTAT	: Acknowledg	je Status bit	t (In I ² C Mas	ster mode or	ıly)						
	In Master	Transmit mod	<u>le</u> :	l fram alava								
	1 = ACKNOV 0 = ACKNOV	wledge was n wledge was r	not received received fro	m slave								
bit 5	ACKDT: A	cknowledge	Data bit (In	I ² C Master I	mode only)							
	In Master	Receive mod	<u>ie</u> :									
	Value that	will be transr	mitted when	the user ini	tiates an Ac	knowledge	sequence at	t the end of				
	1 = Not Ac	ve. knowledge (I	NACK)									
	0 = Acknov	wledge (ACK	.)									
bit 4	ACKEN: A	cknowledge	Sequence I	Enable bit (Ir	n I ² C Master	r mode only).					
	In Master Receive mode:											
	Autom	atically cleare	ed by hardw	/are.								
	0 = Acknow	wledge seque	ence IDLE									
bit 3	RCEN: Re	ceive Enable	⇒bit (In I ² C I	Master mode	ə only).							
	1 = Enable 0 = Receiv	1 = Enables Receive mode for I ² C 0 = Receive IDLE										
bit 2	PEN: STO	OP Condition Enable bit (In I ² C Master mode only).										
	SCK Release Control											
	0 = STOP condition IDLE											
bit 1	RSEN: Re	Repeated START Condition Enabled bit (In I ² C Master mode only)										
	1 = Initiate Repeated START condition on SDA and SCL pins. Automatically cleared by											
	0 = Repeated START condition IDLE											
bit 0	SEN: STA	RT Condition	1 Enabled bi	t (In I ² C Ma	ster mode or	nly)						
	1 = Initiate START condition on SDA and SCL pins. Automatically cleared by hardware.											
	0 = START	Г condition ID)LE									
	Note:	For bits ACK	KEN, RCEN	I, PEN, RSE	EN, SEN: If	the I ² C more	dule is not i	in the IDLE				
		mode, this bi writes to the	it may not be SSPBUF a	e set (no spo re disabled).	ooling) and t	he SSPBUF	⁻ may not be	e written (or				
	Legend:											
	R = Reada	able bit	W = W	/ritable bit	U = Unim	plemented	bit, read as	'0'				

'1' = Bit is set

'0' = Bit is cleared

REGISTER 9-3: SYNC SERIAL PORT CONTROL REGISTER2 (SSPCON2: 91h)

- n = Value at POR

x = Bit is unknown

9.1 SPI Mode

The SPI mode allows eight bits of data to be synchronously transmitted and received simultaneously. All four modes of SPI are supported. To accomplish communication, typically three pins are used:

- Serial Data Out (SDO)
- Serial Data In (SDI)
- Serial Clock (SCK)

Additionally, a fourth pin may be used when in a Slave mode of operation:

Slave Select (SS)

9.1.1 OPERATION

When initializing the SPI, several options need to be specified. This is done by programming the appropriate control bits (SSPCON<5:0> and SSPSTAT<7:6>). These control bits allow the following to be specified:

- Master Mode (SCK is the clock output)
- Slave Mode (SCK is the clock input)
- Clock Polarity (Idle state of SCK)
- Data input sample phase (middle or end of data output time)
- Clock edge (output data on rising/falling edge of SCK)
- Clock Rate (Master mode only)
- Slave Select Mode (Slave mode only)

Figure 9-1 shows the block diagram of the MSSP module when in SPI mode.

FIGURE 9-1: MSSP BLOCK DIAGRAM (SPI MODE)

The MSSP consists of a transmit/receive Shift Register (SSPSR) and a Buffer Register (SSPBUF). The SSPSR shifts the data in and out of the device, MSb first. The SSPBUF holds the data that was written to the SSPSR, until the received data is ready. Once the eight bits of data have been received, that byte is moved to the SSPBUF register. Then the buffer full detect bit, BF (SSPSTAT<0>), and the interrupt flag bit, SSPIF (PIR1<3>), are set. This double buffering of the received data (SSPBUF) allows the next byte to start reception before reading the data that was just received. Any write to the SSPBUF register during transmission/reception of data will be ignored, and the write collision detect bit WCOL (SSPCON<7>) will be set. User software must clear the WCOL bit so that it can be determined if the following write(s) to the SSP-BUF register completed successfully.

9.1.4 MASTER MODE

The master can initiate the data transfer at any time because it controls the SCK. The master determines when the slave (Processor 2, Figure 9-2) is to broad-cast data by the software protocol.

In Master mode, the data is transmitted/received as soon as the SSPBUF register is written to. If the SPI module is only going to receive, the SDO output could be disabled (programmed as an input). The SSPSR register will continue to shift in the signal present on the SDI pin at the programmed clock rate. As each byte is received, it will be loaded into the SSPBUF register as if a normal received byte (interrupts and status bits appropriately set). This could be useful in receiver applications as a "line activity monitor".

The clock polarity is selected by appropriately programming bit CKP (SSPCON<4>). This then would give waveforms for SPI communication as shown in Figure 9-3, Figure 9-5 and Figure 9-6, where the MSb is transmitted first. In Master mode, the SPI clock rate (bit rate) is user programmable to be one of the following:

- Fosc/4 (or Tcy)
- Fosc/16 (or 4 Tcy)
- Fosc/64 (or 16 Tcy)
- Timer2 output/2

This allows a maximum bit clock frequency (at 20 MHz) of 8.25 MHz.

Figure 9-3 shows the waveforms for Master mode. When CKE = 1, the SDO data is valid before there is a clock edge on SCK. The change of the input sample is shown based on the state of the SMP bit. The time when the SSPBUF is loaded with the received data is shown.

10.3 Low Voltage Detect (LVD)

This module is used to generate an interrupt when the supply voltage falls below a specified "trip" voltage. This module operates completely under software control. This allows a user to power the module on and off to periodically monitor the supply voltage, and thus minimize total current consumption.

The LVD module is enabled by setting the LVDEN bit in the LVDCON register. The "trip point" voltage is the minimum supply voltage level at which the device can operate before the LVD module asserts an interrupt. When the supply voltage is equal to or less than the trip point, the module will generate an interrupt signal setting interrupt flag bit LVDIF. If interrupt enable bit LVDIE was set, then an interrupt is generated. The LVD interrupt can wake the device from SLEEP. The "trip point" voltage is software programmable to any one of 16 values, five of which are reserved (See Figure 10-1). The trip point is selected by programming the LV<3:0> bits (LVDCON<3:0>).

Note: The LVDIF bit can not be cleared until the supply voltage rises above the LVD trip point. If interrupts are enabled, clear the LVDIE bit once the first LVD interrupt occurs to prevent reentering the interrupt service routine immediately after exiting the ISR.

Once the LV bits have been programmed for the specified trip voltage, the low-voltage detect circuitry is then enabled by setting the LVDEN (LVDCON<4>) bit.

If the bandgap reference voltage is previously unused by either the brown-out circuitry or the voltage reference circuitry, then the bandgap circuit requires a time to start-up and become stable before a low voltage condition can be reliably detected. The low-voltage interrupt flag is prevented from being set until the bandgap has reached a stable reference voltage.

When the bandgap is stable the BGST (LVDCON<5>) bit is set indicating that the low-voltage interrupt flag bit is released to be set if VDD is equal to or less than the LVD trip point.

10.3.1 EXTERNAL ANALOG VOLTAGE INPUT

The LVD module has an additional feature that allows the user to supply the trip voltage to the module from an external source. This mode is enabled when LV<3:0> = 1111. When these bits are set the comparator input is multiplexed from an external input pin (RA1/AN1/LVDIN).

11.6 A/D Sample Requirements

11.6.1 RECOMMENDED SOURCE IMPEDANCE

The maximum recommended impedance for analog sources is 2.5 k Ω . This value is calculated based on the maximum leakage current of the input pin. The leakage current is 100 nA max., and the analog input voltage cannot be varied by more than 1/4 LSb or 250 μ V due to leakage. This places a requirement on the input impedance of 250 μ V/100 nA = 2.5 k Ω .

11.6.2 SAMPLING TIME CALCULATION

For the A/D converter to meet its specified accuracy, the charge holding capacitor (CHOLD) must be allowed to fully charge to the input channel voltage level. The analog input model is shown in Figure 11-5. The source impedance (Rs) and the internal sampling switch (Rss) impedance directly affect the time required to charge the capacitor CHOLD. The sampling switch (Rss) impedance varies over the device voltage (VDD), see Figure 11-5. **The maximum recommended impedance for analog sources is 2.5 k** Ω . After the analog input channel is selected (changed) this sampling must be done before the conversion can be started.

To calculate the minimum sampling time, Equation 11-2 may be used. This equation assumes that 1/4 LSb error is used (16384 steps for the A/D). The 1/4 LSb error is the maximum error allowed for the A/D to meet its specified resolution.

The CHOLD is assumed to be 25 pF for the 12-bit A/D.

EXAMPLE 11-2: A/D SAMPLING TIME EQUATION

Figure 11-3 shows the calculation of the minimum time required to charge CHOLD. This calculation is based on the following system assumptions:

CHOLD = 25 pF Rs = 2.5 k Ω 1/4 LSb error VDD = 5V \rightarrow Rss = 10 k Ω (worst case) Temp (system Max.) = 50°C

- Note 1:The reference voltage (VREF) has no effect on the equation, since it cancels itself out.
 - **2:**The charge holding capacitor (CHOLD) is not discharged after each conversion.
 - **3:** The maximum recommended impedance for analog sources is 2.5 k Ω . This is required to meet the pin leakage specification.

EXAMPLE 11-3: CALCULATING THE MINIMUM REQUIRED SAMPLE TIME

TACQ =	Amplifier Settling Time
	+ Holding Capacitor Charging Time
	+Temperature offset †
TACQ =	5 μs
	+ Tc
	+ [(Temp - 25°C)(0.05 μs/°C)] †
Tc= Ho	Iding Capacitor Charging Time
Tc= (C	HOLD) (RIC + RSS + RS) In (1/16384)
Tc = -2	5 pF (1 kΩ +10 kΩ + 2.5 kΩ) ln (1/16384)
Tc = -25	5 pF (13.5 kΩ) In (1/16384)
Tc = -0.	338 (-9.704)μs
Tc = 3.3	3 μs
TACQ =	5 μs
	+ 3.3 μs
	+ [(50°C - 25°C)(0.05 μs / °C)]
TACQ =	8.3 μs + 1.25 μs
TACQ =	9.55 μs
† The terr tempera	perature coefficient is only required for atures > 25°C.

FIGURE 11-5: ANALOG INPUT MODEL

TABLE 12-6: INITIALIZATION CONDITIONS FOR ALL REGISTERS

Register	Power-on Reset or Brown-out Reset	MCLR Reset or WDT Reset	Wake-up via WDT or Interrupt
W	xxxx xxxx	uuuu uuuu	uuuu uuuu
INDF	0000 0000	uuuu uuuu	uuuu uuuu
TMR0	xxxx xxxx	uuuu uuuu	uuuu uuuu
PCL	0000h	0000h	PC + 1 ⁽¹⁾
STATUS	0001 1xxx	000q quuu ⁽²⁾	uuuq quuu ⁽²⁾
FSR	xxxx xxxx	uuuu uuuu	սսսս սսսս
PORTA	xxxx 0000	uuuu 0000	սսսս սսսս
PORTB	xxxx xx11	uuuu uull	uuuu uuuu
PCLATH	0 0000	0 0000	u uuuu
INTCON	0000 000x	0000 000u	uuuu uuqq
PIR1	-0 0000	-0 0000	-0 uuuu
PIR2	0 0	0 0	d d
TMR1L	xxxx xxxx	սսսս սսսս	սսսս սսսս
TMR1H	xxxx xxxx	uuuu uuuu	uuuu uuuu
T1CON	00 0000	uu uuuu	uu uuuu
TMR2	0000 0000	0000 0000	uuuu uuuu
T2CON	-000 0000	-000 0000	-uuu uuuu
SSPBUF	xxxx xxxx	uuuu uuuu	uuuu uuuu
SSPCON	0000 0000	0000 0000	uuuu uuuu
CCPR1L	xxxx xxxx	uuuu uuuu	uuuu uuuu
CCPR1H	xxxx xxxx	uuuu uuuu	uuuu uuuu
CCP1CON	0000 0000	0000 0000	uuuu uuuu
ADRESH	xxxx xxxx	uuuu uuuu	uuuu uuuu
ADCON0	0000 0000	0000 0000	uuuu uuuu
OPTION_REG	1111 1111	1111 1111	uuuu uuuu
TRISA	1111 1111	1111 1111	uuuu uuuu
TRISB	1111 1111	1111 1111	uuuu uuuu
PIE1	-0 0000	-0 0000	-u uuuu
PIE2	00	0	u u
PCON	1-qq	1-uu	u-uu
PR2	1111 1111	1111 1111	1111 1111
SSPADD	0000 0000	0000 0000	uuuu uuuu
SSPSTAT	0000 0000	0000 0000	uuuu uuuu
WPUB	1111 1111	1111 1111	uuuu uuuu
IOCB	1111 0000	1111 0000	uuuu uuuu

Legend: u = unchanged, x = unknown, - = unimplemented bit, read as '0', q = value depends on condition **Note 1:** When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector

(0004h).

2: See Table 12-5 for RESET value for specific condition.

; (Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1		Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4
OSC1 /				MAN				
CLKOUT ⁽³⁾		/	1	Tost ⁽¹⁾	/	<u>, </u>	\/	/
INT pin	ı i			· · ·		1 1		
INTF flag (INTCON<1>)—				/		1 1 1		
GIE bit	I					Interrup	t Latency ⁽²⁾	
(INTCON<7>)	1		SLEEP			i	I I	
INSTRUCTION	FLOW		1			1 1	· · ·	
РС 🔪	PC X	(PC+1	<u>Х РС</u>	2+2	PC+2	X PC + 2	X 0004h X	0005h
Instruction { Ir fetched	nst(PC) = SLEEF	> Inst(PC + 1)	1	1 1 1	Inst(PC + 2)	1 1 1	Inst(0004h)	Inst(0005h)
Instruction [Inst(PC - 1)	SLEEP	1 1 1	1 1 1	Inst(PC + 1)	Dummy cycle	Dummy cycle	Inst(0004h)

3: CLKOUT is not available in these osc modes, but shown here for timing reference.

WAKE-UP FROM SI FEP THROUGH INTERRUPT

12.14 Program Verification/Code Protection

If the code protection bit(s) have not been programmed, the on-chip program memory can be read out for verification purposes.

Note: Microchip does not recommend code protecting windowed devices. Code protected devices are not reprogrammable.

12.15 ID Locations

FIGURE 12-12-

Four memory locations (2000h - 2003h) are designated as ID locations where the user can store checksum or other code-identification numbers. These locations are not accessible during normal execution but are readable and writable during program/verify. It is recommended that only the 4 Least Significant bits of the ID location are used.

12.16 In-Circuit Serial Programming (ICSP[™])

PIC16CXXX microcontrollers can be serially programmed while in the end application circuit. This is simply done with two lines for clock and data, and three other lines for power, ground, and the programming voltage. This allows customers to manufacture boards with unprogrammed devices, and then program the microcontroller just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed.

For complete details of serial programming, please refer to the In-Circuit Serial Programming (ICSP™) Guide, (DS30277).

TABLE 13-2: PIC16CXXX INSTRUCTION SET

Mnemonic, Operands		Description			14-Bit	Opcode	Status	Notes	
				MSb			LSb	Affected	
BYTE-ORIE	NTED	FILE REGISTER OPERATIONS							
ADDWF	f, d	Add W and f	1	00	0111	dfff	ffff	C,DC,Z	1,2
ANDWF	f, d	AND W with f	1	00	0101	dfff	ffff	Z	1,2
CLRF	f	Clear f	1	00	0001	lfff	ffff	Z	2
CLRW	-	Clear W	1	00	0001	0000	0011	Z	
COMF	f, d	Complement f	1	00	1001	dfff	ffff	Z	1,2
DECF	f, d	Decrement f	1	00	0011	dfff	ffff	Z	1,2
DECFSZ	f, d	Decrement f, Skip if 0	1(2)	00	1011	dfff	ffff		1,2,3
INCF	f, d	Increment f	1	00	1010	dfff	ffff	Z	1,2
INCFSZ	f, d	Increment f, Skip if 0	1(2)	00	1111	dfff	ffff		1,2,3
IORWF	f, d	Inclusive OR W with f	1	00	0100	dfff	ffff	Z	1,2
MOVF	f, d	Move f	1	00	1000	dfff	ffff	Z	1,2
MOVWF	f	Move W to f	1	00	0000	lfff	ffff		
NOP	-	No Operation	1	00	0000	0xx0	0000		
RLF	f, d	Rotate Left f through Carry	1	00	1101	dfff	ffff	С	1,2
RRF	f, d	Rotate Right f through Carry	1	00	1100	dfff	ffff	С	1,2
SUBWF	f, d	Subtract W from f	1	00	0010	dfff	ffff	C,DC,Z	1,2
SWAPF	f, d	Swap nybbles in f	1	00	1110	dfff	ffff		1,2
XORWF	f, d	Exclusive OR W with f	1	00	0110	dfff	ffff	Z	1,2
BIT-ORIENT	ED FIL	E REGISTER OPERATIONS		•					
BCF	f, b	Bit Clear f	1	01	00bb	bfff	ffff		1,2
BSF	f, b	Bit Set f	1	01	01bb	bfff	ffff		1,2
BTFSC	f, b	Bit Test f, Skip if Clear	1 (2)	01	10bb	bfff	ffff		3
BTFSS	f, b	Bit Test f, Skip if Set	1 (2)	01	11bb	bfff	ffff		3
LITERAL A	ND CO	NTROL OPERATIONS							
ADDLW	k	Add literal and W	1	11	111x	kkkk	kkkk	C,DC,Z	
ANDLW	k	AND literal with W	1	11	1001	kkkk	kkkk	Z	
CALL	k	Call subroutine	2	10	0kkk	kkkk	kkkk		
CLRWDT	-	Clear Watchdog Timer	1	00	0000	0110	0100	TO,PD	
GOTO	k	Go to address	2	10	1kkk	kkkk	kkkk		
IORLW	k	Inclusive OR literal with W	1	11	1000	kkkk	kkkk	Z	
MOVLW	k	Move literal to W	1	11	00xx	kkkk	kkkk		
RETFIE	-	Return from interrupt	2	00	0000	0000	1001		
RETLW	k	Return with literal in W	2	11	01xx	kkkk	kkkk		
RETURN	-	Return from Subroutine	2	00	0000	0000	1000		
SLEEP	-	Go into Standby mode	1	00	0000	0110	0011	TO,PD	
SUBLW	k	Subtract W from literal	1	11	110x	kkkk	kkkk	C,DC,Z	
XORLW	k	Exclusive OR literal with W	1	11	1010	kkkk	kkkk	Z	

Note 1: When an I/O register is modified as a function of itself (e.g., MOVF PORTB, 1), the value used will be that value present on the pins themselves. For example, if the data latch is '1' for a pin configured as input and is driven low by an external device, the data will be written back with a '0'.

2: If this instruction is executed on the TMR0 register (and, where applicable, d = 1), the prescaler will be cleared if assigned to the Timer0 Module.

3: If Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

13.1 Instruction Descriptions

ADDLW	Add Literal and W
Syntax:	[<i>label</i>] ADDLW k
Operands:	$0 \leq k \leq 255$
Operation:	$(W) + k \to (W)$
Status Affected:	C, DC, Z
Description:	The contents of the W register are added to the eight bit literal 'k' and the result is placed in the W register.

ANDWF	AND W with f					
Syntax:	[<i>label</i>] ANDWF f,d					
Operands:	$\begin{array}{l} 0\leq f\leq 127\\ d\in[0,1] \end{array}$					
Operation:	(W) .AND. (f) \rightarrow (destination)					
Status Affected:	Z					
Description:	AND the W register with register 'f'. If 'd' is 0, the result is stored in the W register. If 'd' is 1, the result is stored back in register 'f'.					

ADDWF	Add W and f					
Syntax:	[<i>label</i>] ADDWF f,d					
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$					
Operation:	(W) + (f) \rightarrow (destination)					
Status Affected:	C, DC, Z					
Description:	Add the contents of the W register with register 'f'. If 'd' is 0, the result is stored in the W register. If 'd' is 1, the result is stored back in reg- ister 'f'.					

BCF	Bit Clear f
Syntax:	[<i>label</i>] BCF f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$
Operation:	$0 \rightarrow (f < b >)$
Status Affected:	None
Description:	Bit 'b' in register 'f' is cleared.

ANDLW	AND Literal with W						
Syntax:	[<i>label</i>] ANDLW k						
Operands:	$0 \leq k \leq 255$						
Operation:	(W) .AND. (k) \rightarrow (W)						
Status Affected:	Z						
Description:	The contents of W register are AND'ed with the eight bit literal 'k'. The result is placed in the W register.						

BSF	Bit Set f
Syntax:	[<i>label</i>] BSF f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$
Operation:	$1 \rightarrow (f < b >)$
Status Affected:	None
Description:	Bit 'b' in register 'f' is set.

15.1 DC Characteristics: PIC16C717/770/771 (Commercial, Industrial, Extended) PIC16LC717/770/771 (Commercial, Industrial, Extended) (Continued)

PIC16LC717/770/771			$\begin{array}{l lllllllllllllllllllllllllllllllllll$						
PIC16C717/770/771			$\begin{array}{l lllllllllllllllllllllllllllllllllll$						
Param. No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions		
	Idd	Supply Current ⁽²⁾							
D010D D010E		PIC16LC7XX		1.0	2.0 3.0	mA	Fosc = 10 MHz, VDD = 3V, -40°C to 85°C Fosc = 10 MHz, VDD = 3V, -40°C to 125°C		
D010G				0.36	1.0	mA	Fosc = 4 MHz, Vdd = 2.5V, -40°C to 125°C		
D010K				11	45	μA	Fosc = 32 kHz, VDD = 2.5V, -40°C to 125°C		
	Idd	Supply Current ⁽²⁾							
D010 D010A		PIC16C7XX		4.0	7.5 12.0	mA	Fosc = 20 MHz, VDD = 5.5V, -40°C to 85°C Fosc = 20 MHz, VDD = 5.5V, -40°C to 125°C		
D010B D010C				2.5	5.0 6.0	mA	Fosc = 20 MHz, VDD = 4V, -40°C to 85°C Fosc = 20 MHz, VDD = 4V, -40°C to 125°C		
D010F				0.55	1.5	mA	Fosc = 4 MHz, VDD = 4V, -40°C to 125°C		
D010H D010J				30	80 95	μA	Fosc = 32 kHz, VDD = 4V, -40°C to 85°C Fosc = 32 kHz, VDD = 4V, -40°C to 125°C		

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in active Operation mode are:

OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD

MCLR = VDD; WDT enabled/disabled as specified.

15.5 Master SSP SPI Mode Timing Waveforms and Requirements

FIGURE 15-18: SPI MASTER MODE TIMING (CKE = 0)

TABLE 15-17: SPI MODE REQUIREMENTS (MASTER MODE, CKE = 0)

Param. No.	Symbol	Characteristic	Min	Тур†	Max	Units	Conditions	
70*	TssL2scH, TssL2scL	$\overline{SS}\downarrow$ to SCK \downarrow or SCK \uparrow input	Тсү			ns		
71*	TscH	SCK input high time	Continuous	1.25Tcy + 30	_	_	ns	
71A*		(Slave mode)	Single Byte	40		_	ns	Note 1
72*	TscL	SCK input low time	Continuous	1.25Tcy + 30			ns	
72A*		(Slave mode)	Single Byte	40			ns	Note 1
73*	TdiV2scH, TdiV2scL	Setup time of SDI data inpu	100			ns		
73A*	Тв2в	Last clock edge of Byte1 to the 1st clock edge of Byte2		1.5Tcy + 40			ns	Note 1
74*	TscH2diL, TscL2diL	Hold time of SDI data input to SCK edge		100			ns	
75*	TdoR	SDO data output rise time PIC16CXXX		_	10	25	ns	
			PIC16LCXXX	_	20	45	ns	
76*	TdoF	SDO data output fall time		—	10	25	ns	
78*	TscR	SCK output rise time (Master mode)	PIC16CXXX	_	10	25	ns	
			PIC16LCXXX	—	20	45	ns	
79*	TscF	SCK output fall time (Master mode)		_	10	25	ns	
80*	80* TscH2doV, TscL2doV SDO data output valid after SCK edge		PIC16CXXX	_	_	50	ns	
			PIC16LCXXX		_	100	ns	

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Specification 73A is only required if specifications 71A and 72A are used.

© 1999-2013 Microchip Technology Inc.

FIGURE 16-11: TYPICAL Fosc VS. VDD (ER MODE)

