Microchip Technology - PIC16C771T-I/SO Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, SPI
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	15
Program Memory Size	7KB (4K x 14)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	4V ~ 5.5V
Data Converters	A/D 6x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SOIC (0.295", 7.50mm Width)
Supplier Device Package	20-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16c771t-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Name	Function	Input Type	Output Type	Description
546/4446	RA0	ST	CMOS	Bi-directional I/O
RA0/AN0	AN0	AN		A/D input
	RA1	ST	CMOS	Bi-directional I/O
RA1/AN1/LVDIN	AN1	AN		A/D input
	LVDIN	AN		LVD input reference
	RA2	ST	CMOS	Bi-directional I/O
RA2/AN2/VREF-/VRL	AN2	AN		A/D input
	VREF-	AN		Negative analog reference input
	VRL		AN	Internal voltage reference low output
	RA3	ST	CMOS	Bi-directional I/O
	AN3	AN		A/D input
RA3/AN3/VREF+/VRH	VREF+	AN		Positive analog reference input
	VRH		AN	Internal voltage reference high output
	RA4	ST	OD	Bi-directional I/O
RA4/T0CKI	T0CKI	ST		TMR0 clock input
	RA5	ST		Input port
RA5/MCLR/VPP	MCLR	ST		Master clear
	Vpp	Power		Programming voltage
	RA6	ST	CMOS	Bi-directional I/O
RA6/OSC2/CLKOUT	OSC2		XTAL	Crystal/resonator
	CLKOUT		CMOS	Fosc/4 output
	RA7	ST	CMOS	Bi-directional I/O
RA7/OSC1/CLKIN	OSC1	XTAL		Crystal/resonator
	CLKIN	ST		External clock input/ER resistor connection
	RB0	TTL	CMOS	Bi-directional I/O ⁽¹⁾
RB0/AN4/INT	AN4	AN		A/D input
	INT	ST		Interrupt input
	RB1	TTL	CMOS	Bi-directional I/O ⁽¹⁾
RB1/AN5/SS	AN5	AN		A/D input
	SS	ST		SSP slave select input
	RB2	TTL	CMOS	Bi-directional I/O ⁽¹⁾
RB2/SCK/SCL	SCK	ST	CMOS	Serial clock I/O for SPI
	SCL	ST	OD	Serial clock I/O for I ² C
	RB3	TTL	CMOS	Bi-directional I/O ⁽¹⁾
RB3/CCP1/P1A	CCP1	ST	CMOS	Capture 1 input/Compare 1 output
	P1A	-	CMOS	PWM P1A output
	RB4	TTL	CMOS	Bi-directional I/O ⁽¹⁾
RB4/SDI/SDA	SDI	ST		Serial data in for SPI
	SDA	ST	OD	Serial data I/O for I ² C
	RB5	TTL	CMOS	Bi-directional I/O ⁽¹⁾
RB5/SDO/P1B	SDO		CMOS	Serial data out for SPI
	P1B		CMOS	PWM P1B output

TABLE 1-1: PIC16C717/770/771 PINOUT DESCRIPTION

Note 1: Bit programmable pull-ups.

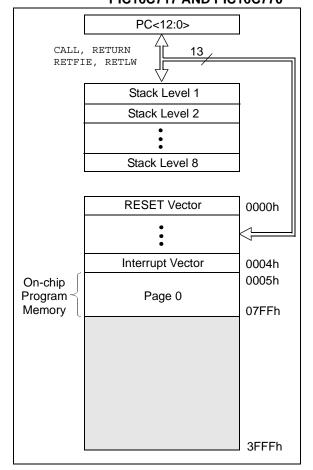
2: Only in PIC16C770/771 devices.

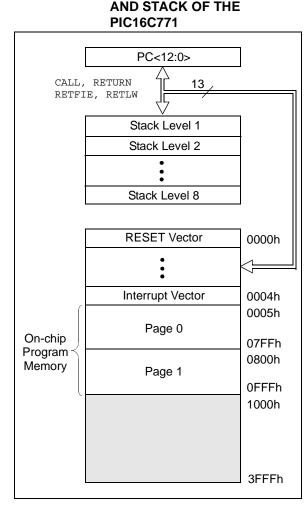
PROGRAM MEMORY MAP

FIGURE 2-2:

2.0 MEMORY ORGANIZATION

There are two memory blocks in each of these PIC[®] microcontrollers. Each block (Program Memory and Data Memory) has its own bus, so that concurrent access can occur.


Additional information on device memory may be found in the PICmicro[™] Mid-Range MCU Family Reference Manual, (DS33023).


2.1 Program Memory Organization

The PIC16C717/770/771 devices have a 13-bit program counter capable of addressing an 8K x 14 program memory space. The PIC16C717 and the PIC16C770 have 2K x 14 words of program memory. The PIC16C771 has 4K x 14 words of program memory. Accessing a location above the physically implemented address will cause a wrap-around.

The RESET vector is at 0000h and the interrupt vector is at 0004h.

FIGURE 2-1: PROGRAM MEMORY MAP AND STACK OF THE PIC16C717 AND PIC16C770

2.2 Data Memory Organization

The data memory is partitioned into multiple banks, which contain the General Purpose Registers and the Special Function Registers. Bits RP1 and RP0 are the bank select bits.

RP1	RP0	(STATUS<6:5>)
= 01	 Bank0 Bank1 Bank2 Bank3 	

Each bank extends up to 7Fh (128 bytes). The lower locations of each bank are reserved for the Special Function Registers. Above the Special Function Registers are General Purpose Registers, implemented as static RAM. All implemented banks contain special function registers. Some frequently used special function registers from one bank are mirrored in another bank for code reduction and quicker access.

2.2.1 GENERAL PURPOSE REGISTER FILE

The register file can be accessed either directly, or indirectly, through the File Select Register FSR.

FIGURE 2-3: REGISTER FILE MAP

A	File ddress	A	File ddress		File Address	Δ	File ddress
Indirect addr.(*)	00h	Indirect addr.(*)	80h	Indirect addr.(*)	100h	Indirect addr.(*)	180h
TMR0	01h	OPTION_REG	81h	TMR0	101h	OPTION REG	181h
PCL	02h	PCL	82h	PCL	102h	PCL	182h
STATUS	03h	STATUS	83h	STATUS	103h	STATUS	183h
FSR	04h	FSR	84h	FSR	104h	FSR	184h
PORTA	05h	TRISA	85h		105h	- I OIL	185h
PORTB	06h	TRISB	86h	PORTB	106h	TRISB	186h
	07h		87h		107h		187h
	08h		88h		108h		188h
	09h		89h		109h		189h
PCLATH	0Ah	PCLATH	8Ah	PCLATH	10Ah	PCLATH	18Ah
INTCON	0Bh	INTCON	8Bh	INTCON	10Bh	INTCON	18Bh
PIR1	0Ch	PIE1	8Ch	PMDATL	10Ch	PMCON1	18Ch
PIR2	0Dh	PIE2	8Dh	PMADRL	10Dh		18Dh
TMR1L	0Eh	PCON	8Eh	PMDATH	10Eh		18Eh
TMR1H	0Fh		8Fh	PMADRH	10Fh		18Fh
T1CON	10h		90h		110h		190h
TMR2	11h	SSPCON2	91h		111h		191h
T2CON	12h	PR2	92h		112h		192h
SSPBUF	13h	SSPADD	93h		113h		193h
SSPCON	14h	SSPSTAT	94h		114h		194h
CCPR1L	15h	WPUB	95h		115h		195h
CCPR1H	16h	IOCB	96h		116h		196h
CCP1CON	17h	P1DEL	97h		117h		197h
	18h		98h		118h		198h
	19h		99h		119h		199h
	1Ah		9Ah		11Ah		19Ah
	1Bh	REFCON	9Bh		11Bh		19Bh
	1Ch	LVDCON	9Ch		11Ch		19Ch
	1Dh	ANSEL	9Dh		11Dh		19Dh
ADRESH	1Eh	ADRESL	9Eh		11Eh		19Eh
ADCON0	1Fh	ADCON1	9Fh		11Fh		19Fh
	20h		A0h		120h		1A0h
General Purpose Register		General Purpose Register 80 Bytes		General Purpose Register 80 Bytes			
96 Bytes			EFh		16Fh		1EFh
-		accesses 70h-7Fh	F0h	accesses 70h - 7Fh	170h	accesses 70h - 7Fh	1F0h
Bank 0	7Fh	Bank 1	FFh	Bank 2	17Fh	Bank 3	1FFh

Unimplemented data memory locations, read as '0'.
 * Not a physical register.

2.2.2.4 PIE1 REGISTER

This register contains the individual enable bits for the peripheral interrupts.

Note: Bit PEIE (INTCON<6>) must be set to enable any peripheral interrupt.

REGISTER 2-4: PERIPHERAL INTERRUPT ENABLE REGISTER 1 (PIE1: 8Ch)

	U-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	
		ADIE	—	—	SSPIE	CCP1IE	TMR2IE	TMR1IE	
	bit 7							bit 0	
bit 7	Unimplem	ented: Read	d as '0'						
bit 6	ADIE: A/D	Converter In	nterrupt Ena	ble bit					
		s the A/D in s the A/D in	•						
bit 5-4	Unimplem	ented: Read	d as '0'						
bit 3	SSPIE: Syr	nchronous S	Serial Port In	terrupt Enab	ole bit				
	 1 = Enables the SSP interrupt 0 = Disables the SSP interrupt 								
bit 2	CCP1IE: C	CP1 Interru	pt Enable bit	t					
		s the CCP1 s the CCP1							
bit 1	TMR2IE: T	MR2 to PR2	2 Match Inter	rupt Enable	bit				
			to PR2 mate to PR2 mat						
bit 0	TMR1IE: T	MR1 Overfle	ow Interrupt	Enable bit					
	 1 = Enables the TMR1 overflow interrupt 0 = Disables the TMR1 overflow interrupt 								
	Legend:								
	R = Reada	ble bit	W = W	ritable bit	U = Unim	plemented	bit, read as '	0'	
	- n = Value	at POR	'1' = Bi	t is set	'0' = Bit i	s cleared	x = Bit is u	nknown	

2.2.2.6 PIE2 REGISTER

This register contains the individual enable bits for the SSP bus collision and low voltage detect interrupts.

REGISTER 2-6: PERIPHERAL INTERRUPT ENABLE REGISTER 2 (PIE2: 8Dh)

	R/W-0	U-0	U-0	U-0	R/W-0	U-0	U-0	U-0		
	LVDIE		—	—	BCLIE	_	—			
	bit 7							bit 0		
bit 7	LVDIE: Lov	v Voltage De	etect Interru	ot Enable bit						
		1 = LVD Interrupt is enabled								
		0 = LVD Interrupt is disabled								
bit 6-4	Unimpleme	ented: Read	d as '0'							
bit 3	BCLIE: Bus	s Collision Ir	nterrupt Ena	ble bit						
	1 = Bus Co	llision interr	upt is enable	ed						
	0 = Bus Co	llision interr	upt is disabl	ed						
bit 2-0	Unimpleme	ented: Read	d as '0'							
	Legend:									
	R = Readal	ole bit	W = W	ritable bit	U = Unim	plemented	bit, read as	0'		
	- n = Value	at POR	'1' = Bi	t is set	'0' = Bit is	s cleared	x = Bit is u	nknown		

The INDF register is not a physical register. Addressing INDF actually addresses the register whose address is contained in the FSR register (FSR is a *pointer*). This is indirect addressing.

Reading INDF itself indirectly (FSR = 0) will produce 00h. Writing to the INDF register indirectly results in a no-operation (although STATUS bits may be affected).

A simple program to clear RAM locations 20h-2Fh using indirect addressing is shown in Example 2-1.

EXAMPLE 2-1: How to Clear RAM Using Indirect Addressing

	movlw	0x20	;initialize pointer
	movwf	FSR	; to RAM
NEXT	clrf	INDF	;clear INDF register
	incf	FSR	;inc pointer
	btfss	FSR,4	;all done?
	goto	NEXT	;NO, clear next
CONTIN	IUE		
	:		;YES, continue

An effective 9-bit address is obtained by concatenating the 8-bit FSR register and the IRP bit (STATUS<7>), as shown in Figure 2-5.

FIGURE 2-5: DIRECT/INDIRECT ADDRESSING

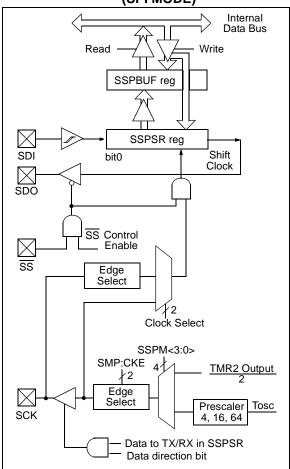
9.1 SPI Mode

The SPI mode allows eight bits of data to be synchronously transmitted and received simultaneously. All four modes of SPI are supported. To accomplish communication, typically three pins are used:

- Serial Data Out (SDO)
- Serial Data In (SDI)
- Serial Clock (SCK)

Additionally, a fourth pin may be used when in a Slave mode of operation:

Slave Select (SS)


9.1.1 OPERATION

When initializing the SPI, several options need to be specified. This is done by programming the appropriate control bits (SSPCON<5:0> and SSPSTAT<7:6>). These control bits allow the following to be specified:

- Master Mode (SCK is the clock output)
- Slave Mode (SCK is the clock input)
- Clock Polarity (Idle state of SCK)
- Data input sample phase (middle or end of data output time)
- Clock edge (output data on rising/falling edge of SCK)
- Clock Rate (Master mode only)
- Slave Select Mode (Slave mode only)

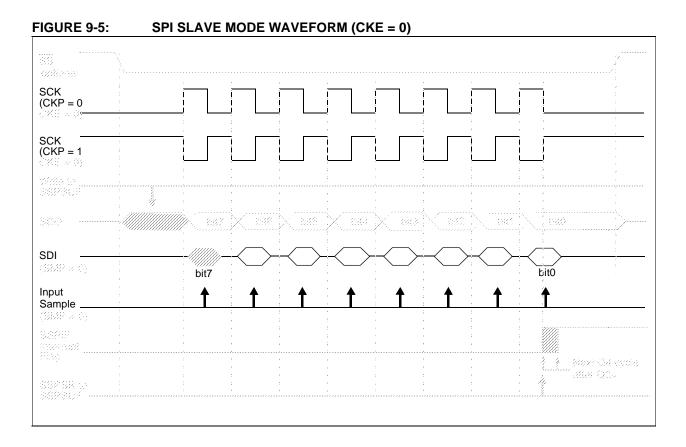
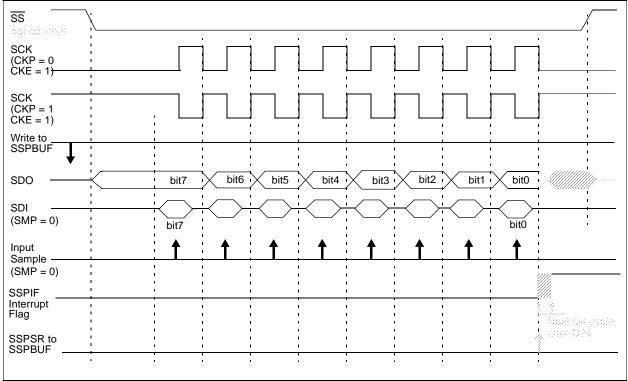

Figure 9-1 shows the block diagram of the MSSP module when in SPI mode.

FIGURE 9-1: MSSP BLOCK DIAGRAM (SPI MODE)



The MSSP consists of a transmit/receive Shift Register (SSPSR) and a Buffer Register (SSPBUF). The SSPSR shifts the data in and out of the device, MSb first. The SSPBUF holds the data that was written to the SSPSR, until the received data is ready. Once the eight bits of data have been received, that byte is moved to the SSPBUF register. Then the buffer full detect bit, BF (SSPSTAT<0>), and the interrupt flag bit, SSPIF (PIR1<3>), are set. This double buffering of the received data (SSPBUF) allows the next byte to start reception before reading the data that was just received. Any write to the SSPBUF register during transmission/reception of data will be ignored, and the write collision detect bit WCOL (SSPCON<7>) will be set. User software must clear the WCOL bit so that it can be determined if the following write(s) to the SSP-BUF register completed successfully.

PIC16C717/770/771

FIGURE 9-6: SPI SLAVE MODE WAVEFORM (CKE = 1)

9.2.13 I²C MASTER MODE RECEPTION

In Master-receive mode, the first byte transmitted contains seven bits of address data and the R/W bit. In this case, the R/W bit will be logic '1'. Thus, the first byte transmitted is a 7-bit slave address followed by a '1' to indicate receive. Serial data is received via SDA, while SCL outputs the serial clock. Serial data is received eight bits at a time. After each byte is received, an Acknowledge bit is transmitted. The START condition indicates the beginning of a transmission. The masterreceiver terminates slave transmission by responding to the last byte with a NACK Acknowledge and follows this with a STOP condition to indicate to other masters that the bus is free.

Master mode reception is enabled by setting the receive enable bit, RCEN (SSPCON2<3>), immediately following the Acknowledge sequence.

Note:	The MSSP Module must be in an IDLE						
	STATE before the RCEN bit is set or the						
	RCEN bit will be disregarded.						

The baud rate generator begins counting, and on each rollover, the state of the SCL pin changes (high to low/ low to high) and data is shifted into the SSPSR. After the falling edge of the eighth clock, the following events occur:

- The receive enable bit is automatically cleared.
- The contents of the SSPSR are loaded into the SSPBUF.
- The BF flag is set.
- The SSPIF is set.
- The baud rate generator is suspended from counting, holding SCL low.

The SSP is now in IDLE state, awaiting the next command. When the buffer is read by the CPU, the BF flag is automatically cleared. The user can then send an Acknowledge bit at the end of reception by clearing the ACKDT bit (SSPCON2<5>) and setting the Acknowledge sequence enable bit, ACKEN (SSPCON2<4>). A typical receive sequence would go as follows:

- a) The user generates a START Condition by setting the START enable bit (SEN) in SSPCON2.
- b) SSPIF is set at the completion of the START sequence.
- c) The user resets the SSPIF bit and loads the SSPBUF with seven bits of address in the MSbs and the LSb (R/W bit) set to '1' for receive.
- d) Address and R/W is shifted out the SDA pin until all eight bits are transmitted.
- e) The MSSP Module shifts in the ACK bit from the slave device, and writes its value into the SSPCON2 register (SSPCON2<6>).
- f) The module generates an interrupt at the end of the ninth clock cycle by setting SSPIF.
- g) The user resets the SSPIF bit and sets the RCEN bit to enable reception.
- h) DATA is shifted into the SDA pin until all eight bits are received.
- The MSSP module sets the SSPIF bit and clears the RCEN bit at the falling edge of the eighth clock.
- j) The user resets the SSPIF bit and sets the ACKDT bit to '0' (ACK), if another byte is anticipated. Otherwise, the ACKDT bit is set to '1' (NACK) to terminate reception. The user sets ADKEN to start the Acknowledge sequence.
- k) The MSSP module sets the SSPIF bit at the completion of the Acknowledge.
- If a NACK was sent in step (j), then the user proceeds with step (m). Otherwise, reception continues by repeating steps (g) through (j).
- m) The user generates a STOP condition by setting the STOP enable bit PEN in SSPCON2.
- n) SSPIF is set when the STOP condition is complete.

9.2.13.1 BF STATUS FLAG

In receive operation, BF is set when an address or data byte is loaded into SSPBUF from SSPSR. It is cleared by hardware when SSPBUF is read.

9.2.13.2 SSPOV STATUS FLAG

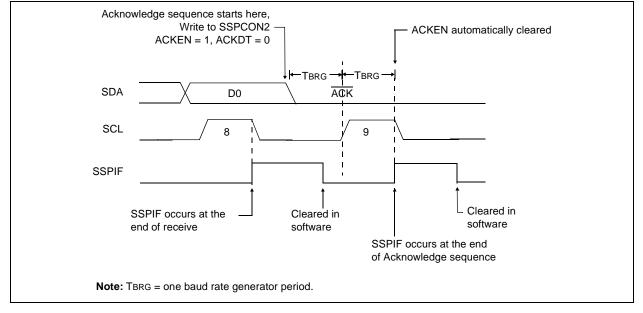
In receive operation, SSPOV is set when eight bits are received into the SSPSR and the BF flag is already set from a previous reception.

9.2.13.3 WCOL STATUS FLAG

If the user writes the SSPBUF when a receive is already in progress (i.e., SSPSR is still shifting in a data byte), then WCOL is set and the contents of the buffer are unchanged (the write doesn't occur).

9.2.14 ACKNOWLEDGE SEQUENCE TIMING

An Acknowledge sequence is enabled by setting the Acknowledge sequence enable bit, ACKEN (SSPCON2<4>). When this bit is set, the SCL pin is pulled low and the contents of the Acknowledge data bit ACKDT (SSPCON2<5>) is presented on the SDA pin. If the user wishes to generate an Acknowledge (ACK), then the ACKDT bit should be cleared. Otherwise, the user should set the ACKDT bit (NACK) before starting an Acknowledge sequence. The baud rate generator is then loaded from SSPADD<6:0> and counts for one rollover period (TBRG). The SCL pin is then de-asserted (pulled high). When the SCL pin is sampled high (clock


arbitration), the baud rate generator is reloaded and counts for another TBRG. At the completion of the TBRG period, the following events occur (see Figure 9-20):

- The SCL pin is pulled low.
- The ACKEN bit is automatically cleared.
- The baud rate generator is turned off.
- The MSSP module goes into IDLE mode.

9.2.14.1 WCOL STATUS FLAG

If the user writes the SSPBUF when an Acknowledge sequence is in progress, the WCOL is set and the contents of the buffer are unchanged (the write doesn't occur).

FIGURE 9-20: ACKNOWLEDGE SEQUENCE WAVEFORM

11.3 Selecting the A/D Conversion Clock

The A/D conversion cycle requires 13TAD: 1 TAD for settling time, and 12 TAD for conversion. The source of the A/D conversion clock is software selected. If neither the internal VRH nor VRL are used for the A/D converter, the four possible options for TAD are:

- 2 Tosc
- 8 Tosc
- 32 Tosc
- A/D RC oscillator

If the VRH or VRL are used for the A/D converter reference, then the TAD requirement is automatically increased by a factor of 8.

For correct A/D conversions, the A/D conversion clock (TAD) must be selected to ensure a minimum TAD time of 1.6 μ s. Table 11-1 shows the resultant TAD times derived from the device operating frequencies and the A/D clock source selected.

The ADIF bit is set on the rising edge of the 14th TAD. The GO/DONE bit is cleared on the falling edge of the 14th TAD.

A/D Reference Source	A/D Clock	Source (TAD)				
	Operation	ADCS<1:0>	20 MHz	5 MHz	4 MHz	1.25 MHz
	2 Tosc	00	100 ns ⁽²⁾	400 ns ⁽²⁾	500 ns ⁽²⁾	1.6 μs
External VREF or Analog Supply	8 Tosc	01	400 ns ⁽²⁾	1.6 μs	2.0 μs	6.4 μs
Analog Supply	32 Tosc	10	1.6 μs	6.4 μs ⁽³⁾	8.0 μs ⁽³⁾	25.6 μs ⁽³⁾
	A/D RC	11	2 - 6 μs ^(1,4)			
Internal VRH or	16 Tosc	00	800 ns ⁽²⁾	3.2 μs ⁽²⁾	4 μs ⁽²⁾	12.8 μs
VRL	64 Tosc	01	3.2 μs ⁽²⁾	12.8 μs	16 μs	51.2 μs ⁽³⁾
	256 Tosc	10	12.8 μs	51.2 μs ⁽³⁾	64 μs ⁽³⁾	204.8 μs ⁽³⁾
	A/D RC	11	16 - 48 μs ^(4,5)			

TABLE 11-1: TAD vs. DEVICE OPERATING FREQUENCIES

Legend: Shaded cells are outside of recommended range.

Note 1: The A/D RC source has a typical TAD time of 4 μ s for VDD > 3.0V.

2: These values violate the minimum required TAD time.

3: For faster conversion times, the selection of another clock source is recommended.

4: When the device frequency is greater than 1 MHz, the A/D RC clock source is only recommended if the conversion will be performed during SLEEP.

5: A/D RC clock source has a typical TAD time of 32 μ s for VDD > 3.0V.

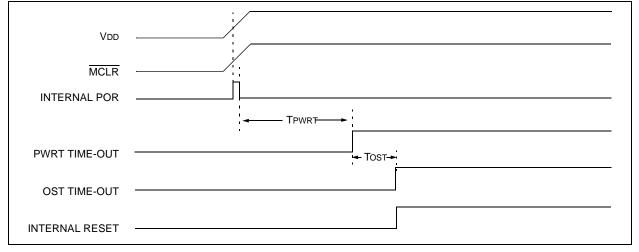

Register	Power-on Reset or Brown-out Reset	MCLR Reset or WDT Reset	Wake-up via WDT or Interrupt
P1DEL	0000 0000	0000 0000	uuuu uuuu
REFCON	0000	0000	uuuu
LVDCON	00 0101	00 0101	uu uuuu
ANSEL	11 1111	11 1111	uu uuuu
ADRESL	xxxx xxxx	uuuu uuuu	uuuu uuuu
ADCON1	0000 0000	0000 0000	uuuu uuuu
PMDATL	XXXX XXXX	uuuu uuuu	uuuu uuuu
PMADRL	xxxx xxxx	uuuu uuuu	uuuu uuuu
PMDATH	xx xxxx	uu uuuu	uu uuuu
PMADRH	xxxx	uuuu	uuuu
PMCON1	10	10	10

TABLE 12-6: INITIALIZATION CONDITIONS FOR ALL REGISTERS (CONTINUED)

Legend: u = unchanged, x = unknown, - = unimplemented bit, read as '0', q = value depends on condition **Note 1:** When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h).

2: See Table 12-5 for RESET value for specific condition.

FIGURE 12-6: TIME-OUT SEQUENCE ON POWER-UP (MCLR TIED TO VDD)

13.0 INSTRUCTION SET SUMMARY

Each PIC16CXXX instruction is a 14-bit word divided into an OPCODE which specifies the instruction type and one or more operands which further specify the operation of the instruction. The PIC16CXX instruction set summary in Table 13-2 lists **byte-oriented**, **bit-oriented**, and **literal and control** operations. Table 13-1 shows the opcode field descriptions.

For **byte-oriented** instructions, 'f' represents a file register designator and 'd' represents a destination designator. The file register designator specifies which file register is to be used by the instruction.

The destination designator specifies where the result of the operation is to be placed. If 'd' is zero, the result is placed in the W register. If 'd' is one, the result is placed in the file register specified in the instruction.

For **bit-oriented** instructions, 'b' represents a bit field designator which selects the number of the bit affected by the operation, while 'f' represents the number of the file in which the bit is located.

For **literal and control** operations, 'k' represents an eight or eleven bit constant or literal value.

TABLE 13-1: OPCODE FIELD DESCRIPTIONS

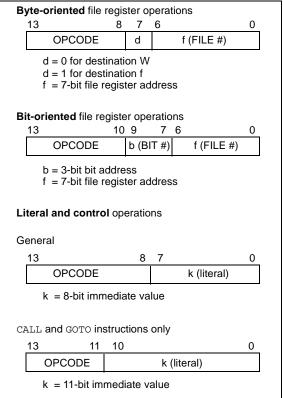
Field	Description
f	Register file address (0x00 to 0x7F)
W	Working register (accumulator)
b	Bit address within an 8-bit file register
k	Literal field, constant data or label
x	Don't care location (= 0 or 1) The assembler will generate code with $x = 0$. It is the recommended form of use for compatibility with all Microchip software tools.
d	Destination select; d = 0: store result in W, d = 1: store result in file register f. Default is d = 1
PC	Program Counter
TO	Time-out bit
PD	Power-down bit

The instruction set is highly orthogonal and is grouped into three basic categories:

- Byte-oriented operations
- Bit-oriented operations
- Literal and control operations

All instructions are executed within one single instruction cycle, unless a conditional test is true or the program counter is changed as a result of an instruction. In this case, the execution takes two instruction cycles with the second cycle executed as a NOP. One instruction cycle consists of four oscillator periods. Thus, for an oscillator frequency of 4 MHz, the normal instruction execution time is 1 μ s. If a conditional test is true or the program counter is changed as a result of an instruction, the instruction execution time is 2 μ s. Table 13-2 lists the instructions recognized by the MPASMTM assembler.

Figure 13-1 shows the general formats that the instructions can have.


Note:	То	maintain	upward	l compa	tibility	with	
	futu	ire PIC160	CXXX pi	roducts,	do not	use	
	the OPTION and TRIS instructions.						

All examples use the following format to represent a hexadecimal number:

0xhh

where h signifies a hexadecimal digit.

FIGURE 13-1: GENERAL FORMAT FOR INSTRUCTIONS

A description of each instruction is available in the PIC Mid-Range MCU Family Reference Manual, (DS33023).

COMF	Complement f						
Syntax:	[<i>label</i>] COMF f,d						
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in \left[0,1\right] \end{array}$						
Operation:	$(\overline{f}) \rightarrow (destination)$						
Status Affected:	Z						
Description:	The contents of register 'f' are complemented. If 'd' is 0, the result is stored in W. If 'd' is 1, the result is stored back in register 'f'.						

GOTO	Unconditional Branch
Syntax:	[<i>label</i>] GOTO k
Operands:	$0 \le k \le 2047$
Operation:	$k \rightarrow PC<10:0>$ PCLATH<4:3> \rightarrow PC<12:11>
Status Affected:	None
Description:	GOTO is an unconditional branch. The eleven bit immediate value is loaded into PC bits <10:0>. The upper bits of PC are loaded from PCLATH<4:3>. GOTO is a two cycle instruction.

DECF	Decrement f
Syntax:	[<i>label</i>] DECF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	(f) - 1 \rightarrow (destination)
Status Affected:	Z
Description:	Decrement register 'f'. If 'd' is 0, the result is stored in the W regis- ter. If 'd' is 1, the result is stored back in register 'f'.

INCF	Increment f
Syntax:	[label] INCF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	(f) + 1 \rightarrow (destination)
Status Affected:	Z
Description:	The contents of register 'f' are incremented. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is placed back in reg- ister 'f'.

DECFSZ	Decrement f, Skip if 0	INCFSZ	Increment f, Skip if 0
Syntax:	[label] DECFSZ f,d	Syntax:	[label] INCFSZ f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$	Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	(f) - 1 \rightarrow (destination); skip if result = 0	Operation:	(f) + 1 \rightarrow (destination), skip if result = 0
Status Affected:	None	Status Affected:	None
Description:	The contents of register 'f' are decremented. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is placed back in reg- ister 'f'. If the result is 1, the next instruc- tion is executed. If the result is 0, then a NOP is executed instead making it a 2Tcy instruction.	Description:	The contents of register 'f' are incremented. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is placed back in regis- ter 'f'. If the result is 1, the next instruc- tion is executed. If the result is 0, a NOP is executed instead making it a 2TCY instruction.

TABLE 15-12: PIC16C770/771 AND PIC16LC770/771 A/D CONVERSION REQUIREMENTS (NORMAL MODE)

Parameter No.	Sym	Characteristic	Min	Тур†	Мах	Units	Conditions
130* ⁽³⁾	TAD	A/D clock period	1.6	—	_	μS	Tosc based, VREF \geq 2.5V
			3.0	—	—	μS	Tosc based, VREF full range
			3.0	6.0	9.0	μS	ADCS<1:0> = 11 (A/D RC mode) At VDD = 2.5V
			2.0	4.0	6.0	μs	At VDD = 5.0V
131*	TCNV	Conversion time (not including acquisition time) (Note 1)	_	13Tad	—	TAD	
132*	TACQ	Acquisition Time	Note 2	11.5	—	μS	
			5*	_	_	μs	The minimum time is the ampli- fier settling time. This may be used if the "new" input voltage has not changed by more than 1LSb (i.e., 1mV @ 4.096V) from the last sampled voltage (as stated on CHOLD).
134*	TGO	Q4 to A/D clock start	—	Tosc/2	—	—	

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: ADRES register may be read on the following TCY cycle.

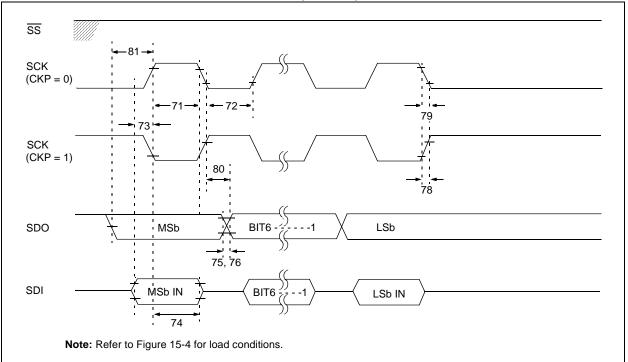
2: See Section 11.6 for minimum conditions.

3: These numbers multiplied by 8 if VRH or VRL is selected as A/D reference.

Param. No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
A01	NR	Resolution	_	_	10 bits	bit	Min. resolution for A/D is 4.1 mV, VREF+ = AVDD = 4.096V, VREF- = AVSS = 0V, VREF- \leq VAIN \leq VREF+
A03	EIL	Integral error		_	±1	LSb	VREF+ = AVDD = 4.096V, VREF- = AVSS = 0V, VREF- ≤ VAIN ≤ VREF+
A04	EDL	Differential error		_	±1	LSb	No missing codes to 10 bits VREF+ = AVDD = 4.096V, VREF- = AVSS = 0V, $VREF- \le VAIN \le VREF+$
A06	EOFF	Offset error		_	±2	LSb	VREF+ = AVDD = 4.096V, VREF- = AVSS = 0V, VREF- ≤ VAIN ≤ VREF+
A07	Egn	Gain Error	_	_	±1	LSb	VREF+ = AVDD = 4.096V, VREF- = AVSS = 0V, VREF- ≤ VAIN ≤ VREF+
A10		Monotonicity	_	Note 3	—		$AVSS \leq VAIN \leq VREF+$
A20*	Vref	Reference voltage (VREF+ - VREF-)	4.096	_	VDD +0.3V	V	Absolute minimum electrical spec to ensure 10-bit accuracy.
A21*	VREF+	Reference V High (Avdd or VREF+)	VREF-	_	AVdd	V	Min. resolution for A/D is 4.1 mV
A22*	VREF-	Reference V Low (Avss or VREF-)	AVss	_	VREF+	V	Min. resolution for A/D is 4.1 mV
A25*	VAIN	Analog input voltage	VREFL	_	VREFH	V	
A30*	Zain	Recommended impedance of analog voltage source	_	—	2.5	kΩ	
A50*	IREF	VREF input current (Note 2)		_	10	μA	During VAIN acquisition. Based on differential of VHOLD to VAIN. To charge CHOLD see Section 11.0. During A/D conversion cycle.

These parameters are characterized but not tested.

Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.


Note 1: When A/D is off, it will not consume any current other than leakage current. The power-down current spec includes any such leakage from the A/D module.

2: VREF current is from External VREF+, or VREF-, or AVSS, or AVDD pin, whichever is selected as reference input.

3: The A/D conversion result never decreases with an increase in the input voltage and has no missing codes.

t

TABLE 15-18: SPI MODE REQUIREMENTS (MASTER MODE, CKE = 1)

Param. No.	Symbol	Characteristic	Min	Тур†	Max	Units	Conditions	
71*	TscH	SCK input high time	Continuous	1.25Tcy + 30	-	_	ns	
71A*		(Slave mode)	Single Byte	40	—	_	ns	Note 1
72*	TscL	SCK input low time	Continuous	1.25Tcy + 30	_		ns	
72A*		(Slave mode)	Single Byte	40	_		ns	Note 1
73*	TdiV2scH, TdiV2scL	Setup time of SDI data in edge	put to SCK	100	_	—	ns	
73A*	Тв2в	Last clock edge of Byte1 edge of Byte2	1.5Tcy + 40	—	—	ns	Note 1	
74*	TscH2diL, TscL2diL	Hold time of SDI data inp	100	_	_	ns		
75*	TdoR	SDO data output rise	PIC16CXXX	—	10	25	ns	
		time	PIC16LCXXX		20	45	ns	
76*	TdoF	SDO data output fall time		—	10	25	ns	
78*	TscR	SCK output rise time	PIC16CXXX	—	10	25	ns	
		(Master mode)	PIC16LCXXX		20	45	ns	
79*	TscF	SCK output fall time (Master mode)		—	10	25	ns	
80*	TscH2doV,	SDO data output valid PIC16CXXX		_	_	50	ns	
	TscL2doV	after SCK edge	PIC16LCXXX		_	100	ns	
81*	TdoV2scH, TdoV2scL	SDO data output setup to	SCK edge	Тсү			ns	

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Specification 73A is only required if specifications 71A and 72A are used.

PIC16C717/770/771

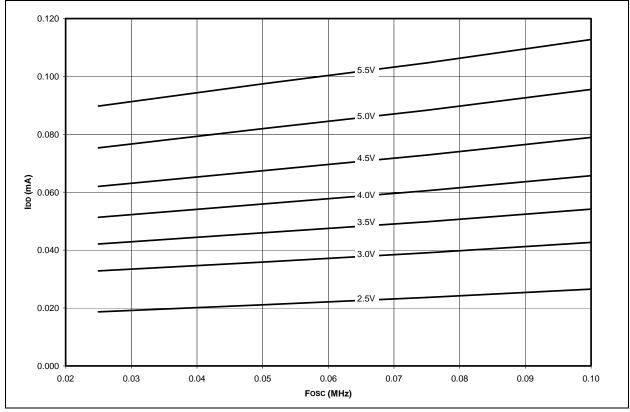
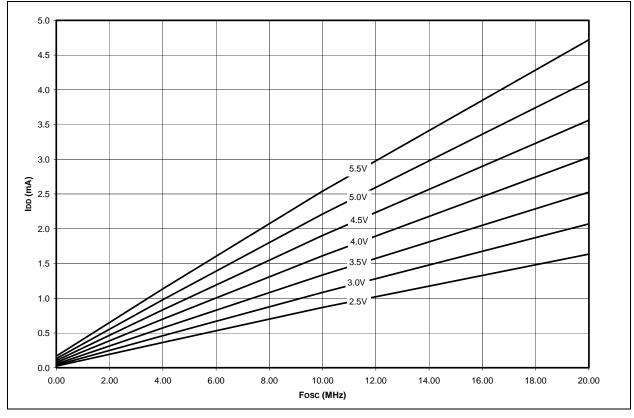
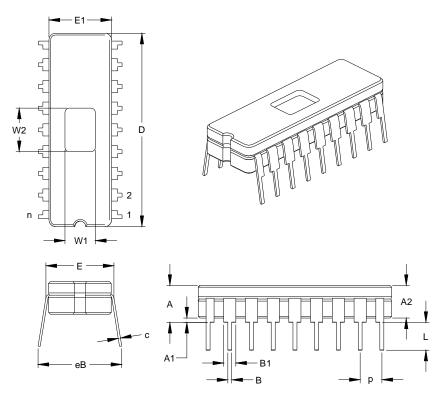
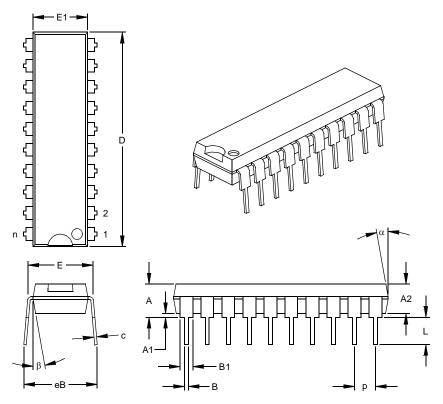




FIGURE 16-7: MAXIMUM IDD VS. FOSC OVER VDD (EC MODE)

18-Lead Ceramic Dual In-line with Window (JW) – 300 mil (CERDIP) 17.3

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging



	Units			INCHES*			MILLIMETERS			
Dimension	MIN	NOM	MAX	MIN	NOM	MAX				
Number of Pins	n		18			18				
Pitch	р		.100			2.54				
Top to Seating Plane	Α	.170	.183	.195	4.32	4.64	4.95			
Ceramic Package Height	A2	.155	.160	.165	3.94	4.06	4.19			
Standoff	A1	.015	.023	.030	0.38	0.57	0.76			
Shoulder to Shoulder Width	Е	.300	.313	.325	7.62	7.94	8.26			
Ceramic Pkg. Width	E1	.285	.290	.295	7.24	7.37	7.49			
Overall Length	D	.880	.900	.920	22.35	22.86	23.37			
Tip to Seating Plane	L	.125	.138	.150	3.18	3.49	3.81			
Lead Thickness	С	.008	.010	.012	0.20	0.25	0.30			
Upper Lead Width	B1	.050	.055	.060	1.27	1.40	1.52			
Lower Lead Width	В	.016	.019	.021	0.41	0.47	0.53			
Overall Row Spacing	eB	.345	.385	.425	8.76	9.78	10.80			
Window Width	W1	.130	.140	.150	3.30	3.56	3.81			
Window Length	W2	.190	.200	.210	4.83	5.08	5.33			

*Controlling Parameter JEDEC Equivalent: MO-036 Drawing No. C04-010

20-Lead Plastic Dual In-line (P) - 300 mil (PDIP) 17.5

For the most current package drawings, please see the Microchip Packaging Specification located Note: at http://www.microchip.com/packaging

Units		INCHES*		MILLIMETERS			
Dimension Limits			MAX	MIN	NOM	MAX	
n		20			20		
р		.100			2.54		
А	.140	.155	.170	3.56	3.94	4.32	
A2	.115	.130	.145	2.92	3.30	3.68	
A1	.015			0.38			
Е	.295	.310	.325	7.49	7.87	8.26	
E1	.240	.250	.260	6.10	6.35	6.60	
D	1.025	1.033	1.040	26.04	26.24	26.42	
L	.120	.130	.140	3.05	3.30	3.56	
С	.008	.012	.015	0.20	0.29	0.38	
B1	.055	.060	.065	1.40	1.52	1.65	
В	.014	.018	.022	0.36	0.46	0.56	
eB	.310	.370	.430	7.87	9.40	10.92	
α	5	10	15	5	10	15	
β	5	10	15	5	10	15	
	n Limits n P A A2 A1 E E1 D L C B1 B eB α	Limits MIN n P A .140 A2 .115 A1 .015 E .295 E1 .240 D 1.025 L .120 c .008 B1 .055 B .014 eB .310 α 5	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	

* Controlling Parameter § Significant Characteristic

Notes:

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side.

JEDEC Equivalent: MS-001

Drawing No. C04-019