

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I²C, SPI
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	15
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	ОТР
EEPROM Size	-
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	2.5V ~ 5.5V
Data Converters	A/D 6x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	18-SOIC (0.295", 7.50mm Width)
Supplier Device Package	18-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lc717-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

1.0 Device Overview	5
2.0 Memory Organization	9
3.0 I/O Ports	
4.0 Program Memory Read (PMR)	41
5.0 Timer0 Module	
6.0 Timer1 Module	
7.0 Timer2 Module	
8.0 Enhanced Capture/Compare/PWM (ECCP) Modules	53
9.0 Master Synchronous Serial Port (MSSP) Module	65
10.0 Voltage Reference Module and Low-voltage Detect	101
11.0 Analog-to-Digital Converter (A/D) Module	105
12.0 Special Features of the CPU	117
13.0 Instruction Set Summary	133
14.0 Development Support	
15.0 Electrical Characteristics	147
16.0 DC and AC Characteristics Graphs and Tables	179
17.0 Packaging Information	197
APPENDIX A: Revision History	207
APPENDIX B: Device Differences	208
Index	209
On-Line Support	215
Reader Response	
PIC16C717/770/771 Product Identification System	217

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@mail.microchip.com** or fax the **Reader Response Form** in the back of this data sheet to (480) 792-4150. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

- · Microchip's Worldwide Web site; http://www.microchip.com
- · Your local Microchip sales office (see last page)
- The Microchip Corporate Literature Center; U.S. FAX: (480) 792-7277

When contacting a sales office or the literature center, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our web site at www.microchip.com/cn to receive the most current information on all of our products.

PIC16C717/770/771

Name	Function	Input Type	Output Type	Description
546/4446	RA0	ST	CMOS	Bi-directional I/O
RA0/AN0	AN0	AN		A/D input
	RA1	ST	CMOS	Bi-directional I/O
RA1/AN1/LVDIN	AN1	AN		A/D input
	LVDIN	AN		LVD input reference
	RA2	ST	CMOS	Bi-directional I/O
	AN2	AN		A/D input
RA2/AN2/VREF-/VRL	VREF-	AN		Negative analog reference input
	VRL		AN	Internal voltage reference low output
	RA3	ST	CMOS	Bi-directional I/O
	AN3	AN		A/D input
RA3/AN3/VREF+/VRH	VREF+	AN		Positive analog reference input
	VRH		AN	Internal voltage reference high output
	RA4	ST	OD	Bi-directional I/O
RA4/T0CKI	T0CKI	ST		TMR0 clock input
	RA5	ST		Input port
RA5/MCLR/VPP	MCLR	ST		Master clear
	Vpp	Power		Programming voltage
	RA6	ST	CMOS	Bi-directional I/O
RA6/OSC2/CLKOUT	OSC2		XTAL	Crystal/resonator
	CLKOUT		CMOS	Fosc/4 output
	RA7	ST	CMOS	Bi-directional I/O
RA7/OSC1/CLKIN	OSC1	XTAL		Crystal/resonator
	CLKIN	ST		External clock input/ER resistor connection
	RB0	TTL	CMOS	Bi-directional I/O ⁽¹⁾
RB0/AN4/INT	AN4	AN		A/D input
	INT	ST		Interrupt input
	RB1	TTL	CMOS	Bi-directional I/O ⁽¹⁾
RB1/AN5/SS	AN5	AN		A/D input
	SS	ST		SSP slave select input
	RB2	TTL	CMOS	Bi-directional I/O ⁽¹⁾
RB2/SCK/SCL	SCK	ST	CMOS	Serial clock I/O for SPI
	SCL	ST	OD	Serial clock I/O for I ² C
	RB3	TTL	CMOS	Bi-directional I/O ⁽¹⁾
RB3/CCP1/P1A	CCP1	ST	CMOS	Capture 1 input/Compare 1 output
	P1A	-	CMOS	PWM P1A output
	RB4	TTL	CMOS	Bi-directional I/O ⁽¹⁾
RB4/SDI/SDA	SDI	ST		Serial data in for SPI
	SDA	ST	OD	Serial data I/O for I ² C
	RB5	TTL	CMOS	Bi-directional I/O ⁽¹⁾
RB5/SDO/P1B	SDO		CMOS	Serial data out for SPI
	P1B		CMOS	PWM P1B output

TABLE 1-1: PIC16C717/770/771 PINOUT DESCRIPTION

Note 1: Bit programmable pull-ups.

2: Only in PIC16C770/771 devices.

TABLE 1-1: PIC16C717/770/771 PINOUT DESCRIPTION (CONTINUED)

Name	Function	Input Type	Output Type	Description
	RB6	TTL	CMOS	Bi-directional I/O ⁽¹⁾
	T1OSO		XTAL	Crystal/Resonator
RB6/T1OSO/T1CKI/P1C	T1CKI	CMOS		TMR1 clock input
	P1C		CMOS	PWM P1C output
	RB7	TTL	CMOS	Bi-directional I/O ⁽¹⁾
RB7/T1OSI/P1D	T1OSI	XTAL		TMR1 crystal/resonator
	P1D		CMOS	PWM P1D output
Vss	Vss	Power		Ground reference for logic and I/O pins
Vdd	Vdd	Power		Positive supply for logic and I/O pins
AVss ⁽²⁾	AVss	Power		Ground reference for analog
AVDD ⁽²⁾	AVdd	Power		Positive supply for analog

Note 1: Bit programmable pull-ups.

2: Only in PIC16C770/771 devices.

2.2.2.3 INTCON REGISTER

The INTCON Register is a readable and writable register, which contains various enable and flag bits for the TMR0 register overflow, RB Port change and External RB0/INT pin interrupts.

R = Readable bit

n = Value at POR

Note: Interrupt flag bits get set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the global enable bit, GIE (INTCON<7>). User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt.

REGISTER 2-3: INTERRUPT CONTROL REGISTER (INTCON: 0Bh, 8Bh, 10Bh, 18Bh)

	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-x		
	GIE	PEIE	T0IE	INTE	RBIE	T0IF	INTF	RBIF		
	bit 7							bit 0		
bit 7		I Interrupt E								
		s all un-mas es all interru	sked interrup ots	ots						
bit 6			upt Enable b	pit						
	 1 = Enables all un-masked peripheral interrupts 0 = Disables all peripheral interrupts 									
bit 5	TOIE: TMR	0 Overflow I	Interrupt Ena	able bit						
		s the TMR0 es the TMR0								
bit 4	INTE: RB0/	/INT Externa	al Interrupt E	nable bit						
			VT external	•						
			NT external	•						
bit 3			Interrupt E							
			rt change in ort change ir							
bit 2	TOIF: TMR	0 Overflow I	nterrupt Fla	g bit						
			overflowed not overflow		ared in soft	ware)				
bit 1	INTF: RB0/	/INT Externa	al Interrupt F	lag bit						
			nal interrupt nal interrupt			red in softwa	are)			
bit 0	RBIF: RB F	Port Change	Interrupt Fl	ag bit ⁽¹⁾						
			RB<7:0> pir 0> pins have			be cleared in	n software)			
			RB pin interr -Change PC			nabled/disal	bled from the	9		
	Legend:									

W = Writable bit

'1' = Bit is set

x = Bit is unknown

U = Unimplemented bit, read as '0'

'0' = Bit is cleared

2.2.2.6 PIE2 REGISTER

This register contains the individual enable bits for the SSP bus collision and low voltage detect interrupts.

REGISTER 2-6: PERIPHERAL INTERRUPT ENABLE REGISTER 2 (PIE2: 8Dh)

	R/W-0	U-0	U-0	U-0	R/W-0	U-0	U-0	U-0			
	LVDIE		—	—	BCLIE	_	—				
	bit 7							bit 0			
bit 7	LVDIE: Low Voltage Detect Interrupt Enable bit										
		1 = LVD Interrupt is enabled									
	0 = LVD Interrupt is disabled										
bit 6-4	Unimplemented: Read as '0'										
bit 3	BCLIE: Bus	BCLIE: Bus Collision Interrupt Enable bit									
	1 = Bus Co	llision interr	upt is enable	ed							
	0 = Bus Co	llision interr	upt is disabl	ed							
bit 2-0	Unimpleme	ented: Read	d as '0'								
	Legend:										
	R = Readal	ole bit	W = W	ritable bit	U = Unim	plemented	bit, read as	0'			
	- n = Value	at POR	'1' = Bi	t is set	'0' = Bit is	s cleared	x = Bit is u	nknown			

2.2.2.8 PCON REGISTER

The Power Control (PCON) register contains a flag bit to allow differentiation between a Power-on Reset (POR) to an external MCLR Reset or WDT Reset. Those devices with brown-out detection circuitry contain an additional bit to differentiate a Brown-out Reset condition from a Power-on Reset condition.

The PCON register also contains the frequency select bit of the INTRC or ER oscillator.

Note: BOR is unknown on Power-on Reset. It must then be set by the user and checked on subsequent RESETS to see if BOR is clear, indicating a brown-out has occurred. The BOR status bit is a don't care and is not necessarily predictable if the brown-out circuit is disabled (by clearing the BODEN bit in the Configuration word).

REGISTER 2-8: POWER CONTROL REGISTER (PCON: 8Eh)

- n = Value at POR

U-0	U-0	U-0	U-0	R/W-1	U-0	R/W-q	R/W-q
_	—	—	—	OSCF	_	POR	BOR
bit 7							bit 0

bit 7-4	Unimplemented: Read as '0'							
bit 3	OSCF: Oscillator Speed bit							
	INTRC Mode							
	1 = 4 MHz nominal							
	0 = 37 kHz nominal							
	ER Mode							
	 1 = Oscillator frequency depends on the external resistor value on the OSC1 pin. 0 = 37 kHz nominal 							
	All other modes							
	x = Ignored							
bit 2	Unimplemented: Read as '0'							
bit 1	POR: Power-on Reset Status bit							
	1 = No Power-on Reset occurred							
	0 = A Power-on Reset occurred (must be set in software after a Power-on Reset occurs)							
bit 0	BOR: Brown-out Reset Status bit (See Section 2.2.2.8 Note)							
	1 = No Brown-out Reset occurred							
	0 = A Brown-out Reset occurred (must be set in software after a Brown-out Reset occurs)							
	Legend: q = Value depends on conditions							
	R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'							

'1' = Bit is set

'0' = Bit is cleared

x = Bit is unknown

REGISTER 3-2: WEAK PULL-UP PORTB REGISTER (WPUB: 95h)

| R/W-1 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| WPUB7 | WPUB6 | WPUB5 | WPUB4 | WPUB3 | WPUB2 | WPUB1 | WPUB0 |
| bit 7 | | | | | | | bit 0 |

bit 7-0 WPUB<7:0>: PORTB Weak Pull-Up Control bits

0 = Weak pull-up disabled

- **Note 1:** For the WPUB register setting to take effect, the RBPU bit in the OPTION_REG register must be cleared.
 - 2: The weak pull-up device is automatically disabled if the pin is in Output mode (TRIS = 0).

Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

REGISTER 3-3: INTERRUPT-ON-CHANGE PORTB REGISTER (IOCB: 96h)

R/W-1	R/W-1	R/W-1	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0
IOCB7	IOCB6	IOCB5	IOCB4	IOCB3	IOCB2	IOCB1	IOCB0
bit 7							bit 0

bit 7-0 IOCB<7:0>: Interrupt-on-Change PORTB Control bits

1 = Interrupt-on-change enabled

0 = Interrupt-on-change disabled

Note: The interrupt enable bits GIE and RBIE in the INTCON Register must be set for individual interrupts to be recognized.

Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

^{1 =} Weak pull-up enabled

4.0 PROGRAM MEMORY READ (PMR)

Program memory is readable during normal operation (full VDD range). It is indirectly addressed through the Special Function Registers:

- PMCON1
- PMDATH
- PMDATL
- PMADRH
- PMADRL

When interfacing the program memory block, the PMDATH & PMDATL registers form a 2-byte word, which holds the 14-bit data. The PMADRH & PMADRL registers form a 2-byte word, which holds the 12-bit address of the program memory location being accessed. Mid-range devices have up to 8K words of program EPROM with an address range from 0h to 3FFFh. When the device contains less memory than the full address range of the PMADRH:PMARDL registers, the Most Significant bits of the PMADRH register are ignored.

4.1 PMCON1 REGISTER

PMCON1 is the control register for program memory accesses.

Control bit RD initiates a read operation. This bit cannot be cleared, only set, in software. It is cleared in hardware at completion of the read operation.

REGISTER 4-1: PROGRAM MEMORY READ CONTROL REGISTER 1 (PMCON1: 18Ch)

R-1	U-0	U-0	U-0	U-0	U-0	U-0	R/S-0
Reserved	—	—	—	—	—	—	RD
bit 7							bit 0
Reserved: Read as '1'							
Unimplemented: Read as '0'							

bit 0 **RD**: Read Control bit

1 = Initiates a Program memory read (read takes 2 cycles). RD is cleared in hardware.

0 = Reserved

Legend:		S = Settable (cleared in hardware)		
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'	
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

4.2 PMDATH AND PMDATL REGISTERS

bit 7 bit 6-1

The PMDATH:PMDATL registers are loaded with the contents of program memory addressed by the PMADRH and PMADRL registers upon completion of a Program Memory Read command.

TABLE 4-1: PROGRAM MEMORY READ REGISTER SUMMARY

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other RESETS
18Ch	PMCON1	Reserved	_	_	_	_	—		RD	1 0	10
10Eh	PMDATH	_	_	PMD13	PMD12	PMD11	PMD10	PMD9	PMD8	xx xxxx	uu uuuu
10Ch	PMDATL	PMD7	PMD6	PMD5	PMD4	PMD3	PMD2	PMD1	PMD0	xxxx xxxx	uuuu uuuu
10Fh	PMADRH	_	_	—	_	PMA11	PMA10	PMA9	PMA8	xxxx	uuuu
10Dh	PMADRL	PMA7	PMA6	PMA5	PMA4	PMA3	PMA2	PMA1	PMA0	XXXX XXXX	uuuu uuuu

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by Program Memory Read.

6.0 TIMER1 MODULE

The Timer1 module timer/counter has the following features:

- 16-bit timer/counter (Two 8-bit registers; TMR1H and TMR1L)
- Readable and writable (Both registers)
- · Internal or external clock select
- Interrupt on overflow from FFFFh to 0000h
- RESET from ECCP module trigger

Timer1 has a control register, shown in Register 6-1. Timer1 can be enabled/disabled by setting/clearing control bit TMR1ON (T1CON<0>).

Figure 6-2 is a simplified block diagram of the Timer1 module.

Additional information on timer modules is available in the PIC Mid-Range MCU Family Reference Manual, (DS33023).

6.1 Timer1 Operation

Timer1 can operate in one of these modes:

- As a timer
- · As a synchronous counter
- · As an asynchronous counter

The Operating mode is determined by the clock select bit, TMR1CS (T1CON<1>).

In Timer mode, Timer1 increments every instruction cycle. In Counter mode, it increments on every rising edge of the external clock input.

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_		T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N
bit 7							bit 0

bit 7-6	Unimplemented: Read as '0'
bit 5-4	T1CKPS<1:0>: Timer1 Input Clock Prescale Select bits 11 = 1:8 Prescale value 10 = 1:4 Prescale value 01 = 1:2 Prescale value 00 = 1:1 Prescale value
bit 3	T1OSCEN: Timer1 Oscillator Enable Control bit 1 = Oscillator is enabled 0 = Oscillator is shut off ⁽¹⁾
bit 2	T1SYNC: Timer1 External Clock Input Synchronization Control bitTMR1CS = 1:1 = Do not synchronize external clock input0 = Synchronize external clock inputTMR1CS = 0:This bit is ignored. Timer1 uses the internal clock when TMR1CS = 0.
bit 1	TMR1CS: Timer1 Clock Source Select bit 1 = External clock from pin RB6/T1OSO/T1CKI /P1C (on the rising edge) 0 = Internal clock (Fosc/4)
bit 0	TMR1ON: Timer1 On bit 1 = Enables Timer1 0 = Stops Timer1

Note 1: The oscillator inverter and feedback resistor are turned off to eliminate power drain.

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

REGISTER 6-1: TIMER1 CONTROL REGISTER (T1CON: 10h)

PIC16C717/770/771

FIGURE 9-6: SPI SLAVE MODE WAVEFORM (CKE = 1)

9.2.7 MULTI-MASTER OPERATION

In Multi-Master mode, the interrupt generation on the detection of the START and STOP conditions allows the determination of when the bus is free. The STOP (P) and START (S) bits are cleared from a RESET or when the MSSP module is disabled. Control of the I²C bus may be taken when bit P (SSPSTAT<4>) is set, or the bus is idle with both the S and P bits clear. When the bus is busy, enabling the SSP Interrupt will generate the interrupt when the STOP condition occurs.

In multi-master operation, the SDA line must be monitored for arbitration to see if the signal level is the expected output level. This check is performed in hardware, with the result placed in the BCLIF bit.

The states where arbitration can be lost are:

- · Address Transfer
- Data Transfer
- A START Condition
- A Repeated START Condition
- An Acknowledge Condition

Refer to Application Note AN578, "Use of the SSP Module in the l^2C^{TM} Multi-Master Environment."

9.2.8 I²C MASTER OPERATION

Master mode is enabled by setting and clearing the appropriate SSPM bits in SSPCON and by setting the SSPEN bit. Once Master mode is enabled, the user has six options.

- 1. Assert a START condition on SDA and SCL.
- 2. Assert a Repeated START condition on SDA and SCL.
- 3. Write to the SSPBUF register initiating transmission of data/address.
- 4. Generate a STOP condition on SDA and SCL.
- 5. Configure the I²C port to receive data.
- 6. Generate an Acknowledge condition at the end of a received byte of data.

The master device generates all serial clock pulses and the START and STOP conditions. A transfer is ended with a STOP condition or with a Repeated START condition. Since the Repeated START condition is also the beginning of the next serial transfer, the I^2C bus will not be released.

Note:	The MSSP Module, when configured in I^2C							
	Master mode, does not allow queueing of							
	events. For instance, the user is not							
	allowed to initiate a START condition and							
	immediately write the SSPBUF register to							
	initiate transmission before the START							
	condition is complete. In this case, the							
	SSPBUF will not be written to, and the							
	WCOL bit will be set, indicating that a write							
	to the SSPBUF did not occur.							

9.2.9 BAUD RATE GENERATOR

The baud rate generator used for SPI mode operation is used in the I²C Master mode to set the SCL clock frequency. Standard SCL clock frequencies are 100 kHz, 400 kHz, and 1 MHz. One of these frequencies can be achieved by setting the SSPADD register to the appropriate number for the selected Fosc frequency. One half of the SCL period is equal to [(SSPADD+1) \bullet 2]/Fosc.

The baud rate generator reload value is contained in the lower seven bits of the SSPADD register (Figure 9-14). When the BRG is loaded with this value, the BRG counts down to 0 and stops until another reload occurs. The BRG count is decremented twice per instruction cycle (Tcr) on the Q2 and Q4 clock.

In I²C Master mode, the BRG is reloaded automatically provided that the SCL line is sampled high. For example, if Clock Arbitration is taking place, the BRG reload will be suppressed until the SCL line is released by the slave allowing the pin to float high (Figure 9-15).

FIGURE 9-14:

BAUD RATE GENERATOR BLOCK DIAGRAM

9.2.17.1 BUS COLLISION DURING A START CONDITION

During a START condition, a bus collision occurs if:

- a) SDA or SCL are sampled low at the beginning of the START condition (Figure 9-24).
- b) SCL is sampled low before SDA is asserted low. (Figure 9-25).

During a START condition both the SDA and the SCL pins are monitored.

lf:

the SDA pin is already low or the SCL pin is already low,

then:

the START condition is aborted, and the BCLIF flag is set, and the SSP module is reset to its IDLE state (Figure 9-24).

The START condition begins with the SDA and SCL pins de-asserted. When the SDA pin is sampled high, the baud rate generator is loaded from SSPADD<6:0> and counts down to 0. If the SCL pin is sampled low

while SDA is high, a bus collision occurs, because it is assumed that another master is attempting to drive a data '1' during the START condition.

If the SDA pin is sampled low during this count, the BRG is reset and the SDA line is asserted early (Figure 9-26). If however a '1' is sampled on the SDA pin, the SDA pin is asserted low at the end of the BRG count. The baud rate generator is then reloaded and counts down to 0, and during this time, if the SCL pin is sampled as '0', a bus collision does not occur. At the end of the BRG count the SCL pin is asserted low.

Note: The reason that bus collision is not a factor during a START condition is that no two bus masters can assert a START condition at the exact same time. Therefore, one master will always assert SDA before the other. This condition does not cause a bus collision, because the two masters must be allowed to arbitrate the first address following the START condition. If the address is the same, arbitration must be allowed to continue into the data portion, REPEATED START or STOP conditions.

FIGURE 9-24: BUS COLLISION DURING START CONDITION (SDA ONLY)

11.4 A/D Conversions

Example 11-1 shows an example that performs an A/D conversion. The port pins are configured as analog inputs. The analog reference VREF+ is the device AVDD and the analog reference VREF- is the device AVSS. The A/D interrupt is enabled and the A/D conversion clock is TRC. The conversion is performed on the AN0 channel.

EXAMPLE	11-1: P	ERFO	RMING AN	I A/D	CONVERSION
DOD			10-1	D 1	1

BSF	STATUS, RPO	;Select Bank 1
CLRF	ADCON1	;Configure A/D Voltage Reference
MOVLW	0x01	
MOVWF	ANSEL	disable ANO digital input buffer;
MOVWF	TRISA	;RAO is input mode
BSF	PIE1, ADIE	;Enable A/D interrupt
BCF	STATUS, RPO	;Select Bank 0
MOVLW	0xC1	;RC clock, A/D is on,
		;Ch 0 is selected
MOVWF	ADCON0	;
BCF	PIR1, ADIF	;Clear A/D Int Flag
BSF	INTCON, PEIE	;Enable Peripheral
BSF	INTCON, GIE	;Enable All Interrupts
;		
; Ensure t	hat the require	d sampling time for the
; selected	input channel	has lapsed. Then the
; conversi	on may be start	ed.
BSF	ADCON0, GO	;Start A/D Conversion
	:	;The ADIF bit will be
		;set and the GO/DONE bit
	:	;cleared upon completion-
		; of the A/D conversion.
; Wait for	A/D completion	and read ADRESH:ADRESL for result.

Register	Power-on Reset or Brown-out Reset	MCLR Reset or WDT Reset	Wake-up via WDT or Interrupt
P1DEL	0000 0000	0000 0000	uuuu uuuu
REFCON	0000	0000	uuuu
LVDCON	00 0101	00 0101	uu uuuu
ANSEL	11 1111	11 1111	uu uuuu
ADRESL	xxxx xxxx	uuuu uuuu	uuuu uuuu
ADCON1	0000 0000	0000 0000	uuuu uuuu
PMDATL	XXXX XXXX	uuuu uuuu	uuuu uuuu
PMADRL	xxxx xxxx	uuuu uuuu	uuuu uuuu
PMDATH	xx xxxx	uu uuuu	uu uuuu
PMADRH	xxxx	uuuu	uuuu
PMCON1	10	10	10

TABLE 12-6: INITIALIZATION CONDITIONS FOR ALL REGISTERS (CONTINUED)

Legend: u = unchanged, x = unknown, - = unimplemented bit, read as '0', q = value depends on condition **Note 1:** When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h).

2: See Table 12-5 for RESET value for specific condition.

FIGURE 12-6: TIME-OUT SEQUENCE ON POWER-UP (MCLR TIED TO VDD)

RETFIE	Return from Interrupt	RLF	Rotate Left f through Carry
Syntax:	[label] RETFIE	Syntax:	[<i>label</i>] RLF f,d
Operands:	None	Operands:	$0 \le f \le 127$
Operation:	$TOS \rightarrow PC$,		d ∈ [0,1]
	$1 \rightarrow GIE$	Operation:	See description below
Status Affected:	None	Status Affected:	С
		Description:	The contents of register 'f' are rotated one bit to the left through the Carry Flag. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is stored back in register 'f'. -C Register f

RETLW	Return with Literal in W	RRF	Rotate Right f through Carry
Syntax:	[<i>label</i>] RETLW k	Syntax:	[<i>label</i>] RRF f,d
Operands: Operation:	$0 \le k \le 255$ k \rightarrow (W);	Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation.	$TOS \rightarrow PC$	Operation:	See description below
Status Affected:	None	Status Affected:	С
Description:	The W register is loaded with the eight bit literal 'k'. The program counter is loaded from the top of the stack (the return address). This is a two cycle instruction.	Description:	The contents of register 'f' are rotated one bit to the right through the Carry Flag. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is placed back in reg- ister 'f'. Register f

RETURN	Return from Subroutine	SLEEP				
Syntax:	[label] RETURN	Syntax:	[label SLEEP			
Operands:	None]			
Operation:	$TOS \rightarrow PC$	Operands:	None $00h \rightarrow WDT$, $0 \rightarrow WDT$ proceedor			
Status Affected:	None	Operation:				
Description:	Return from subroutine. The stack is POPed and the top of the stack (TOS) is loaded into the program counter. This is a two cycle instruction.	Status Affected:	$0 \rightarrow WDT \text{ prescaler,} \\ 1 \rightarrow \overline{TO}, \\ 0 \rightarrow \overline{PD} \\ \overline{TO}, \overline{PD}$			
		Description:	The power-down status bit, PD is cleared. Time-out status bit, TO is set. Watchdog Timer and its prescaler are cleared. The processor is put into SLEEP mode with the oscillator stopped.			

See Section 12.8 for more

details.

TABLE 15-3: CALIBRATED INTERNAL RC FREQUENCIES - PIC16C717/770/771 AND PIC16LC717/770/771

$\begin{array}{ c c c c c } \mbox{AC Characteristics} & \mbox{Standard Operating Conditions (unless otherwise specified)} \\ \mbox{Operating Temperature } 0^{\circ}C & \leq TA \leq & +70^{\circ}C \mbox{ for commercial} \\ -40^{\circ}C & \leq TA \leq & +85^{\circ}C \mbox{ for industrial} \\ -40^{\circ}C & \leq TA \leq & +125^{\circ}C \mbox{ for extended} \\ \mbox{Operating Voltage VDD range is described in Section and Section} \end{array}$					tion		
Parameter No.	Sym	Characteristic	Min	Тур ^{(1)*}	Max	Units	Conditions
	FIRC	Internal Calibrated RC Frequency	3.65	4.00	4.28	MHz	Vdd = 5.0V
		Internal RC Frequency*	3.55	4.00	4.31	MHz	VDD = 2.5V

These parameters are characterized but not tested.

*

Note 1: Data in the Typical ("Typ") column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 15-7: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP TIMER TIMING

FIGURE 15-8: BROWN-OUT RESET TIMING

15.6 Master SSP I²C Mode Timing Waveforms and Requirements

FIGURE 15-22: MASTER SSP I²C BUS START/STOP BITS TIMING WAVEFORMS

TABLE 15-21: MASTER SSP I²C BUS START/STOP BITS REQUIREMENTS

Param. No.	Symbol	Characteristic		Min	Тур	Max	Units	Conditions
90*	TSU:STA	START condition	100 kHz mode	2(Tosc)(BRG + 1)	—	_	ns	Only relevant for a Repeated START condition
		Setup time	400 kHz mode	2(Tosc)(BRG + 1)	—	—		
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)	—			
91*	THD:STA	START condition	100 kHz mode	2(Tosc)(BRG + 1)	—	—		After this period the first clock pulse is generated
		Hold time	400 kHz mode	2(Tosc)(BRG + 1)	_	_		
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)	—			
92*	Tsu:sto	STOP condition	100 kHz mode	2(Tosc)(BRG + 1)	_	_	ns	
		Setup time	400 kHz mode	2(Tosc)(BRG + 1)	—			
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)	—	_		
93*	THD:STO	STOP condition	100 kHz mode	2(Tosc)(BRG + 1)	—			
		Hold time	400 kHz mode	2(Tosc)(BRG + 1)	—	—	ns	
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)	—	_		

 * These parameters are characterized but not tested. For the value required by the I²C specification, please refer to the PICmicroTM Mid-Range MCU Family Reference Manual (DS33023).
 Maximum pin capacitance = 10 pF for all I²C pins.

NOTES: